Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
192
Views
2
CrossRef citations to date
0
Altmetric
Articles

Heat transfer assessment for Au-blood nanofluid flow in Darcy-Forchheimer porous medium using induced magnetic field and Cattaneo-Christov model

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 415-431 | Received 20 Jan 2023, Accepted 26 Apr 2023, Published online: 15 May 2023

References

  • S. U. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles. Argonne, IL: Argonne National Lab. (ANL), 1995.
  • R. P. Chhabra, “Non-Newtonian fluids: an introduction,” in Rheology of Complex Fluids. New York: Springer, 2010, pp. 3–34.
  • S. K. Rawat et al., “Numerical study of activation energy and thermal radiation effects on Oldroyd‐B nanofluid flow using the Cattaneo–Christov double diffusion model over a convectively heated stretching sheet,” Heat Transf., vol. 50, no. 6, pp. 5304–5331, 2021. DOI: 10.1002/htj.22125.
  • R. Naz et al., “A numerical and analytical approach for exploration of entropy generation in Sisko nanofluid flow having swimming microorganisms,” J. Therm. Anal. Calorim., vol. 144, no. 3, pp. 805–820, 2021. DOI: 10.1007/s10973-020-09501-5.
  • J. V. Tawade et al., “Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet,” Res. Eng., vol. 15, p. 100448, 2022. DOI: 10.1016/j.rineng.2022.100448.
  • R. Raza et al., “Particle and radiative heat transmission in the Sutterby nanoliquid over a curved stretched surface,” Waves Random Complex Media, pp. 1–19, 2022. DOI: 10.1080/17455030.2022.2067372.
  • G. Rasool et al., “Hydrothermal and mass aspects of MHD non-Darcian convective flows of radiating thixotropic nanofluids nearby a horizontal stretchable surface: passive control strategy,” Case Stud. Therm. Eng., vol. 42, p. 102654, 2023. DOI: 10.1016/j.csite.2022.102654.
  • S. Mukhopadhyay, “Casson fluid flow and heat transfer over a nonlinearly stretching surface,” Chin. Phys. B, vol. 22, no. 7, p. 074701, 2013. DOI: 10.1088/1674-1056/22/7/074701.
  • S. Mukhopadhyay et al., “Casson fluid flow over an unsteady stretching surface,” Ain Shams Eng. J., vol. 4, no. 4, pp. 933–938, 2013. DOI: 10.1016/j.asej.2013.04.004.
  • S. Pramanik, “Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation,” Ain Shams Eng. J., vol. 5, no. 1, pp. 205–212, 2014. DOI: 10.1016/j.asej.2013.05.003.
  • M. Y. Malik et al., “Variable viscosity and MHD flow in Casson fluid with Cattaneo–Christov heat flux model: using Keller box method,” Eng. Sci. Technol. Int. J., vol. 19, no. 4, pp. 1985–1992, 2016. DOI: 10.1016/j.jestch.2016.06.008.
  • M. Abd El-Aziz and A. A. Afify, “MHD Casson fluid flow over a stretching sheet with entropy generation analysis and Hall influence,” Entropy, vol. 21, no. 6, p. 592, 2019. DOI: 10.3390/e21060592.
  • S. Reza-E-Rabbi et al., “Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles,” Eng. Sci. Technol. Int. J., vol. 23, no. 3, pp. 605–617, 2020. DOI: 10.1016/j.jestch.2019.07.006.
  • T. Salahuddin et al., “Thermophyical properties and internal energy change in Casson fluid flow along with activation energy,” Ain Shams Eng. J., vol. 11, no. 4, pp. 1355–1365, 2020. DOI: 10.1016/j.asej.2020.02.011.
  • A. Alhadhrami et al., “Numerical simulation of local thermal non-equilibrium effects on the flow and heat transfer of non-Newtonian Casson fluid in a porous media,” Case Stud. Therm. Eng., vol. 28, p. 101483, 2021. DOI: 10.1016/j.csite.2021.101483.
  • A. U. Khan et al., “Closed form solutions of cross flows of Casson fluid over a stretching surface,” Chaos, Solit. Fract., vol. 149, p. 111067, 2021. DOI: 10.1016/j.chaos.2021.111067.
  • B. J. Gireesha et al., “MHD flow and melting heat transfer of dusty Casson fluid over a stretching sheet with Cattaneo–Christov heat flux model,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 2931–2939, 2022. DOI: 10.1080/01430750.2020.1785938.
  • M. Senapati et al., “Analysis of variable magnetic field on chemically dissipative MHD boundary layer flow of Casson fluid over a nonlinearly stretching sheet with slip conditions,” Int. J. Ambient Energy, vol. 43, no. 1, pp. 3712–3726, 2022. DOI: 10.1080/01430750.2020.1831601.
  • T. Hayat et al., “Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 466–474, 2010. DOI: 10.1016/j.ijheatmasstransfer.2009.09.010.
  • F. M. Ali et al., “MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field,” Heat Mass Transf., vol. 47, no. 2, pp. 155–162, 2011. DOI: 10.1007/s00231-010-0693-4.
  • F. M. Ali et al., “MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field,” Appl. Math. Mech.-Engl. Ed., vol. 32, no. 4, pp. 409–418, 2011. DOI: 10.1007/s10483-011-1426-6.
  • D. Pal and G. Mandal, “MHD convective stagnation-point flow of nanofluids over a non-isothermal stretching sheet with induced magnetic field,” Mecca, vol. 50, no. 8, pp. 2023–2035, 2015. DOI: 10.1007/s11012-015-0153-9.
  • B. J. Gireesha et al., “Melting heat transfer in boundary layer stagnation-point flow of nanofluid toward a stretching sheet with induced magnetic field,” Eng. Sci. Technol. Int. J., vol. 19, no. 1, pp. 313–321, 2016. DOI: 10.1016/j.jestch.2015.07.012.
  • C. S. K. Raju et al., “Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid,” Eng. Sci. Technol. Int. J., vol. 19, no. 2, pp. 875–887, 2016. DOI: 10.1016/j.jestch.2015.12.004.
  • J. C. Misra et al., “Stagnation point flow and heat transfer on a thin porous sheet: applications to flow dynamics of the circulatory system,” Phys. A: Statis. Mech. Appl., vol. 470, pp. 330–344, 2017. DOI: 10.1016/j.physa.2016.10.051.
  • N. Muhammad et al., “Heat transport phenomenon in the ferromagnetic fluid over a stretching sheet with thermal stratification,” Res. Phys., vol. 7, pp. 854–861, 2017. DOI: 10.1016/j.rinp.2016.12.027.
  • T. M. Agbaje et al., “A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet,” Ain Shams Eng. J., vol. 9, no. 2, pp. 233–243, 2018. DOI: 10.1016/j.asej.2015.10.015.
  • S. Dinarvand et al., “Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet,” Int. J. Numer. Meth. Heat Fluid Flow, vol. 29, no. 11, pp. 4408–4429, 2019.
  • T. Hayat et al., “Numerical study for Darcy-Forchheimer flow due to a curved stretching surface with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions,” Res. Phys., vol. 7, pp. 2886–2892, 2017. DOI: 10.1016/j.rinp.2017.07.068.
  • M. I. Khan et al., “Numerical analysis for Darcy-Forchheimer flow in presence of homogeneous-heterogeneous reactions,” Res. Phys., vol. 7, pp. 2644–2650, 2017. DOI: 10.1016/j.rinp.2017.07.030.
  • T. Hayat et al., “On Darcy-Forchheimer flow of viscoelastic nanofluids: a comparative study,” J. Molec. Liq., vol. 233, pp. 278–287, 2017. DOI: 10.1016/j.molliq.2017.03.035.
  • T. Hayat et al., “An optimal analysis for Darcy-Forchheimer 3D flow of Carreau nanofluid with convectively heated surface,” Res. Phys., vol. 9, pp. 598–608, 2018. DOI: 10.1016/j.rinp.2018.03.009.
  • M. Farooq et al., “Melting heat transfer in squeezed nanofluid flow through Darcy Forchheimer medium,” J. Heat Transf., vol. 141, no. 1, 2019. DOI: 10.1115/1.4041497.
  • S. Z. Abbas et al., “Entropy optimized Darcy-Forchheimer nanofluid (silicon dioxide, molybdenum disulfide) subject to temperature dependent viscosity,” Comput. Methods Programs Biomed., vol. 190, p. 105363, 2020. DOI: 10.1016/j.cmpb.2020.105363.
  • M. I. Khan and F. Alzahrani, “Free convection and radiation effects in nanofluid (Silicon dioxide and Molybdenum disulfide) with second order velocity slip, entropy generation, Darcy-Forchheimer porous medium,” Int. J. Hyd. Energy, vol. 46, no. 1, pp. 1362–1369, 2021. DOI: 10.1016/j.ijhydene.2020.09.240.
  • M. A. Sadiq et al., “Darcy–Forchheimer flow of nanofluid invoking irreversibility,” Waves Random Complex Media, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2123965.
  • F. Wang et al., “Entropy optimized flow of Darcy-Forchheimer viscous fluid with cubic autocatalysis chemical reactions,” Int. J. Hyd. Energy, vol. 47, no. 29, pp. 13911–13920, 2022. DOI: 10.1016/j.ijhydene.2022.02.141.
  • H. Upreti et al., “Ohmic heating and non-uniform heat source/sink roles on 3D Darcy–Forchheimer flow of CNTs nanofluids over a stretching surface,” Arab J. Sci. Eng., vol. 45, no. 9, pp. 7705–7717, 2020. DOI: 10.1007/s13369-020-04826-7.
  • H. Upreti et al., “Thermophoresis and Brownian motion effects on 3D flow of Casson nanofluid consisting microorganisms over a Riga plate using PSO: a numerical study,” Chin. J. Phys., vol. 78, pp. 234–270, 2022. DOI: 10.1016/j.cjph.2022.06.019.
  • H. Upreti et al., “Thermodynamics and heat transfer analysis of magnetized Casson hybrid nanofluid flow via a Riga plate with thermal radiation,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 321–334, 2023. DOI: 10.1142/S2737416523400070.
  • S. K. Rawat et al., “Thermally stratified nanofluid flow over porous surface cone with Cattaneo–Christov heat flux approach and heat generation (or) absorption,” SN Appl. Sci., vol. 2, no. 2, pp. 1–18, 2020. DOI: 10.1007/s42452-020-2099-3.
  • M. Sohail and R. Naz, “Modified heat and mass transmission models in the magnetohydrodynamic flow of Sutterby nanofluid in stretching cylinder,” Physica A: Stat. Mech. Appl., vol. 549, p. 124088, 2020. DOI: 10.1016/j.physa.2019.124088.
  • M. Sohail et al., “On the onset of entropy generation for a nanofluid with thermal radiation and gyrotactic microorganisms through 3D flows,” Phys. Scr., vol. 95, no. 4, p. 045206, 2020. DOI: 10.1088/1402-4896/ab3c3f.
  • A. El-Aziz and A. A. Afify, “Influences of slip velocity and induced magnetic field on MHD stagnation-point flow and heat transfer of Casson fluid over a stretching sheet,” Math. Prob. Eng., vol. 2018, pp. 1–11, 2018. DOI: 10.1155/2018/9402836.
  • L. F. Shampine et al., “Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c,” Tutor. Notes, pp. 1–27, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.