Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
117
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Flow dynamics of MHD hybrid nanofluid past a moving thin needle with a temporal stability test: A Galerkin method approach

ORCID Icon, , &
Pages 329-347 | Received 10 Nov 2022, Accepted 08 Apr 2023, Published online: 25 Apr 2023

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Proc. ASME Int. Mech. Eng. Congr. Expo., San Francisco, CA, 1995.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • R. S. R. Gorla and A. Chamkha, “Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid,” JMP, vol. 2, no. 2, pp. 62–71, 2011. DOI: 10.4236/jmp.2011.22011.
  • K. Ali, et al., “Quasi-linearization analysis for heat and mass transfer of magnetically driven 3rd-grade (Cu-TiO2/engine oil) nanofluid via a convectively heated surface,” Int. Commun. Heat Mass Transfer, vol. 135, pp. 106060, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106060.
  • T. Sajid, et al., “Features and aspects of radioactive flow and slippage velocity on rotating two-phase Prandtl nanofluid with zero mass fluxing and convective constraints,” Int. Commun. Heat Mass Transfer, vol. 136, pp. 106180, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106180.
  • H. Maleki, J. Alsarraf, A. Moghanizadeh, H. Hajabdollahi, and M. R. Safaei, “Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions,” J. Cent. South Univ, vol. 26, no. 5, pp. 1099–1115, 2019. DOI: 10.1007/s11771-019-4074-y.
  • M. R. Safaei, et al., “Thermal analysis of a binary base fluid in pool boiling system of glycol-water alumina nano-suspension,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2453–2462, 2021. DOI: 10.1007/s10973-020-09911-5.
  • F. Shahzad, W. Jamshed, T. Sajid, K. S. Nisar, and M. R. Eid, “Heat transfer analysis of MHD rotating flow of Fe3O4 nanoparticles through a stretchable surface,” Commun. Theor. Phys., vol. 73, no. 7, pp. 075004, 2021. DOI: 10.1088/1572-9494/abf8a1.
  • R. Turcu, et al., “New polypyrrole-multiwall carbon nanotubes hybrid materials,” J. Optoelectron. Adv. Mater., vol. 8, no. 2, pp. 643–647, 2006.
  • S. Jana, A. Salehi-Khojin, and W. H. Zhong, “Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives,” Thermochim. Acta, vol. 462, no. 1–2, pp. 45–55, 2007. DOI: 10.1016/j.tca.2007.06.009.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer over a permeable stretching/shrinking sheet in a hybrid nanofluid with a convective boundary condition,” HFF, vol. 29, no. 9, pp. 3012–3038, 2019. DOI: 10.1108/HFF-12-2018-0794.
  • N. A. Zainal, R. Nazar, K. Naganthran, and I. Pop, “Stability analysis of MHD hybrid nanofluid flow over a stretching/shrinking sheet with quadratic velocity,” Alexandria Eng. J., vol. 60, no. 1, pp. 915–926, 2021. DOI: 10.1016/j.aej.2020.10.020.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid,” Powder Technol., vol. 367, pp. 192–205, 2020. DOI: 10.1016/j.powtec.2020.03.030.
  • A. U. Rehman and Z. Abbas, “Stability analysis of heat transfer in nanomaterial flow of boundary layer towards a shrinking surface: hybrid nanofluid versus nanofluid,” Alexandria Eng. J., vol. 61, no. 12, pp. 10757–10768, 2022. DOI: 10.1016/j.aej.2022.04.020.
  • A. U. Rehman, Z. Abbas, and J. Hasnain, “Prediction of heat and mass transfer in radiative hybrid nanofluid with chemical reaction using the least square method: a stability analysis of dual solution,” Numer. Heat Transf. A., vol. 83, no. 9, pp. 958–975, 2023. DOI: 10.1080/10407782.2022.2156410.
  • W. Jamshed, et al., “Shape-factor and radiative flux impacts on unsteady graphene-copper hybrid nanofluid with entropy optimisation: Cattaneo-Christov heat flux theory,” Pramana - J. Phys., vol. 96, no. 3, pp. 163, 2022. DOI: 10.1007/s12043-022-02403-1.
  • W. Jamshed and A. Aziz, “Entropy analysis of TiO2-Cu/EG Casson hybrid nanofluid via Cattaneo-Christov heat flux model,” Appl. Nanosci., vol. 8, no. 4, pp. 685–698, 2018. DOI: 10.1007/s13204-018-0820-y.
  • F. Shahzad, et al., “Thermal analysis on Darcy‐Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: an application to solar aircraft,” Int. J. Energy Res., vol. 45, no. 15, pp. 20812–20834, 2021. DOI: 10.1002/er.7140.
  • S. M. Hussain and W. Jamshed, “A comparative entropy based analysis of tangent hyperbolic hybrid nanofluid flow: implementing finite difference method,” Int. Commun. Heat Mass Transfer, vol. 129, pp. 105671, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105671.
  • W. Jamshed, “Thermal augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar energy application,” Energy Environ., vol. 33, no. 6, pp. 1090–1133, 2022. DOI: 10.1177/0958305X211036671.
  • L. Zhang, T. Nazar, M. M. Bhatti, and E. E. Michaelides, “Stability analysis on the kerosene nanofluid flow with hybrid zinc/aluminum-oxide (ZnO-Al2O3) nanoparticles under Lorentz force,” HFF, vol. 32, no. 2, pp. 740–760, 2022. DOI: 10.1108/HFF-02-2021-0103.
  • M. R. Eid and A. F. Al-Hossainy, “Combined experimental thin film, DFT-TDDFT computational study, flow and heat transfer in [PG-MoS2/ZrO2] C hybrid nanofluid,” Waves Random Complex Medium, vol. 33, no. 1, pp. 1–26, 2023. DOI: 10.1080/17455030.2021.1873455.
  • L. L. Lee, “Boundary layer over a thin needle,” Phys. Fluids, vol. 10, no. 4, pp. 820–822, 1967. DOI: 10.1063/1.1762194.
  • J. P. Narain and M. S. Uberoi, “Forced heat transfer over thin needles,” J. Heat Transfer, vol. 94, no. 2, pp. 240–242, 1972. DOI: 10.1115/1.3449910.
  • J. P. Narain and M. S. Uberoi, “Combined forced and free‐convection heat transfer from vertical thin needles in a uniform stream,” Phys. Fluids, vol. 15, no. 11, pp. 1879–1882, 1972. DOI: 10.1063/1.1693798.
  • J. P. Narain and M. S. Uberoi, “Combined forced and free-convection over thin needles,” Int. J. Heat Mass Transfer, vol. 16, no. 8, pp. 1505–1512, 1973. DOI: 10.1016/0017-9310(73)90179-8.
  • A. Ishak, R. Nazar and I. Pop, “Boundary layer flow over a continuously moving thin needle in a parallel free stream,” Chinese Phys. Lett, vol. 24, no. 10, pp. 2895–2897, 2007. DOI: 10.1088/0256-307X/24/10/051.
  • T. Grosan and I. Pop, “Forced convection boundary layer flow past nonisothermal thin needles in nanofluids,” J. Heat Transfer, vol. 133, no. 5, pp. 054503, 2011. DOI: 10.1115/1.4003059.
  • S. K. Soid, A. Ishak and I. Pop, “Boundary layer flow past a continuously moving thin needle in a nanofluid,” Appl. Therm. Eng., vol. 114, pp. 58–64, 2017. DOI: 10.1016/j.applthermaleng.2016.11.165.
  • B. Souayeh, et al., “Comparative analysis on non-linear radiative heat transfer on MHD Casson nanofluid past a thin needle,” J. Mol. Liq, vol. 284, pp. 163–174, 2019. DOI: 10.1016/j.molliq.2019.03.151.
  • I. Tlili, H. A. Nabwey, M. G. Reddy, N. Sandeep and M. Pasupula, “Effect of resistive heating on incessantly poignant thin needle in magnetohydrodynamic Sakiadis hybrid nanofluid,” Ain Shams Eng. J., vol. 12, no. 1, pp. 1025–1032, 2021. DOI: 10.1016/j.asej.2020.09.009.
  • M. Yasir, A. Ahmed and M. Khan, “Carbon nanotubes based fluid flow past a moving thin needle examine through dual solutions: stability analysis,” J. Energy Storage, vol. 48, pp. 103913, 2022. DOI: 10.1016/j.est.2021.103913.
  • M. I. U. Rehman, et al., “Soret and Dufour influences on forced convection of Cross radiative nanofluid flowing via a thin movable needle,” Sci. Rep., vol. 12, no. 1, pp. 18666, 2022. DOI: 10.1038/s41598-022-23563-5.
  • A. Hamid, and M. Khan, “Thermo-physical characteristics during the flow and heat transfer analysis of GO-nanoparticles adjacent to a continuously moving thin needle,” Chin. J. Phys, vol. 64, pp. 227–240, 2020. DOI: 10.1016/j.cjph.2019.12.003.
  • I. Waini, A. Ishak and I. Pop, “Hybrid nanofluid flow past a permeable moving thin needle,” Mathematics, vol. 8, no. 4, pp. 612, 2020. DOI: 10.3390/math8040612.
  • A. Hamid, “Terrific effects of Ohmic-viscous dissipation on Casson nanofluid flow over a vertical thin needle: buoyancy assisting & opposing flow,” J. Mater. Res. Technol., vol. 9, no. 5, pp. 11220–11230, 2020. DOI: 10.1016/j.jmrt.2020.07.070.
  • T. Nazar, M. M. Bhatti, and E. E. Michaelides, “Hybrid (Au-TiO2) nanofluid flow over a thin needle with magnetic field and thermal radiation: dual solutions and stability analysis,” Microfluid Nanofluid, vol. 26, no. 1, pp. 1–12, 2022. DOI: 10.1007/s10404-021-02504-0.
  • F. Shahzad, et al., “Electromagnetic control and dynamics of generalized burgers’ nanoliquid flow containing motile microorganisms with Cattaneo–Christov relations: galerkin finite element mechanism,” Appl. Sci., vol. 12, no. 17, pp. 8636, 2022. DOI: 10.3390/app12178636.
  • W. Jamshed, et al., “Physical specifications of MHD mixed convective of Ostwald-de Waele nanofluids in a vented-cavity with inner elliptic cylinder,” Int. Commun. Heat Mass Transfer, vol. 134, pp. 106038, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106038.
  • S. M. Hussain, W. Jamshed, A. A. Pasha, M. Adil and M. Akram, “Galerkin finite element solution for electromagnetic radiative impact on viscid Williamson two-phase nanofluid flow via extendable surface,” Int. Commun. Heat Mass Transfer, vol. 137, pp. 106243, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106243.
  • A. Mourad, et al., “Galerkin finite element analysis of thermal aspects of Fe3O4-MWCNT/water hybrid nanofluid filled in wavy enclosure with uniform magnetic field effect,” Int. Commun. Heat Mass Transfer, vol. 126, pp. 105461, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105461.
  • A. A. Pasha, et al., “Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique,” Int. Commun. Heat Mass Transfer, vol. 137, pp. 106244, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106244.
  • F. Redouane, et al., “Finite element methodology of hybridity nanofluid flowing in diverse wavy sides of penetrable cylindrical chamber under a parallel magnetic field with entropy generation analysis,” Micromachines, vol. 13, no. 11, pp. 1905, 2022. DOI: 10.3390/mi13111905.
  • Z. Abbas, J. Hasnain, M. Aqeel, I. Mustafa, and A. Ghaffari, “Series solution of slip flow of Al2O3 and Fe3O4 nanoparticles in a horizontal channel with a porous medium by using least square and Galerkin methods, Sci. Iran, vol. 27, no. 5, pp. 2465–2477, 2020. DOI: 10.24200/sci.2019.52830.2904.
  • D. Ghali, et al., “Mathematical entropy analysis of natural convection of MWCNT-Fe3O4/water hybrid nanofluid with parallel magnetic field via galerkin finite element process,” Symmetry, vol. 14, no. 11, pp. 2312, 2022. DOI: 10.3390/sym14112312.
  • M. B. Hafeez, M. Krawczuk, K. S. Nisar, W. Jamshed, and A. A. Pasha, “A finite element analysis of thermal energy inclination based on ternary hybrid nanoparticles influenced by induced magnetic field,” Int. Commun. Heat Mass Transfer, vol. 135, pp. 106074, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106074.
  • A. U. Rehman, Z. Abbas, A. Ali, A. K. Alzahrani and M. Asma, “Intensification of heat and mass transfer in nanomaterial flow over a rotating channel with chemical reaction: a comparative study,” ZAMM, 2023. DOI: 10.1002/zamm.202100249.
  • R. L. Burden and J. D. Faires, Numerical Analysis, 4th ed. Belmont, CA, USA: International Thomson Publishing, 1991.
  • S. D. Harris, D. B. Ingham, and I. Pop, “Mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip,” Transp. Porous Med., vol. 77, no. 2, pp. 267–285, 2009. DOI: 10.1007/s11242-008-9309-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.