Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 4
83
Views
0
CrossRef citations to date
0
Altmetric
Articles

Transient mixed convection in a cylindrical cavity with a rotating finned cylinder

, ORCID Icon, &
Pages 449-464 | Received 17 Mar 2023, Accepted 01 May 2023, Published online: 12 May 2023

References

  • Y. Chen, G. Xu, J. Wen, and C. Zhu, “Rotational heat transfer in a rectangular cooling channel with compound turbulators of pin-fins and dimples,” Int. J. Heat Mass Transf., vol. 184, pp. 121897, Mar. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.121897.
  • M. Farsi, S. Karbalaee M, F. Kowsary, and P. Hanafizadeh, “Effect of radial injection on heat transfer of a Taylor–Couette–Poiseuille flow,” Numer. Heat Transf. B Fundam., vol. 77, no. 3, pp. 271–285, Mar. 2020. DOI: 10.1080/10407790.2019.1701338.
  • F. Seibold, P. Ligrani, and B. Weigand, “Flow and heat transfer in swirl tubes—A review,” Int. J. Heat Mass Transf., vol. 187, pp. 122455, May. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122455.
  • D. Zhang, H. Li, Y. Tian, R. You, X. Zhang, and A. Wu, “Effects of a high Reynolds number and rotation on the leading-edge heat transfer of a ribbed cooling channel with a cross-section consisting of a semicircle and a rectangle,” Int. J. Heat Mass Transf., vol. 188, pp. 122646, Jun. 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122646.
  • M. L. Hosain, R. Bel Fdhila, and K. Rönnberg, “Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines,” Appl. Energy., vol. 207, pp. 624–633, Dec. 2017. DOI: 10.1016/j.apenergy.2017.07.011.
  • M. Schrimpf, J. Esteban, H. Warmeling, T. Färber, A. Behr, and A. J. Vorholt, “Taylor‐Couette reactor: Principles, design, and applications,” AIChE J., vol. 67, no. 5, pp. e17228, May. 2021. DOI: 10.1002/aic.17228.
  • Y. Wang, T. Tang, Z. Yan, W. Duan, J. Deng, and G. Luo, “Liquid-liquid dispersion and flow characteristics in a miniaturized annular rotating device,” Chem. Eng. J., vol. 454, pp. 140374, Feb. 2023. DOI: 10.1016/j.cej.2022.140374.
  • M. Matsumoto, et al., “Enzymatic starch hydrolysis performance of Taylor-Couette flow reactor with ribbed inner cylinder,” Chem. Eng. Sci., vol. 231, pp. 116270, Feb. 2021. DOI: 10.1016/j.ces.2020.116270.
  • G. Brethouwer, “Strong dissimilarity between heat and momentum transfer in rotating Couette flows,” Int. J. Heat Mass Transf., vol. 205, pp. 123920, May. 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.123920.
  • D. Liu, Y. Qi, S. Sun, and Y.-Z. Wang, “Numerical investigation of flow and heat transfer between concentric cylinders with slit wall,” Case Stud. Therm. Eng., vol. 22, pp. 100783, Dec. 2020. DOI: 10.1016/j.csite.2020.100783.
  • P. Swann, I. Jahn, and H. Russell, “Supercritical carbon dioxide Taylor–Couette–Poiseuille flow heat transfer,” Int. J. Heat Mass Transf., vol. 183, pp. 122204, Feb. 2022. DOI: 10.1016/j.ijheatmasstransfer.2021.122204.
  • W. Beckmann, “Die Wärmeübertragung in zylindrischen Gasschichten bei natürlicher Konvektion,” Forsch. Ing-Wes., vol. 2, no. 5, pp. 165–178, May. 1931. DOI: 10.1007/BF02578801.
  • T. H. Kuehn and R. J. Goldstein, “An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders,” J. Fluid Mech., vol. 74, no. 4, pp. 695–719, Apr. 1976. DOI: 10.1017/S0022112076002012.
  • T. S. Lee, “Numerical experiments with laminar fluid convection between concentric and eccentric heated rotating cylinders,” Numer. Heat Transf., vol. 7, no. 1, pp. 77–87, Jan. 1984. DOI: 10.1080/01495728408961812.
  • T. S. Lee, “Numerical computation of fluid convection with air enclosed between the annuli of eccentric heated horizontal rotating cylinders,” Comput. Fluids., vol. 21, no. 3, pp. 355–368, Jul. 1992. DOI: 10.1016/0045-7930(92)90044-V.
  • M. H. Mousa, N. Miljkovic, and K. Nawaz, “Review of heat transfer enhancement techniques for single phase flows,” Renew. Sustain. Energy Rev., vol. 137, pp. 110566, Mar. 2021. DOI: 10.1016/j.rser.2020.110566.
  • H. Wang, Y. Tang, M. Liu, S. Zhu, K. Zheng, and X. Du, “Experimental study on heat transfer performance of axially rotating heat pipe in steady state,” Int. J. Therm. Sci., vol. 184, pp. 107975, Feb. 2023. DOI: 10.1016/j.ijthermalsci.2022.107975.
  • J.-S. Yoo, “Mixed convection of air between two horizontal concentric cylinders with a cooled rotating outer cylinder,” Int. J. Heat Mass Transf., vol. 41, no. 2, pp. 293–302, Jan. 1998. DOI: 10.1016/S0017-9310(97)00141-5.
  • L. P. M. Colombo, A. Lucchini, and A. Muzzio, “Fully developed laminar mixed convection in uniformly heated horizontal annular ducts,” Int. J. Therm. Sci., vol. 94, pp. 204–220, Aug. 2015. DOI: 10.1016/j.ijthermalsci.2015.03.008.
  • S.-C. Tzeng, “Heat transfer in a small gap between co-axial rotating cylinders,” Int. Commun. Heat Mass Transf., vol. 33, no. 6, pp. 737–743, Jul. 2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.012.
  • Y. J. Cheng, Y. H. Liao, and C. K. Huang, “Heat transfer on a radially rotating heated cylinder,” Int. Commun. Heat Mass Transf., vol. 35, no. 10, pp. 1355–1359, Dec. 2008. DOI: 10.1016/j.icheatmasstransfer.2008.08.002.
  • R. I. Elghnam, “Experimental and numerical investigation of heat transfer from a heated horizontal cylinder rotating in still air around its axis,” Ain Shams Eng. J., vol. 5, no. 1, pp. 177–185, Mar. 2014. DOI: 10.1016/j.asej.2013.09.008.
  • M. M. Ali, R. Akhter, and M. A. Alim, “Hydromagnetic mixed convection in a triangular shed filled by nanofluid and equipped with rectangular heater and rotating cylinders,” Int. J. Thermofluids., vol. 11, pp. 100105, Aug. 2021. DOI: 10.1016/j.ijft.2021.100105.
  • I. M. Rustum and H. M. Soliman, “Numerical analysis of laminar mixed convection in horizontal internally finned tubes,” Int. J. Heat Mass Transf., vol. 33, no. 7, pp. 1485–1496, Jul. 1990. DOI: 10.1016/0017-9310(90)90045-V.
  • E. M. Sparrow and C. S. Preston, “Heat transfer from rotating annular fins,” Int. J. Heat Mass Transf., vol. 29, no. 6, pp. 831–839, Jun. 1986. DOI: 10.1016/0017-9310(86)90179-1.
  • M.-I. Farinas, A. Garon, and K. Saint-Louis, “Study of heat transfer in a horizontal cylinder with fins,” Rev. Générale Therm., vol. 36, no. 5, pp. 398–410, May. 1997. DOI: 10.1016/S0035-3159(97)81601-7.
  • M. Bouafia, Y. Bertin, J. Saulnier, and P. Ropert, “Analyse expérimentale des transferts de chaleur en espace annulaire étroit et rainuré avec cylindre intérieur tournant,” Int. J. Heat Mass Transf., vol. 41, no. 10, pp. 1279–1291, May. 1998. DOI: 10.1016/S0017-9310(97)00317-7.
  • B. Watel, S. Harmand, and B. Desmet, “Etude des échanges convectifs sur un arbre aileté tournant, soumis à un courant d’air parallèle aux ailettes,” Int. J. Heat Mass Transf., vol. 41, no. 23, pp. 3741–3757, Dec. 1998. DOI: 10.1016/S0017-9310(98)00112-4.
  • B. Watel, S. Harmand, and B. Desmet, “Influence of fin spacing and rotational speed on the convective heat exchanges from a rotating finned tube,” Int. J. Heat Fluid Flow., vol. 21, no. 2, pp. 221–227, Apr. 2000. DOI: 10.1016/S0142-727X(99)00070-3.
  • S. Kiwan and M. A. Al-Nimr, “Using porous fins for heat transfer enhancement,” J. Heat Transf., vol. 123, no. 4, pp. 790–795, Aug. 2001. DOI: 10.1115/1.1371922.
  • S. Kiwan and O. Zeitoun, “Natural convection in a horizontal cylindrical annulus using porous fins,” Int. J. Numer. Methods Heat Fluid Flow., vol. 18, no. 5, pp. 618–634, Jun. 2008. DOI: 10.1108/09615530810879747.
  • M. Rahnama and M. Farhadi, “Effect of radial fins on two-dimensional turbulent natural convection in a horizontal annulus,” Int. J. Therm. Sci., vol. 43, no. 3, pp. 255–264, Mar. 2004. DOI: 10.1016/j.ijthermalsci.2003.07.002.
  • Y. Attou and F. Kebir, “Effect of fin inclination angel on heat transfer improvement in an annular space of a rotor stator,” DDF, vol. 409, pp. 110–122, May. 2021. DOI: 10.4028/www.scientific.net/DDF.409.110.
  • M. Ashouri, M. M. Zarei, and A. Moosavi, “Investigation of the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three dimensional lattice Boltzmann flux solver,” HFF, vol. 32, no. 1, pp. 283–312, Jan. 2022. DOI: 10.1108/HFF-10-2020-0629.
  • M. Ashouri, M. M. Zarei, and A. Hakkaki-Fard, “A numerical investigation on natural convection heat transfer in annular-finned concentric horizontal annulus using nanofluids: A parametric study,” Heat Transf. Eng., vol. 42, no. 22, pp. 1926–1948, Dec. 2021. DOI: 10.1080/01457632.2020.1834215.
  • I. Guendouci, H. Laidoudi, and M. Bouzit, “The effect of fin length on free convection heat transfer in annular space of concentric arrangement using shear-thinning fluids as a thermal medium,” DDF, vol. 409, pp. 194–204, May. 2021. DOI: 10.4028/www.scientific.net/DDF.409.194.
  • A. El Amraoui, A. Cheddadi, and M. T. Ouazzani, “Effect of fin height and Rayleigh number with small increments on convective heat transfer in a horizontal annulus,” IJHT, vol. 38, no. 2, pp. 327–333, Jun. 2020. DOI: 10.18280/ijht.380207.
  • A. K. Tolpadi and T. H. Kuehn, “Conjugate three-dimensional natural convection heat transfer from a horizontal cylinder with long transverse plate fins,” Numer. Heat Transf., vol. 7, no. 3, pp. 319–341, Jul. 1984. DOI: 10.1080/01495728408961828.
  • C. Ryad, S. Djamel, S. Adel, and M. Smail, “Numerical simulation of double diffusive mixed convection in a horizontal annulus with finned inner cylinder,” Fluid Dyn. Mater. Process., vol. 15, no. 2, pp. 153–169, 2019. DOI: 10.32604/fdmp.2019.04294.
  • H.-T. Chen and W.-L. Hsu, “Estimation of heat-transfer characteristics on a vertical annular circular fin of finned-tube heat exchangers in forced convection,” Int. J. Heat Mass Transf., vol. 51, no. 7–8, pp. 1920–1932, Apr. 2008. DOI: 10.1016/j.ijheatmasstransfer.2007.06.035.
  • J. R. Senapati, S. K. Dash, and S. Roy, “Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder,” Int. J. Heat Mass Transf., vol. 96, pp. 330–345, May. 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.01.024.
  • X. Cao, Y. Yuan, B. Xiang, L. Sun, and Z. Xingxing, “Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures,” Energy Build., vol. 158, pp. 384–392, Jan. 2018. DOI: 10.1016/j.enbuild.2017.10.029.
  • B. Latour, P. Bouvier, and S. Harmand, “Experimental study of convective heat transfer on a finned rotating cylinder,” Int. J. Therm. Sci., vol. 49, no. 9, pp. 1742–1751, Sep. 2010. DOI: 10.1016/j.ijthermalsci.2010.03.019.
  • S. Pandey, Y. G. Park, and M. Y. Ha, “Unsteady analysis of natural convection in a square enclosure filled with non-Newtonian fluid containing an internal cylinder,” Numer. Heat Transf. Part B Fundam., vol. 77, no. 1, pp. 1–21, Jan. 2020. DOI: 10.1080/10407790.2019.1685838.
  • S. Acharya and S. K. Dash, “Natural convection heat transfer from a horizontal hollow cylinder with internal longitudinal fins,” Int. J. Therm. Sci., vol. 134, pp. 40–53, Dec. 2018. DOI: 10.1016/j.ijthermalsci.2018.07.039.
  • J. Bridgwater, “Fundamental powder mixing mechanisms,” Powder Technol., vol. 15, no. 2, pp. 215–236, Nov. 1976. DOI: 10.1016/0032-5910(76)80051-4.
  • R. Munter, “Comparison of mass transfer efficiency and energy consumption in static mixers,” Ozone Sci. Eng., vol. 32, no. 6, pp. 399–407, Nov. 2010. DOI: 10.1080/01919512.2010.517492.
  • V. Boonkanokwong, J. G. Khinast, and B. J. Glasser, “Scale-up and flow behavior of cohesive granular material in a four-bladed mixer: Effect of system and particle size,” Adv. Powder Technol., vol. 32, no. 12, pp. 4481–4495, Dec. 2021. DOI: 10.1016/j.apt.2021.09.044.
  • M. Abdolahzadeh, A. Tayebi, and P. Omidvar, “Thermal effects on two-phase flow in 2D mixers using SPH,” Int. Commun. Heat Mass Transf., vol. 120, pp. 105055, Jan. 2021. DOI: 10.1016/j.icheatmasstransfer.2020.105055.
  • Z. Zuo, J. Wang, S. Gong, and J. Zhang, “Effect of blade configuration on the mixing process of particles in an intensive mixer,” Part. Sci. Technol., pp. 1–15, Feb. 2023. DOI: 10.1080/02726351.2023.2177216.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow. CRC Press, 2018. DOI: 10.1201/9781482234213.
  • J. F. Van Der Auweraert, Modeling of Wind Turbine Wake with a Sliding Mesh. Delft University of Technology, 2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.