Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
72
Views
0
CrossRef citations to date
0
Altmetric
Articles

Modeling/simulation of transient linear heat conduction problems via integrating a wide variety of space/time methods and choices

&
Pages 371-391 | Received 06 Dec 2022, Accepted 20 Apr 2023, Published online: 03 May 2023

References

  • S. Koshizuka and Y. Oka, “Moving-particle semi-implicit method for fragmentation of imcompressible fluid,” Nucl. Sci. Engin., vol. 123, no. 3, pp. 421–434, 1996. DOI: 10.13182/NSE96-A24205.
  • S. Koshizuka, A. Nobe, and Y. Oka, “Numerical analysis of breaking waves using the moving particle semi-implicit method,” Int. J. Numer. Meth. Fluids, vol. 26, no. 7, pp. 751–769, 1998. DOI: 10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C.
  • S. Zhang, K. Morita, K. Fukuda, and N. Shirakawa, “An improved MPS method for numerical simulations of convective heat transfer problems,” Int. J. Numer. Meth. Fluids, vol. 51, no. 1, pp. 31–47, 2006. DOI: 10.1002/fld.1106.
  • R. Chen, Y. Oka, G. Li, and T. Matsuura, “Numerical investigation on melt freezing behavior in a tube by MPS method,” Nucl. Engin. Design, vol. 273, pp. 440–448, 2014. DOI: 10.1016/j.nucengdes.2014.03.049.
  • T. Xue, K. K. Tamma and X. Zhang, “A consistent moving particle system simulation method: applications to parabolic/hyperbolic heat conduction type problems,” Int. J. Heat Mass Transfer, vol. 101, pp. 365–372, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.020.
  • G. Lube, F. C. Otto and H. Müller, “A non-overlapping domain decomposition method for parabolic initial-boundary value problems,” Appl. Numer. Mathe., vol. 28, no. 2–4, pp. 359–369, 1998. DOI: 10.1016/S0168-9274(98)00053-1.
  • A. Auge, A. Kapurkin, G. Lube and F. C. Otto, A note on domain decomposition of singularly perturbed elliptic problems, in Proceedings of the Ninth International Conference on Domain Decomposition, Bergen, 1996.
  • F. Confalonieri, A. Ghisi, G. Cocchetti, and A. Corigliano, “A domain decomposition approach for the simulation of fracture phenomena in polycrystalline microsystems,” Computer Methods Appl. Mech. Engin., vol. 277, pp. 180–218, 2014. DOI: 10.1016/j.cma.2014.04.007.
  • Z. Xiaogang and Z. Fang, “A coupled FE and boundary integral equation method based on exterior domain decomposition for fluid-structure interface problems,” Int. J. Solids Struct., vol. 31, no. 8, pp. 1047–1061, 1994. DOI: 10.1016/0020-7683(94)90163-5.
  • X. Feng, “Interface conditions and non-overlapping domain decomposition methods for a fluid-solid interaction problem,” Contemporary Mathe., vol. 218, pp. 417–424, 1998.
  • E. Burman and P. Zunino, “A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems,” SIAM J. Numer. Anal, vol. 44, no. 4, pp. 1612–1638, 2006. DOI: 10.1137/050634736.
  • B. F. Smith, “Domain decomposition algorithms for the partial differential equations of linear elasticity,” Ph.D. dissertation, Citeseer, 1990.
  • A. Gravouil and A. Combescure, “Multi-time-step explicit-implicit method for non-linear structural dynamics,” Int. J. Numer. Meth. Engng, vol. 50, no. 1, pp. 199–225, 2001. DOI: 10.1002/1097-0207(20010110)50:1<199::AID-NME132>3.0.CO;2-A.
  • A. Prakash and K. Hjelmstad, “A FETI-based multi-time-step coupling method for Newmark schemes in structural dynamics,” Int. J. Numer. Meth. Engng, vol. 61, no. 13, pp. 2183–2204, 2004. DOI: 10.1002/nme.1136.
  • S. Karimi and K. B. Nakshatrala, “On multi-time-step monolithic coupling algorithms for elastodynamics,” J. Comput. Phys., vol. 273, pp. 671–705, 2014. DOI: 10.1016/j.jcp.2014.05.034.
  • K. B. Nakshatrala, K. D. Hjelmstad and D. A. Tortorelli, “A FETI-based domain decomposition technique for time-dependent first-order systems based on a DAE approach,” Int. J. Numer. Meth. Engng, vol. 75, no. 12, pp. 1385–1415, 2008. DOI: 10.1002/nme.2303.
  • H. M. Hilber, T. J. R. Hughes and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthquake Engng. Struct. Dyn, vol. 5, no. 3, pp. 283–292, 1977. DOI: 10.1002/eqe.4290050306.
  • J. Crank and P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type,” Math. Proc. Camb. Phil. Soc, vol. 43, no. 1, pp. 50–67, 1947. DOI: 10.1017/S0305004100023197.
  • T. Xue, X. Zhang and K. K. Tamma, “Generalized heat conduction model involving imperfect thermal contact surface: application of the GSSSS-1 differential-algebraic equation time integration,” Int. J. Heat Mass Transfer, vol. 116, pp. 889–896, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.09.081.
  • K. K. Tamma, X. Zhou and D. Sha, “The time dimension: A theory towards the evolution, classification, characterization and design of computational algorithms for transient/dynamic applications,” ARCO, vol. 7, no. 2, pp. 67–290, 2000. DOI: 10.1007/BF02736209.
  • X. Zhou and K. K. Tamma, “Algorithms by design with illustrations to solid and structural mechanics/dynamics,” Int. J. Numer. Meth. Engng, vol. 66, no. 11, pp. 1738–1790, 2006. DOI: 10.1002/nme.1559.
  • X. Zhou and K. K. Tamma, “Design, analysis, and synthesis of generalized single step single solve and optimal algorithms for structural dynamics,” Int. J. Numer. Meth. Engng, vol. 59, no. 5, pp. 597–668, 2004. DOI: 10.1002/nme.873.
  • S. U. Masuri, M. Sellier, X. Zhou and K. K. Tamma, “Design of order-preserving algorithms for transient first-order systems with controllable numerical dissipation,” Int. J. Numer. Meth. Engng, vol. 88, no. 13, pp. 1411–1448, 2011. DOI: 10.1002/nme.3228.
  • J. Har and K. K. Tamma, Advances in Computational Dynamics of Particles, Materials and Structures. Chichester, UK: John Wiley & Sons, 2012.
  • C. W. Gear, “Numerical initial value problems in ordinary differential equations,” Prentice-Hall Series Automatic Computation, 1971.
  • W. L. Wood, M. Bossak and O. C. Zienkiewicz, “An alpha modification of newmark’s method,” Int. J. Numer. Meth. Engng, vol. 15, no. 10, pp. 1562–1566, 1980. DOI: 10.1002/nme.1620151011.
  • D. Tae and K. K. Tamma, “Towards a unified single analysis framework embedded with multiple spatial and time discretized methods for linear structural dynamics,” Comput. Modeling Engin. Sci., vol. 135, no. 2, pp. 843–885, 2023. DOI: 10.32604/cmes.2023.023071.
  • D. Tae and K. K. Tamma, “Computational differential algebraic equation framework and multi spatial and time discretizations preserving consistent second-order accuracy: nonlinear dynamics,” J. Appl. Mech., vol. 90, no. 1, pp. 10, 2023. DOI: 10.1115/1.4055955.
  • D. Maxam and K. K. Tamma, “A re-evaluation of overshooting in time integration schemes: the neglected effect of physical damping in the starting procedure,” Numer. Meth Engin., vol. 123, no. 12, pp. 2683–2704, 2022. DOI: 10.1002/nme.6955.
  • M. Shimada, S. U. Masuri and K. K. Tamma, “A novel design of an isochronous integration [integration] framework for first/second order multidisciplinary transient systems,” Int. J. Numer. Meth. Engng, vol. 102, no. 3–4, pp. 867–891, 2015. DOI: 10.1002/nme.4715.
  • M. Shimada, S. U. Masuri and K. K. Tamma, “Isochronous explicit time integration framework: illustration to thermal stress problems involving both first- and second-order transient systems,” J. Thermal Stresses, vol. 37, no. 9, pp. 1066–1079, 2014. DOI: 10.1080/01495739.2014.913397.
  • D. Maxam, R. Deokar and K. K. Tamma, “A unified computational methodology for dynamic thermoelasticity with multiple subdomains under the GSSSS framework involving differential algebraic equation systems,” J. Thermal Stresses, vol. 42, no. 1, pp. 163–184, 2019. DOI: 10.1080/01495739.2018.1536869.
  • D. Maxam, R. Deokar and K. K. Tamma, “The applicability of model order reduction based on proper orthogonal decomposition to problems in dynamic thermoelasticity with multiple subdomains,” J. Thermal Stresses, vol. 42, no. 6, pp. 744–768, 2019. DOI: 10.1080/01495739.2019.1581720.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.