Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 2
50
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A model for a set of porous fins on a long rotating cylinder considering thermal radiation and natural convection

ORCID Icon, ORCID Icon & ORCID Icon
Pages 234-252 | Received 25 Jan 2023, Accepted 30 Mar 2023, Published online: 21 Apr 2023

References

  • R. S. R. Gorla and A. Y. Bakier, “Thermal analysis of natural convection and radiation in porous fins,” Int. Commun. Heat Mass Transf., vol. 38, no. 5, pp. 638–645, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.024.
  • R. Das, “Forward and inverse solutions of a conductive, convective and radiative cylindrical porous fin,” Energy Convers. Manage., vol. 87, pp. 96–106, 2014. DOI: 10.1016/j.enconman.2014.06.096.
  • S. Kiwan, “Thermal analysis of natural convection porous fins,” Transp Porous Med., vol. 67, no. 1, pp. 17–29, 2007. DOI: 10.1007/s11242-006-0010-3.
  • M. G. Maheria, Thermal Analysis of Natural Convection and Radiation in Porous Fins, Cleveland State University, Cleveland, 2010,
  • M. G. Sobamowo, O. M. Kamiyo and O. A. Adeleye, “Thermal performance analysis, of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation,” Therm. Sci. Eng. Progress., vol. 1, pp. 39–52, 2017. DOI: 10.1016/j.tsep.2017.02.007.
  • S. Mehendale, “Thermal performance of a pin fin with unequal convective coefficients over its tip and surface,” Heat Trans Res, vol. 49, no. 13, pp. 1247–1273, 2018. DOI: 10.1615/HeatTransRes.2018020730.
  • S. Kiwan and M. A. Al-Nmir, “Using porous fins for heat transfer enhancement,” ASME J. Heat Transf., vol. 123, no. 4, pp. 790–795, 2001. DOI: 10.1115/1.1371922.
  • A. Nguyen and A. Aziz, “Heat transfer from convecting-radiating fins of different profile shapes,” J. Heat Mass Transf., vol. 27, no. 2, pp. 67–72, 1992. DOI: 10.1007/BF01590120.
  • J. Ma, Y. Sun, B. Li and H. Chen, “Spectral collocation for radiative-conductive porous fin with temperature dependent properties,” J. Energ Convect. Manage., vol. 111, pp. 279–288, 2016. DOI: 10.1016/j.enconman.2015.12.054.
  • S. A. Atouei, K. Hosseinzadeh, M. Hatami, S. E. Ghasemi, S. A. R. Sahebi and D. D. Ganji, “Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods,” Appl. Therm. Eng., vol. 89, pp. 299–305, 2015. DOI: 10.1016/j.applthermaleng.2015.05.084.
  • S. Hussain and A. K. Hussein, “Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations,” Int. Commun. Heat Mass Transf., vol. 37, no. 8, pp. 1115–1126, 2010. DOI: 10.1016/j.icheatmasstransfer.2010.05.016.
  • D. W. Mueller and H. I. Abu-Mulaweh, “Prediction of the temperature in a fin cooled by natural convection and radiation,” Appl. Therm. Eng., vol. 26, no. 14–15, pp. 1662–1668, 2006. DOI: 10.1016/j.applthermaleng.2005.11.014.
  • M. C. Pinar and E. Cuce, “Optimization of configurations to enhance heat transfer from a longitudinal fin exposed to natural convection and radiation,” Int. J. Low-Carbon Tech., vol. 9, no. 4, pp. 305–310, 2014. DOI: 10.1093/ijlct/ctt005.
  • N. Daraji and M. N. Bouaziz, “Modeling a spiral porous fin with temperature dependent and independent thermal conductivity,” Int. J. Appl. Eng. Res., vol. 13, no. 7, pp. 5522–5527, 2018.
  • B. Kundu and D. Bhanja, “An analytical prediction for performance and optimum design analysis of porous fins,” Int. J. Refrigerat., vol. 34, no. 1, pp. 337–352, 2011. DOI: 10.1016/j.ijrefrig.2010.06.011.
  • B. Kundu, D. Bhanja and K.-S. Lee, “A model on the basis of analytics for computing maximum heat transfer in porous fins,” Int. J. Heat Mass Transf., vol. 55, no. 25-26, pp. 7611–7622, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.07.069.
  • D. Bhanja and B. Kundu, “Thermal analysis of a constructal T-shaped porous fin with radiation effects,” Int. J. Refrigerat., vol. 34, no. 6, pp. 1483–1496, 2011. DOI: 10.1016/j.ijrefrig.2011.04.003.
  • M. Torab and H. Yaghoobi, “Series solution for convective-radiative porous fin using differential transformation method,” J Por Media, vol. 16, no. 4, pp. 341–349, 2013. DOI: 10.1615/JPorMedia.v16.i4.60.
  • M. T. Darvishi, R. S. R. Gorla, F. Khani and B. J. Gireesha, “Thermal analysis of natural convection and radiation in a fully wet porous fin,” HFF, vol. 26, no. 8, pp. 2419–2431, 2016. DOI: 10.1108/HFF-06-2015-0230.
  • M. T. Darvishi, F. Kani and R. S. R. Gorla, “Natural convection and radiation in a radial porous fin with variable thermal conductivity,” Int. J. Appl. Mech. Eng., vol. 19, no. 1, pp. 27–37, 2014. DOI: 10.2478/ijame-2014-0003.
  • M. Sheikholeslami, R. Haq, A. Shafee and Z. Li, “Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins,” Int. J. Heat Mass Transf., vol. 130, pp. 1322–1342, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.020.
  • M. Alizadeh, K. Hosseinzadeh, M. H. Shahavi and D. D. Ganji, “Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material,” Appl. Therm. Eng., vol. 163, pp. 114436, 2019. DOI: 10.1016/j.applthermaleng.2019.114436.
  • F. Ali, H. Hamzah, A. K. Hussein, M. Jabbar and P. Talebizadehsardari, “MHD mixed convection due to a rotating circular cylinder in a trapezoidal enclosure filled with a nanofluid saturated with a porous media,” Int. J. Mech. Sci., vol. 181, pp. 105688, 2020. DOI: 10.1016/j.ijmecsci.2020.105688.
  • S. Ahmed, A. K. Hussein, H. Mohammed, I. Adegun, X. Zhang, L. Kolsi, A. Hasanpour and S. Sivasankaran, “Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium,” Nucl. Eng. Des., vol. 266, pp. 34–42, 2014. DOI: 10.1016/j.nucengdes.2013.10.016.
  • M. Mansour, A. Rashad, B. Mallikarjuna, A. K. Hussein, M. Aichouni and L. Kolsi, “MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms,” IJHT, vol. 37, no. 2, pp. 433–445, 2019. DOI: 10.18280/ijht.370209.
  • M. Bhuvaneswari, S. Eswaramoorthi, S. Sivasankaran and A. K. Hussein, “Cross-diffusion effects on MHD mixed convection over a stretching surface in a porous medium with chemical reaction and convective condition,” Eng. Trans., vol. 67, no. 1, pp. 3–19, 2019. DOI: 10.24423/EngTrans.820.20190308.
  • S. Hosseinzadeh, K. Hosseinzadeh, A. Hasibi and D. D. Ganji, “Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections,” Case Stud. Therm. Eng., vol. 30, pp. 101757, 2022. DOI: 10.1016/j.csite.2022.101757.
  • M. Fallah Najafabadi, H. Talebi Rostami, K. Hosseinzadeh and D. Domiri Ganji, “Thermal analysis of a moving fin using the radial basis function approximation,” Heat Transf., vol. 50, no. 8, pp. 7553–7567, 2021. DOI: 10.1002/htj.22242.
  • R. Chand, G. Rana and A. K. Hussein, “On the onset of thermal instability in a low Prandtl number nanofluid layer in a porous medium,” JAFM, vol. 8, no. 2, pp. 265–272, 2015. DOI: 10.18869/acadpub.jafm.67.221.22830.
  • Z. Li, A. K. Hussein, O. Younis, M. Afrand and S. Feng, “Natural convection and entropy generation of a nanofluid around a circular baffle inside an inclined square cavity under thermal radiation and magnetic field effects,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104650, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104650.
  • M. L. Martins-Costa, V. V. Sarmento, R. P. Saldanha da Gama and R. M. Saldanha da Gama, “Solution construction for the nonlinear heat transfer problem in a cylindrical porous fin,” J Por Media, vol. 25, no. 6, pp. 1–19, 2022. DOI: 10.1615/JPorMedia.2022040580.
  • M. L. Martins-Costa, V. V. Sarmento, A. M. Lira and R. M. Saldanha da Gama, “Temperature distribution in porous fins subjected to convection and radiation, obtained from the minimization of a convex functional,” Math. Probl. Eng., vol. 2020, pp. 1–10, 2020. DOI: 10.1155/2020/8613717.
  • J. R. Howell, M. Pinar and R. Siegel, Thermal Radiation Heat Transfer, 6th ed. New York: CRC Press, 2015.
  • B. Sundén, “Computational fluid dynamics in research and design of heat exchangers,” Heat Transf. Eng., vol. 28, no. 11, pp. 898–910, 2007. DOI: 10.1080/01457630701421679.
  • E. Shivanian, M. Keshtkar and H. Navidi, “Heat transfer from convecting-radiating fin through optimized Chebyshev polynomials with interior point algorithm,” Nonlin. Eng., vol. 9, no. 1, pp. 102–110, 2020. DOI: 10.1515/nleng-2017-0163.
  • J. Ma, Y. Sun and B. Li, “Simulation of combined conductive, convective and radiative heat transfer in moving irregular porous fins by spectral element method,” Int. J. Therm. Sci., vol. 118, pp. 475–487, 2017. DOI: 10.1016/j.ijthermalsci.2017.05.008.
  • M. H. Sharqawy and S. M. Zubair, “Heat exchangers design under variable overall heat transfer coefficient: improved analytical and numerical approaches,” Heat Transf. Eng., vol. 31, no. 13, pp. 1051–1056, 2010. DOI: 10.1080/01457631003640313.
  • A. Keyhani Asl, S. Hossainpour, M. M. Rashidi, M. A. Sheremet and Z. Yang, “Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure,” Int. J. Heat Mass Transf., vol. 133, pp. 729–744, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.12.156.
  • G. Oguntala, R. Abd-Alhameed and M. Ngala, “Transient thermal analysis and optimization of convective-radiative porous fin under the influence of magnetic field for efficient microprocessor cooling,” Int. J. Therm. Sci., vol. 145, pp. 106019, 2019. DOI: 10.1016/j.ijthermalsci.2019.106019.
  • V. M. Patel and P. Talukdar, “Determination of heat transfer coefficient and thermal dispersion of a representative porous structure based on pore level simulations,” Heat Transf. Eng., vol. 41, no. 21, pp. 1800–1817, 2020. DOI: 10.1080/01457632.2019.1670462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.