Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
77
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Stability analysis and dual solutions of time-dependent stagnation-point heat transport of Casson nanofluid by using Tiwari–Das model

, , , &
Pages 253-270 | Received 07 Dec 2022, Accepted 03 Apr 2023, Published online: 25 May 2023

References

  • H. Schlichting and K. Gersten, Boundary Layer Theory. Berlin, Germany: Springer, 2016.
  • F. T. Smith, “Steady and unsteady boundary layer separation,” Annu. Rev. Fluid Mech, vol. 18, no. 1, pp. 197–220, Nov. 1986. DOI: 10.1146/annurev.fl.18.010186.001213.
  • F. M. White, Viscous Fluid Flow. New York, NY: McGraw-Hill, 1991.
  • K. Hiemenz, “Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder,” Dinglers Polytech. J., vol. 326, pp. 321–324, Apr. 1911.
  • F. Homann, “Der Einfluss grosser Zähigkeit bei der Strömung um den Zylinder und um die Kugel,” Z. Angew. Math. Mech., vol. 16, no. 3, pp. 153–164, Jun. 1936. DOI: 10.1002/zamm.19360160304.
  • T. C. Chiam, “Stagnation-point flow towards a stretching plate,” J. Phys. Soc. Jpn., vol. 63, no. 6, pp. 2443–2444, Mar. 1994. DOI: 10.1143/JPSJ.63.2443.
  • A. Ishak, R. Nazar and I. Pop, “Mixed convection boundary layers in the stagnation-point flow toward a stretching vertical sheet,” Meccanica, vol. 41, no. 5, pp. 509–518, Oct. 2006. DOI: 10.1007/s11012-006-0009-4.
  • T. R. Mahapatra and A. S. Gupta, “Stagnation-point flow towards a stretching surface,” Can. J. Chem. Eng., vol. 81, no. 2, pp. 258–263, Apr. 2008. DOI: 10.1002/cjce.5450810210.
  • P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction or blowing,” Can. J. Chem. Eng., vol. 55, no. 6, pp. 744–746, Dec. 1977. DOI: 10.1002/cjce.5450550619.
  • K. Vajravelu, “Viscous flow over a nonlinearly stretching sheet,” Appl. Math. Comput., vol. 124, no. 3, pp. 281–288, Dec. 2001. DOI: 10.1016/S0096-3003(00)00062-X.
  • Z. Abbas and T. Hayat, “Stagnation slip flow and heat transfer over a nonlinear stretching sheet,” Numer. Methods Partial Differ. Eq., vol. 27, no. 2, pp. 302–314, Mar. 2011. DOI: 10.1002/num.20523.
  • S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. (No. ANL/MSD/CP-84938; CONF-951135-29). Lemont, IL: Argonne National Lab, 1995.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, Mar. 2006. DOI: 10.1115/1.2150834.
  • R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, no. 9–10, pp. 2002–2018, May 2007. DOI: 10.1016/j.ijheatmasstransfer.2006.09.034.
  • M. Akbari, N. Galanis and A. Behzadmehr, “Comparative assessment of single and two-phase models for numerical studies of nanofluid turbulent forced convection,” Int. J. Heat Fluid Flow, vol. 37, pp. 136–146, Oct. 2012. DOI: 10.1016/j.ijheatfluidflow.2012.05.005.
  • C. Pang, J. Y. Jung and Y. T. Kang, “Aggregation based model for heat conduction mechanism in nanofluids,” Int. J. Heat Mass Transf., vol. 72, pp. 392–399, May 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.12.055.
  • A. Ebrahimi, F. Rikhtegar, A. Sabaghan and E. Roohi, “Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids,” Energy, vol. 101, pp. 190–201, Apr. 2016. DOI: 10.1016/j.energy.2016.01.102.
  • E. C. Wang and A. Z. Wang, “Nanoparticles and their applications in cell and molecular biology,” Integr. Biol. (Camb)., vol. 6, no. 1, pp. 9–26, Oct. 2014. DOI: 10.1039/c3ib40165k.
  • M. S. Patil, S. C. Kim, J. H. Seo and M. Y. Lee, “Review of the thermo-physical properties and performance characteristics of a refrigeration system using refrigerant-based nanofluids,” Energies, vol. 9, no. 1, pp. 22, Dec. 2015. DOI: 10.3390/en9010022.
  • F. A. Alwawi, H. T. Alkasasbeh, A. M. Rashad and R. Idris, “MHD natural convection of Sodium Alginate Casson nanofluid over a solid sphere,” Results Phys., vol. 16, pp. 102818, Nov. 2020. DOI: 10.1016/j.rinp.2019.102818.
  • F. A. Alwawi, H. T. Alkasasbeh, A. M. Rashad and R. Idris, “Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect,” Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci., vol. 234, no. 13, pp. 2569–2580, Mar. 2020. DOI: 10.1177/0954406220908624.
  • L. A. Lund, Z. Omar, I. Khan and S. Dero, “Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface,” J. Cent. South Univ., vol. 26, no. 5, pp. 1283–1293, May 2019. DOI: 10.1007/s11771-019-4087-6.
  • F. A. Alwawi, A. S. Hamarsheh, H. T. Alkasasbeh and R. Idris, “Mixed convection flow of magnetized Casson nanofluid over a cylindrical surface,” Coatings, vol. 12, no. 3, pp. 296, Feb. 2022. DOI: 10.3390/coatings12030296.
  • S. Dero, et al., “Dual solutions and stability analysis of micropolar nanofluid flow with slip effect on stretching/shrinking surfaces,” Energies, vol. 12, no. 23, pp. 4529, Nov. 2019. DOI: 10.3390/en12234529.
  • S. Dero, A. M. Rohni and A. Saaban, “Triple solutions and stability analysis of mixed convection boundary flow of Casson nanofluid over an exponentially vertical stretching/shrinking sheet,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 72, no. 1, pp. 94–110, Aug. 2020. DOI: 10.37934/arfmts.72.1.94110.
  • N. F. Dzulkifli, N. Bachok, N. A. Yacob, N. M. Arifin and H. Rosali, “Unsteady stagnation-point flow and heat transfer over a permeable exponential stretching/shrinking sheet in nanofluid with slip velocity effect: A stability analysis,” Appl. Sci., vol. 8, no. 11, pp. 2172, Nov. 2018. DOI: 10.3390/app8112172.
  • S. Dero, A. M. Rohni and A. Saaban, “Stability analysis of Cu-C6H9NaO7 and Ag- C6H9NaO7 nanofluids with effect of viscous dissipation over stretching and shrinking surfaces using a single phase model,” Heliyon, vol. 6, no. 3, pp. e03510, Mar. 2020. DOI: 10.1016/j.heliyon.2020.e03510.
  • P. M. Patil, N. Kumbarwadi and A. J. Chamkha, “Unsteady mixed convection over an exponentially stretching surface: Influence of Darcy-Forchheimer porous medium and cross diffusion,” J. Porous Med., vol. 24, no. 2, pp. 25–47, 2021. DOI: 10.1615/JPorMedia.2020026016.
  • N. A. Zainal, R. Nazar, K. Naganthran and I. Pop, “Unsteady MHD stagnation point flow induced by exponentially permeable stretching/shrinking sheet of hybrid nanofluid,” Eng. Sci. Tech. Int. J, vol. 24, no. 5, pp. 1201–1210, Oct. 2021. DOI: 10.1016/j.jestch.2021.01.018.
  • J. H. Merkin, “On dual solutions occurring in mixed convection in a porous medium,” J. Eng. Math., vol. 20, no. 2, pp. 171–179, Jun. 1986. DOI: 10.1007/BF00042775.
  • S. D. Harris, D. B. Ingham and I. Pop, “Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip,” Transp. Porous Med., vol. 77, no. 2, pp. 267–285, Mar. 2009. DOI: 10.1007/s11242-008-9309-6.
  • D. B. Meade, B. S. Haran and R. E. White, “The shooting technique for the solution of two-point boundary value problems,” Maple Tech. Newslett., vol. 3, no. 1, pp. 1–8, Nov. 1996. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=8f95f9a23602460792e29bee826d8e4082f0bec5.
  • P. K. Kameswaran, P. Sibanda and A. S. N. Murti, “Nanofluid flow over a permeable surface with convective boundary conditions and radiative heat transfer,” Math. Prob. Eng., vol. 2013, pp. 1–11, Mar. 2013. DOI: 10.1155/2013/201219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.