Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 3
242
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Generalized UNIFAES derivatives applied to the correlations of the transport equations for fluctuating kinetic energy, helicity and enstrophy in an oscillated laminar flow

Pages 348-369 | Received 17 Oct 2022, Accepted 03 Apr 2023, Published online: 05 May 2023

References

  • R. F. Warming and R. M. Beam, “Upwind second-order difference scheme and applications in aerodynamics flows,” AIAA Journal, vol. 14, no. 9, pp. 1241–1249, 1976. DOI: 10.2514/3.61457.
  • B. Leonard, “A stable and accurate convective modeling procedure based on quadratic upstream interpolation,” Computer Methods APPl. Mechanics Engineering, vol. 19, no. 1, pp. 59–98, 1979. DOI: 10.1016/0045-7825(79)90034-3.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. New York, NY: hemisphere Publ. Corp., 1980,
  • J. R. Figueiredo, “A unified finite-volume finite-differencing exponential-type scheme for the convective-diffusive fluid transport equations,” J. Braz. Society Mech. Sciences, vol. 19, no. 3, pp. 371–391, 1997.
  • J. R. Figueiredo and J. Llagostera, “Comparative study of the unified finite approach exponential-type scheme (UNIFAES) and its application to natural convection in a porous cavity,” Numerical Heat Transfer, B, vol. 35, no. 3, pp. 347–367, 1999. DOI: 10.1080/104077999275901.
  • J. Llagostera and J. R. Figueiredo, “Application of the UNIFAES discretization scheme to mixed convection in a porous layer with cavity, using the Darcy model,” J Por Media, vol. 3, no. 2, pp. 16, 2000. DOI: 10.1615/JPorMedia.v3.i2.40.
  • J. Llagostera and J. R. Figueiredo, “Numerical study on mixed convection in a horizontal flow past a square cavity using UNIFAES scheme,” J. Braz. Soc. Mech. Sci, vol. 22, no. 4, pp. 583–597, 2000. DOI: 10.1590/S0100-73862000000400008.
  • J. R. Figueiredo and K. P. M. Oliveira, “Comparative study of UNIFAES and other finite-volume schemes for the discretization of advective and viscous fluxes in incompressible Navier-Stokes equations, using various mesh structures,” Numerical Heat Transfer, B, vol. 55, no. 5, pp. 406–434, 2009. DOI: 10.1080/104077909027766.
  • J. R. Figueiredo and K. P. M. Oliveira, “Comparative study of the accuracy of the fundamental mesh structures for the numerical solution of incompressible Navier-Stokes equations in the two-dimensional cavity problem,” Numerical Heat Transfer, B, vol. 55, no. 5, pp. 406–434, 2009. DOI: 10.1080/10407790902779978.
  • A. H. G. Nascimento, G. S. Rodrigues and J. R. Figueiredo, “Incompressible Flows Bifurcation Phenomena in Symmetric Channels,” In Proc. 25th ABCM Intern. Congress of Mech. Eng., Uberlândia, 2019.
  • G. S. Rodrigues, A. H. G. Nascimento and J. R. Figueiredo, “Performance of finite volume discretization schemes in the backward-facing step problem—part I: stability of schemes,” In Proc. 25th ABCM Intern. Congress of Mech. Eng., Uberlândia, 2019. DOI: 10.26678/abcm.cobem2019.cob2019-032328.
  • G. S. Rodrigues, A. H. G. Nascimento and J. R. Figueiredo, “Performance of finite volume discretization schemes in the backward facing step problem—part II: numerical error of schemes,” In Proc. 25th ABCM Intern. Congress of Mech. Eng., Uberlândia, 2019. DOI: 10.26678/abcm.cobem20.19.cob2019-0324
  • G. S. Rodrigues, A. H. G. Nascimento and J. R. Figueiredo, “Numerical assessment of finite volume schemes for incompressible viscous flows on non-staggered meshes,” J Braz. Soc. Mech. Sci. Eng, vol. 43, no. 12, pp. 564, 2021. DOI: 10.1007/s40430-021-03268-y.
  • R. G. Santos and J. R. Figueiredo, “Numerical simulation study in a three-dimensional backward-facing step flow,” 21st International Congress of Mechanical Engineering, Natal, RN, 2011.
  • A. Nascimento, G. Rodrigues and J. R. Figueiredo, “A semi-staggered finite volume approach applied to two- and three-dimensional flow in channels with gradual expansions,” Int J Numer Meth Fluids, vol. 93, no. 10, pp. 3053–3072, 2021. DOI: 10.1002/fld.5024.
  • H. Tennekes and J. L. Lumley, A First Course in Turbulence. Cambridge, MA: MIT Press, 1972,
  • H. K. Moffatt and A. Tsinober, “Helicity in laminar and turbulent flow,” Annu. Rev. Fluid Mech, vol. 24, no. 1, pp. 281–312, 1992. DOI: 10.1146/annurev.fl.24.010192.001433.
  • D. D. Holm and R. M. Kerr, “Helicity in the formation of turbulence,” Physics Fluids, vol. 19, no. 2, pp. 025101, 2007. DOI: 10.1063/1.2375077.
  • V. Dallas and S. M. Tobias, “Forcing-dependent dynamics and emergence of helicity in rotating turbulence,” J. Fluid Mech, vol. 798, pp. 682–695, 2016. DOI: 10.1017/jfm.2016.341.
  • Z. Yan, X. Li and C. Yu, “Scale locality of helicity cascade in physical space,” Phys. Fluids, vol. 32, no. 6, pp. 061705, 2020. DOI: 10.1063/5.0013009.
  • T. A. Oliver, N. Malaya, R. Ulerich and R. D. Moser, “Estimating uncertainties in statistical category computed from direct numerical simulations,” Phys. Fluids, vol. 26, no. 3, pp. 035101, 2014. DOI: 10.1063/1.486683.
  • J. R. Andrade, R. S. Martins, R. L. Thompson, G. Mompean, A. and Silveira, Neto, “Analysis of uncertainties and convergence of the statistical quantities in turbulent wall-bounded flows by means of a physically based criterion,” Physics of Fluids, vol. 30, no. 4, pp. 045106, 2018. DOI: 10.1063/1.5023500.
  • D. N. G. Allen and R. V. Southwell, “Relaxation Methods Applied to Determine the Motion, in Two Dimensions, of a Viscous Flow Past a Fixed Cylinder,” Q J Mechanics Appl Math, vol. 8, no. 2, pp. 129–145, 1955. DOI: 10.1093/qjmam/8.2.129.
  • H. H. Wong and G. D. Raithby, “Improved Finite-Difference Methods Based on a Critical Evaluation of the Approximation Errors,” Numer. Heat Transfer. vol, vol. 2, no. 2, pp. 139–163, 1979. DOI: 10.1080/10407787908913404.
  • C. Prakash, “Application of the Locally Analytic Differencing Scheme to Some Test problems for the Convection-Diffusion Equation,” Numer. Heat Transfer, vol. 7, no. 2, pp. 165–182, 1984. DOI: 10.1080/01495728408961818.
  • L. M. C. Varejão, “Flux-Spline Method for Heat and Momentum Transfer,” Ph. D. Thesis, University of Minnesota, 1979., Minneapolis,
  • K. C. Karki, S. V. Patankar and H. C. Mongia, “Three-dimensional fluid flow calculations using a flux-spline method,” Aiaa J, vol. 28, no. 4, pp. 631–634, April 1990.
  • P. C. Oliveira, “Flux-spline scheme applied to open cavities with natural convection” (in Portuguese), Doctoral Thesis, School of Mechanical Engineering, Campinas State University, Campinas, SP, Brazil,” 1997.
  • B. Kuznetsov, “Numerical methods for solving problems of fluid flow,” Fluid Dynamics Transactions, vol. 4, pp. 85–89, 1968.
  • R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow, 2nd ed. New York: Springer-Verlag, 1983.
  • J. R. Figueiredo and K. P. M. Oliveira, “Reevaluation of the Vertex Collocated Mesh for Primitive Variable Computation of Incompressible Fluid Flows by Enforcing Continuity-Based Conditions,” Numerical Heat Transfer, B, vol. 60, no. 3, pp. 168–178, 2011.
  • C. M. Rhie and L. Chow, “Numerical study of the turbulent flow past an airfoil with trailing edge separation,” AIAA Journal, vol. 21, no. 11, pp. 1525–1532, 1983. DOI: 10.2514/3.8284.
  • B. E. Launder and D. B. Spalding, Mathematical Models of Turbulence, London: academic Press, 1972,
  • P. R. Spalart, “Philosophies and fallacies in turbulence modeling,” Progress Aerospace Sciences, vol. 74, pp. 1–15, 2015. DOI: 10.1016/paerosci.2014.12.004.
  • T. B. Gatski, “Constitutive equations for turbulent flows,” Theor. Comput. Fluid Dyn, vol. 18, no. 5, pp. 345–369, 2004. DOI: 10.1007/s00162-004-0119-3.
  • K. Hanjalic, “Advanced turbulence closure models: a view of current status and future prospects,” Int. J. Heat Fluid Flow, vol. 15, no. 3, pp. 178–203, 1994.
  • C. D. Argyropoulos and N. C. Markatos, “Recent advances on the numerical modeling of turbulent flows,” APPl. Math. Modeling, vol. 39, no. 2, pp. 693–732, 2015. NC, DOI: 10.1016/j.apm.2014.07.001.
  • J. O. Hinze, Turbulence. New York, NY: McGraw-Hill, 1959.