Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
87
Views
0
CrossRef citations to date
0
Altmetric
Articles

Chemical reactive process of unsteady bioconvective magneto Williamson nanofluid flow across wedge with nonlinearly thermal radiation: Darcy–Forchheimer model

, , , ORCID Icon, ORCID Icon, & show all
Pages 432-448 | Received 01 Feb 2023, Accepted 01 May 2023, Published online: 20 Jun 2023

References

  • M. M. Bhatti and M. M. Rashidi, “Entropy generation with nonlinear thermal radiation in MHD boundary layer flow over a permeable shrinking/stretching sheet: Numerical solution,” J. Nanofluids, vol. 5, no. 4, pp. 543–548, 2016. DOI: 10.1166/jon.2016.1248.
  • X. Zhang, D. Yang, M. Israr Ur Rehman, A. A. Mousa, and A. Hamid, “Numerical simulation of bioconvection radiative flow of Williamson nanofluid past a vertical stretching cylinder with activation energy and swimming microorganisms,” Case Stud. Therm. Eng., vol. 33, pp. 101977, 2022. DOI: 10.1016/j.csite.2022.101977.
  • P. Vijayalakshmi and R. Sivaraj, “Heat transfer analysis on micropolar alumina–silica–water nanofluid flow in an inclined square cavity with inclined magnetic field and radiation effect,” J. Therm. Anal. Calorim., vol. 148, no. 2, pp. 473–488, 2023. DOI: 10.1007/s10973-022-11758-x.
  • M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, and R. S. R. Gorla, “Effect of chemical reaction on MHD boundary layer flow and melting heat transfer of Williamson nanofluid in porous medium,” Eng. Sci. Technol., vol. 19, no. 1, pp. 53–61, 2016. DOI: 10.1016/j.jestch.2015.06.010.
  • V. S. Patil, P. P. Humane, and A. B. Patil, “MHD Williamson nanofluid flow past a permeable stretching sheet with thermal radiation and chemical reaction,” Int. J. Model. Simul., vol. 42, pp. 1–15, 2022. DOI: 10.1080/02286203.2022.2062166.
  • A. Sumithra and R. Sivaraj, “Impact of exothermic chemical reaction on MHD unsteady mixed convective flow in a rectangular porous cavity filled with nanofluid,” Waves Random Complex Media, vol. 32, pp. 1–22, 2022. DOI: 10.1080/17455030.2022.2139014.
  • M. Israr Ur Rehman et al., “Soret and Dufour influences on forced convection of cross radiative nanofluid flowing via a thin movable needle,” Sci. Rep., vol. 12, no. 1, pp. 18666, 2022. DOI: 10.1038/s41598-022-23563-5.
  • K. Thirumalaisamy et al., “Comparative heat transfer analysis of electroconductive Fe3O4–MWCNT–water and Fe3O4–MWCNT–kerosene hybrid nanofluids in a square porous cavity using the non-Fourier heat flux model,” Phys. Fluids, vol. 34, no. 12, pp. 122016, 2022. DOI: 10.1063/5.0127463.
  • J. Yin et al., “Delineating impact of viscous dissipation and non-uniform heat source/sink on viscous fluid flow towards a stretching surface,” P I Mech. Eng. E-J Pro., vol. 237, pp. 095440892110504, 2021. DOI: 10.1177/09544089211050461.
  • K. Thirumalaisamy and S. Ramachandran, “Comparative heat transfer analysis on Fe3O4–H2O and Fe3O4–Cu–H2O flow inside a tilted square porous cavity with shape effects,” Phys. Fluids, vol. 35, no. 2, pp. 022007, 2023. DOI: 10.1063/5.0136326.
  • M. I. Ur Rehman et al., “Thermal radiative flux and energy of Arrhenius evaluation on stagnating point flowing of Carreau nanofluid: A thermal case study,” Case Stud. Therm. Eng., vol. 40, pp. 102583, 2022. DOI: 10.1016/j.csite.2022.102583.
  • N. Santhosh et al., “Computational study of MHD mixed convective flow of Cu/Al2O3-water nanofluid in a porous rectangular cavity with slits, viscous heating, Joule dissipation and heat source/sink effects,” Waves Random Complex Media, vol. 33, pp. 1–34, 2023. DOI: 10.1080/17455030.2023.2168786.
  • Y.-X. Li et al., “Dynamics of Casson nanoparticles with non-uniform heat source/sink: A numerical analysis,” Ain Shams Eng. J., vol. 13, no. 1, pp. 101496, 2022. DOI: 10.1016/j.asej.2021.05.010.
  • M. Israr Ur Rahman, M. I. Khan, F. Alzahrani, and A. Hobiny, “Transportation of nonlinear radiative heat flux in Al2O3–Cu/H2O hybrid nanofluid subject to dissipation energy: Dual solutions analysis,” AIP Adv., vol. 10, no. 10, pp. 105131, 2020. DOI: 10.1063/5.0019688.
  • K. Ramesh et al., “Bioconvection assessment in Maxwell nanofluid configured by a Riga surface with nonlinear thermal radiation and activation energy,” Surf. Interfaces, vol. 21, pp. 100749, 2020. DOI: 10.1016/j.surfin.2020.100749.
  • E. Sangeetha and P. De, “Bioconvective Casson nanofluid flow toward stagnation point in non‐Darcy porous medium with buoyancy effects, chemical reaction, and thermal radiation,” Heat Transf., vol. 52, no. 2, pp. 1529–1551, 2023. DOI: 10.1002/htj.22753.
  • J. Yin, X. Zhang, M. Israr Ur Rehman, and A. Hamid, “Thermal radiation aspect of bioconvection flow of magnetized Sisko nanofluid along a stretching cylinder with swimming microorganisms,” Case Stud. Therm. Eng., vol. 30, pp. 101771, 2022. DOI: 10.1016/j.csite.2022.101771.
  • P. De and M. R. Gorji, “Activation energy and binary chemical reaction on unsteady MHD Williamson nanofluid containing motile gyrotactic micro‐organisms,” Heat Transf., vol. 49, no. 5, pp. 3030–3043, 2020. DOI: 10.1002/htj.21759.
  • E. Sangeetha and P. De, “Bioconvection in nanofluid flow embedded in non-Darcy porous medium with viscous dissipation and Ohmic heating,” J. Por. Media, vol. 24, no. 1, pp. 15–23, 2021. DOI: 10.1615/JPorMedia.2020036165.
  • M. Israr Ur Rehman et al., “Theoretical investigation of Darcy-Forchheimer flow of bioconvection Casson fluid in the presence of chemical reaction effect,” Biomass Convers. Biorefin., vol. 12, pp. 1–11, 2022. DOI: 10.1007/s13399-022-03060-5.
  • E. Sangeetha and P. De, “Gyrotactic microorganisms suspended in MHD nanofluid with activation energy and binary chemical reaction over a non-Darcian porous medium,” Waves Random Complex Media, vol. 32, pp. 1–17, 2022. DOI: 10.1080/17455030.2022.2112114.
  • V. Pusparaj and P. De, “Bioconvection on non-Newtonian magnetohydrodynamics Carreau nanofluid with activation energy and binary chemical reaction in Darcy Forchhiemer porous medium,” J. Nanofluids, vol. 12, no. 4, pp. 978–986, 2023. DOI: 10.1166/jon.2023.1986.
  • Y.-M. Chu et al., “Transportation of heat and mass transport in hydromagnetic stagnation point flow of Carreau nanomaterial: Dual simulations through Runge-Kutta Fehlberg technique,” Int. Commun. Heat Mass Transf., vol. 118, pp. 104858, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104858.
  • E. Sangeetha and P. De, “Dual solution of sisko nanofluid flow with gyrotactic microorganisms over stretching/shrinking sheet in non-darcy porous medium,” J. Nanofluids, vol. 11, no. 6, pp. 895–905, 2022. DOI: 10.1166/jon.2022.1833.
  • P.-Y. Xiong et al., “Dynamics of multiple solutions of Darcy–Forchheimer saturated flow of Cross nanofluid by a vertical thin needle point,” Eur. Phys. J. Plus, vol. 136, no. 3, pp. 1–22, 2021. DOI: 10.1140/epjp/s13360-021-01294-2.
  • E. Sangeetha and P. De, “Darcy − Forchheimer porosity effects on nanofluids with motile gyrotactic microorganisms over convectively heated surface,” Nano Sci. Technol. Int. J., vol. 12, no. 4, pp. 19–38, 2021. DOI: 10.1615/NanoSciTechnolIntJ.2021037367.
  • N. Ul Huda, A. Hamid, and M. Khan, “Impact of Cattaneo-Christov model on Darcy–Forchheimer flow of ethylene glycol base fluid over a moving needle,” J. Mater. Res. Technol., vol. 9, no. 3, pp. 4139–4146, 2020. DOI: 10.1016/j.jmrt.2020.02.041.
  • P. H. Forchheimer, “Wasserbewegung durch boden,” Zeitschrift Des Vereines Deutscher Ingenieure, vol. 45, pp. 1781–1788, 1901.
  • M. Israr Ur Rehman et al., “Effect of Cattaneo-Christov heat flux case on Darcy-Forchheimer flowing of Sutterby nanofluid with chemical reactive and thermal radiative impacts,” Case Stud. Therm. Eng., vol. 42, pp. 102737, 2023. DOI: 10.1016/j.csite.2023.102737.
  • X. Zhang, D. Yang, M. Israr Ur Rehman, and A. Hamid, “Heat transport phenomena for the Darcy–Forchheimer flow of Casson fluid over stretching sheets with electro-osmosis forces and Newtonian heating,” Mathematics, vol. 9, no. 19, pp. 2525, 2021. DOI: 10.3390/math9192525.
  • Y. Chu et al., “Stability analysis and modeling for the three-dimensional DarcyForchheimer stagnation point nanofluid flow towards a moving surface,” Appl. Math. Mech.-Engl. Ed., vol. 42, no. 3, pp. 357–370, 2021. DOI: 10.1007/s10483-021-2700-7.
  • S. Nadeem, M. Israr-Ur-Rehman, S. Saleem, and E. Bonyah, “Dual solutions in MHD stagnation point flow of nanofluid induced by porous stretching/shrinking sheet with anisotropic slip,” AIP Adv., vol. 10, no. 6, pp. 065207, 2020. DOI: 10.1063/5.0008756.
  • D. Yang, M. Israr Ur Rehman, A. Hamid, and S. Ullah, “Multiple solutions for stagnation-point flow of unsteady Carreau fluid along a permeable stretching/shrinking sheet with non-uniform heat generation,” Coatings, vol. 11, no. 9, pp. 1012, 2021. DOI: 10.3390/coatings11091012.
  • R. M. Kasmani, S. Sivasankaran, M. Bhuvaneswari, and A. K. Hussein, “Analytical and numerical study on convection of nanofluid past a moving wedge with Soret and Dufour effects,” HFF., vol. 27, no. 10, pp. 2333–2354, 2017. DOI: 10.1108/HFF-07-2016-0277.
  • S. K. Mondal and D. Pal, “Gyrotactic mixed bioconvection flow of a nanofluid over a stretching wedge embedded in a porous media in the presence of binary chemical reaction and activation energy,” Int. J. Ambient. Energy, vol. 43, no. 1, pp. 3443–3453, 2022. DOI: 10.1080/01430750.2020.1814860.
  • A. Aziz, W. Jamshed, T. Aziz, H. M. S. Bahaidarah, and K. U. Rehman, “Entropy analysis of Powell-Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1331–1343, 2021. DOI: 10.1007/s10973-020-10210-2.
  • W. Jamshed et al., “Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study,” Case Stud. Therm. Eng., vol. 26, pp. 101160, 2021. DOI: 10.1016/j.csite.2021.101160.
  • W. Jamshed, K. S. Nisar, R. J. P. Gowda, R. N. Kumar, and B. C. Prasannakumara, “Radiative heat transfer of second grade nanofluid flow past a porous flat surface: A single-phase mathematical model,” Phys. Scr., vol. 96, no. 6, pp. 064006, 2021. DOI: 10.1088/1402-4896/abf57d.
  • W. Jamshed et al., “Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study,” Case Stud. Therm. Eng., vol. 26, pp. 101179, 2021. DOI: 10.1016/j.csite.2021.101179.
  • W. Jamshed, S. U. Devi, and K. S. Nisar, “Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor,” Phys. Scr., vol. 96, no. 6, pp. 065202, 2021. DOI: 10.1088/1402-4896/abecc0.
  • S. M. Hussain and W. Jamshed, “A comparative entropy-based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105671, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105671.
  • N. Islam, A. A. Pasha, W. Jamshed, R. W. Ibrahim, and R. Alsulami, “On Powell-Eyring hybridity nanofluidic flow based carboxy-methyl-cellulose (CMC) with solar thermal radiation: A quadratic regression estimation,” Int. Commun. Heat Mass Transf., vol. 138, pp. 106413, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106413.
  • A. A. Pasha et al., “Statistical analysis of viscous hybridized nanofluid flowing via Galerkin finite element technique,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106244, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.