Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 5
751
Views
1
CrossRef citations to date
0
Altmetric
Articles

An energy-conservative DG-FEM approach for solid–liquid phase change

, , &
Pages 487-513 | Received 21 Nov 2022, Accepted 01 May 2023, Published online: 18 May 2023

References

  • C. Gau and R. Viskanta, “Melting and solidification of a pure metal on a vertical wall,” J. Heat Transf., vol. 108, no. 1, pp. 174–181, 1986. DOI: 10.1115/1.3246884.
  • T. A. Campbell and J. N. Koster, “Visualization of liquid-solid interface morphologies in gallium subject to natural convection,” J. Crystal Growth, vol. 140, no. 34, pp. 414–425, 1994. DOI: 10.1016/0022-0248(94)90318-2.
  • O. Ben-David, A. Levy, B. Mikhailovich, and A. Azulay, “3D numerical and experimental study of gallium melting in a rectangular container,” Int. J. Heat Mass Transf., vol. 67, pp. 260–271, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.058.
  • J. Vogel and D. Bauer, “Phase state and velocity measurements with high temporal and spatial resolution during melting of n -octadecane in a rectangular enclosure with two heated vertical sides,” Int. J. Heat Mass Transf., vol. 127, pp. 1264–1276, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.06.084.
  • M. Faden, C. Linhardt, S. Höhlein, A. König-Haagen, and D. Brüggemann, “Velocity field and phase boundary measurements during melting of n-octadecane in a cubical test cell,” Int. J. Heat Mass Transf., vol. 135, pp. 104–114, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.056.
  • R. A. Lawag and H. M. Ali, “Phase change materials for thermal management and energy storage: a review,” J. Energy Storage, vol. 55, no. PC, pp. 105602, 2022. DOI: 10.1016/j.est.2022.105602.
  • H. M. Ali, “An experimental study for thermal management using hybrid heat sinks based on organic phase change material, copper foam and heat pipe,” J. Energy Storage, vol. 53, no. February, pp. 105185, 2022. DOI: 10.1016/j.est.2022.105185.
  • Y. Zhang et al., “Fabrication of shape-stabilized phase change materials based on waste plastics for energy storage,” J. Energy Storage, vol. 52, no. PB, pp. 104973, 2022. DOI: 10.1016/j.est.2022.104973.
  • M. Tiberga, D. Shafer, D. Lathouwers, M. Rohde, and J. L. Kloosterman, “Preliminary investigation on the melting behavior of a freeze-valve for the Molten Salt Fast Reactor,” Ann. Nucl. Energy, vol. 132, pp. 544–554, 2019. DOI: 10.1016/j.anucene.2019.06.039.
  • V. Voulgaropoulos, N. L. Brun, A. Charogiannis, and C. N. Markides, “Transient freezing of water between two parallel plates: a combined experimental and modelling study,” Int. J. Heat Mass Transf., vol. 153, pp. 119596, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119596.
  • G. Cartland Glover et al., “On the numerical modelling of frozen walls in a molten salt fast reactor,” Nucl. Eng. Des., vol. 355, no. March, pp. 110290, 2019. DOI: 10.1016/j.nucengdes.2019.110290.
  • A. König-Haagen, E. Franquet, E. Pernot, and D. Brüggemann, “A comprehensive benchmark of fixed-grid methods for the modeling of melting,” Int. J. Therm. Sci., vol. 118, pp. 69–103, 2017. DOI: 10.1016/j.ijthermalsci.2017.04.008.
  • Y. Kozak and G. Ziskind, “Novel enthalpy method for modeling of PCM melting accompanied by sinking of the solid phase,” Int. J. Heat Mass Transf., vol. 112, pp. 568–586, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.04.088.
  • W. Shyy, Y. Pang, G. B. Hunter, D. Y. Wei, and M. H. Chen, “Modeling of turbulent transport and solidification during continuous ingot casting,” Int. J. Heat Mass Transf., vol. 35, no. 5, pp. 1229–1245, 1992. DOI: 10.1016/0017-9310(92)90181-Q.
  • P. J. Prescott and F. P. Incropera, “The effect of turbulence on solidification of a binary metal alloy with electromagnetic stirring,” J. Heat Transf., vol. 117, no. 3, pp. 716–724, 1995. DOI: 10.1115/1.2822604.
  • N. Chakraborty, “The effects of turbulence on molten pool transport during melting and solidification processes in continuous conduction mode laser welding of copper-nickel dissimilar couple,” Appl. Therm. Eng., vol. 29, no. 1718, pp. 3618–3631, 2009. DOI: 10.1016/j.applthermaleng.2009.06.018.
  • Z. Liu, L. Li, B. Li, and M. Jiang, “Large eddy simulation of transient flow, solidification, and particle transport processes in continuous-casting mold,” JOM, vol. 66, no. 7, pp. 1184–1196, 2014. DOI: 10.1007/s11837-014-1010-3.
  • A. Kidess, S. Kenjereš, B. W. Righolt, and C. R. Kleijn, “Marangoni driven turbulence in high energy surface melting processes,” Int. J. Therm. Sci., vol. 104, pp. 412–422, 2016. DOI: 10.1016/j.ijthermalsci.2016.01.015.
  • L. Zhang et al., “Performance analysis of natural convection in presence of internal heating, strong turbulence and phase change,” Appl. Therm. Eng., vol. 178, no. June, pp. 115602, 2020. DOI: 10.1016/j.applthermaleng.2020.115602.
  • M. Lacroix and V. R. Voller, “Finite difference solutions of solidification phase change problems: transformed versus fixed grids,” Numer. Heat Transf., Part B: Fund., vol. 17, no. 1, pp. 25–41, 1990. DOI: 10.1080/10407799008961731.
  • R. Viswanath and Y. Jaluria, “A comparison of different solution methodologies for melting and solidification problems in enclosures,” Numer. Heat Transf., Part B: Fund., vol. 24, no. 1, pp. 77–105, 1993. DOI: 10.1080/10407799308955883.
  • S. Chen, B. Merriman, S. Osher, and P. Smereka, “A simple level set method for solving Stefan problems,” J. Comput. Phys., vol. 135, no. 1, pp. 8–29, 1997. DOI: 10.1006/jcph.1997.5721.
  • H. Zhang, L. L. Zheng, V. Prasad, and T. Y. Hou, “A curvilinear level set formulation for highly deformable free surface problems with application to solidification,” Numer. Heat Transf., Part B: Fund., vol. 34, no. 1, pp. 1–30, 1998. DOI: 10.1080/10407799808915045.
  • J. Chessa, P. Smolinski, and T. Belytschko, “The extended finite element method (XFEM) for solidification problems,” Int. J. Numer. Meth. Eng., vol. 53, no. 8, pp. 1959–1977, 2002. DOI: 10.1002/nme.386.
  • L. Tan and N. Zabaras, “A level set simulation of dendritic solidification with combined features of front-tracking and fixed-domain methods,” J. Comput. Phys., vol. 211, no. 1, pp. 36–63, 2006. DOI: 10.1016/j.jcp.2005.05.013.
  • A. A. Wheeler, W. J. Boettinger, and G. B. McFadden, “Phase-field model for isothermal phase transitions in binary alloys,” Phys. Rev. A, vol. 45, no. 10, pp. 7424–7439, 1992. DOI: 10.1103/PhysRevA.45.7424.
  • R. Kobayashi, “Modeling and numerical simulations of dendritic crystal growth,” Phys. D: Nonlinear Phenom., vol. 63, no. 34, pp. 410–423, 1993. DOI: 10.1016/0167-2789(93)90120-P.
  • S. G. Kim, W. T. Kim, and T. Suzuki, “Phase-field model for binary alloys,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 60, no. 6 Pt B, pp. 7186–7197, 1999. DOI: 10.1103/PhysRevE.60.7186.
  • W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma, “Phase-field simulation of solidification,” Annu. Rev. Mater. Res., vol. 32, no. 1, pp. 163–194, 2002. DOI: 10.1146/annurev.matsci.32.101901.155803.
  • Y. Sun and C. Beckermann, “Sharp interface tracking using the phase-field equation,” J. Comput. Phys., vol. 220, no. 2, pp. 626–653, 2007. 025. DOI: 10.1016/j.jcp.2006.05.
  • M. Tano, P. Rubiolo, and O. Doche, “Progress in modeling solidification in molten salt coolants,” Modell. Simul. Mater. Sci. Eng., vol. 25, no. 7, pp. 074001, 2017. DOI: 10.1088/1361-651X/aa8345.
  • C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, “Numerical solution of phase-change problems,” Int. J. Heat Mass Transf., vol. 16, no. 10, pp. 1825–1832, 1973. DOI: 10.1016/0017-9310(73)90202-0.
  • K. Morgan, “A numerical analysis of freezing and melting with convection,” Comput. Methods Appl. Mech. Eng., vol. 28, no. 3, pp. 275–284, 1981. DOI: 10.1016/0045-7825(81)90002-5.
  • Q. T. Pham, “A fast, unconditionally stable finite-difference scheme for heat conduction with phase change,” Int. J. Heat Mass Transf., vol. 28, no. 11, pp. 2079–2084, 1985. DOI: 10.1016/0017-9310(85)90101-2.
  • V. Voller and M. Cross, “Accurate solutions of moving boundary problems using the enthalpy method,” Int. J. Heat Mass Transf., vol. 24, no. 3, pp. 545–556, 1981. DOI: 10.1016/0017-9310(81)90062-4.
  • V. R. Voller, M. Cross, and N. C. Markatos, “An enthalpy method for convection/diffusion phase change,” Int. J. Numer. Meth. Eng., vol. 24, no. 1, pp. 271–284, 1987. DOI: 10.1002/nme.1620240119.
  • A. D. Brent, V. R. Voller, and K. J. Reid, “Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal,” Numer. Heat Transf., vol. 13, no. 3, pp. 297–318, 1988. DOI: 10.1080/10407788808913615.
  • M. Yao, and A. Chait, and “A alternative formulation of the apparent heat capacity method for phase–change problems,” Numer. Heat Transf., Part B: Fund., vol. 24, no. 3, pp. 279–300, 1993. DOI: 10.1080/10407799308955894.
  • C. R. Swaminathan and V. R. Voller, “On the enthalpy method,” Int. J. Numer. Methods Heat Fluid Flow, vol. 3, no. 3, pp. 233–244, 1993. DOI: 10.1108/eb017528.
  • B. Nedjar, “An enthalpy-based finite element method for nonlinear heat problems involving phase change,” Comput. Struct., vol. 80, no. 1, pp. 9–21, 2002. DOI: 10.1016/S0045-7949(01)00165-1.
  • K. Krabbenhoft, L. Damkilde, and M. Nazem, “An implicit mixed enthalpy-temperature method for phase-change problems,” Heat Mass Transf., vol. 43, no. 3, pp. 233–241, 2006. DOI: 10.1007/s00231-006-0090-1.
  • M. Faden, A. König-Haagen, and D. Brüggemann, “An optimum enthalpy approach for melting and solidification with volume change,” Energies, vol. 12, no. 5, pp. 868, 2019. DOI: 10.3390/en12050868.
  • B. J. Kaaks, J. W. A. Reus, M. Rohde, J. L. Kloosterman, and D. Lathouwers, “Numerical study of phase-change phenomena: a conservative linearized enthalpy approach,” presented at the 19th Int. Top. Meet. on Nuclear Reactor Thermal Hydraulics (NURETH-19) Log nr.: 19001 Brussels, Belgium, Mar. 6–11, 2022. DOI: 10.5281/ZENODO.5704671.
  • J. W. Jerome and M. E. Rose, “Error estimates for the multidimensional two-phase stefan problem,” Math. Comput., vol. 39, no. 160, pp. 377–414, 1982. DOI: 10.2307/2007320.
  • R. H. Nochetto, “Error estimates for two-phase stefan problems in several space variables, I: linear boundary conditions,” Calcolo, vol. 22, no. 4, pp. 457–499, 1985. DOI: 10.1007/BF02575898.
  • M. Azaïez, F. Jelassi, M. M. Brahim, and J. Shen, “Two phases stefan problem with smoothed enthalpy,” Commun. Math. Sci., vol. 14, no. 6, pp. 1625–1641, 2016. DOI: 10.4310/CMS.2016.v14.n6.a8.
  • N. Hannoun, V. Alexiades, and T. Z. Mai, “Resolving the controversy over tin and gallium melting in a rectangular cavity heated from the side,” Numer. Heat Transf., Part B: Fund., vol. 44, no. 3, pp. 253–276, 2003. DOI: 10.1080/713836378.
  • I. Danaila, R. Moglan, F. Hecht, and S. Le Masson, “A Newton method with adaptive finite elements for solving phase-change problems with natural convection,” J. Comput. Phys., vol. 274, pp. 826–840, 2014. DOI: 10.1016/j.jcp.2014.06.036.
  • Y. Belhamadia, A. Fortin, and T. Briffard, “A two-dimensional adaptive remeshing method for solving melting and solidification problems with convection,” Numer. Heat Transf. Part A: Appl., vol. 76, no. 4, pp. 179–197, 2019. DOI: 10.1080/10407782.2019.1627837.
  • S. Soghrati, A. M. Aragon, C. Armando Duarte, and P. H. Geubelle, “An interface-enriched generalized FEM for problems with discontinuous gradient fields,” Int. J. Numer. Meth. Eng., vol. 89, no. 8, pp. 991–1008, 2012. DOI: 10.1002/nme.3273.
  • J. Zhang, S. J. van den Boom, F. van Keulen, and A. M. Aragón, “A stable discontinuity-enriched finite element method for 3-D problems containing weak and strong discontinuities,” Comput. Methods Appl. Mech. Eng., vol. 355, pp. 1097–1123, 2019. DOI: 10.1016/j.cma.2019.05.018.
  • J. S. Cagnone, K. Hillewaert, and N. Poletz, “A discontinuous Galerkin method for multiphysics welding simulations,” KEM., vol. 611–612, pp. 1319–1326, 2014. DOI: 10.4028/www.scientific.net/KEM.611-612.1319.
  • P. W. Schroeder and G. Lube, “Stabilised dG-FEM for incompressible natural convection flows with boundary and moving interior layers on non-adapted meshes,” J. Comput. Phys., vol. 335, pp. 760–779, 2017. DOI: 10.1016/j.jcp.2017.01.055.
  • R. Nourgaliev et al., “Fully-implicit orthogonal reconstructed Discontinuous Galerkin method for fluid dynamics with phase change,” J. Comput. Phys., vol. 305, pp. 964–996, 2016. DOI: 10.1016/j.jcp.2015.11.004.
  • S. Stepanov, M. Vasilyeva, and V. I. Vasil’ev, “Generalized multiscale discontinuous Galerkin method for solving the heat problem with phase change,” J. Comput. Appl. Math., vol. 340, pp. 645–652, 2018. DOI: 10.1016/j.cam.2017.12.004.
  • B. Cockburn and C. W. Shu, “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems,” J. Sci. Comput., vol. 16, no. 3, pp. 173–261, 2001. DOI: 10.1023/A:1012873910884.
  • D. N. Arnold, F. Brezzi, B. Cockburn, and L. Donatella Marini, “Unified analysis of discontinuous Galerkin methods for elliptic problems,” SIAM J. Numer. Anal., vol. 39, no. 5, pp. 1749–1779, 2002. DOI: 10.1137/S0036142901384162.
  • M. Tiberga, D. Lathouwers, and J. L. Kloosterman, “A multi-physics solver for liquid-fueled fast systems based on the discontinuous Galerkin FEM discretization,” Prog. Nucl. Energy, vol. 127, no. May, pp. 103427, 2020. DOI: 10.1016/j.pnucene.2020.103427.
  • A. Crivellini, V. D’Alessandro, and F. Bassi, “A Spalart–Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows,” J. Comput. Phys., vol. 241, pp. 388–415, 2013. DOI: 10.1016/j.jcp.2012.12.038.
  • F. Bassi et al., “A high-order discontinuous Galerkin solver for the incompressible RANS and k–ω turbulence model equations,” Comput. Fluids, vol. 98, pp. 54–68, 2014. DOI: 10.1016/j.compfluid.2014.02.028.
  • G. Noventa et al., “A high-order discontinuous Galerkin solver for unsteady incompressible turbulent flows,” Comput. Fluids, vol. 139, pp. 248–260, 2016. DOI: 10.1016/j.compfluid.2016.03.007.
  • B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler, “A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow,” J. Comput. Phys., vol. 348, pp. 634–659, 2017. DOI: 10.1016/j.jcp.2017.07.039.
  • M. Tiberga, A. Hennink, J. L. Kloosterman, and D. Lathouwers, “A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k-e turbulence model,” Comput. Fluids, vol. 212, pp. 104710, 2020. DOI: 10.1016/j.compfluid.2020.104710.
  • B. Klein, F. Kummer, M. Keil, and M. Oberlack, “An extension of the SIMPLE based discontinuous Galerkin solver to unsteady incompressible flows,” Int. J. Numer. Meth. Fluids, vol. 77, no. 10, pp. 571–589, 2015.
  • A. Hennink, M. Tiberga, and D. Lathouwers, “A pressure-based solver for low-Mach number flow using a discontinuous Galerkin method,” J. Comput. Phys., vol. 425, pp. 109877–10902716, 2021.
  • M. Sabat, A. Larat, A. Vié, and M. Massot, “On the development of high order realizable schemes for the Eulerian simulation of disperse phase flows: a convex-state preserving discontinuous Galerkin method,” J. Comput. Multiph. Flows, vol. 6, pp. 247–270, 2014. DOI: 10.1260/1757-482X.6.3.247.
  • E. J. Ching, S. R. Brill, M. Barnhardt, and M. Ihme, “A two-way coupled Euler-Lagrange method for simulating multiphase flows with discontinuous Galerkin schemes on arbitrary curved elements,” J. Comput. Phys., vol. 405, pp. 109096, 2020. DOI: 10.1016/j.jcp.2019.109096.
  • A. König-Haagen, E. Franquet, M. Faden, and D. Brüggemann, “Influence of the convective energy formulation for melting problems with enthalpy methods,” Int. J. Therm. Sci., vol. 158, no. July, pp. 106477, 2020. DOI: 10.1016/j.ijthermalsci.2020.106477.
  • N. Fehn, W. A. Wall, and M. Kronbichler, “On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations,” J. Comput. Phys., vol. 351, pp. 392–421, 2017. DOI: 10.1016/j.jcp.2017.09.031.
  • K. A. Cliffe, E. J. C. Hall, and P. Houston, “Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid copyright © by SIAM. Unauthorized reproduction of this article is prohibited. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited,” SIAM J. Sci. Comput., vol. 31, no. 6, pp. 4607–4632, 2010. DOI: 10.1137/080731918.
  • M. Drosson and K. Hillewaert, “On the stability of the symmetric interior penalty method for the Spalart-Allmaras turbulence model,” J. Comput. Appl. Math., vol. 246, pp. 122–135, 2013. DOI: 10.1016/j.cam.2012.09.019.
  • B. Cockburn, G. Kanschat, and D. Schötzau, “A locally conservative Ldg method for the incompressible Navier-Stokes equations,” Math. Comput., vol. 74, no. 251, pp. 1067–1096, 2004. DOI: 10.1090/S0025-5718-04-01718-1.
  • K. Shahbazi, P. F. Fischer, and C. R. Ethier, “A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations,” J. Comput. Phys., vol. 222, no. 1, pp. 391–407, 2007. DOI: 10.1016/j.jcp.2006.07.029.
  • G. Mengaldo, D. De Grazia, D. Moxey, P. E. Vincent, and S. J. Sherwin, “Dealiasing techniques for high-order spectral element methods on regular and irregular grids,” J. Comput. Phys., vol. 299, pp. 56–81, 2015. DOI: 10.1016/j.jcp.2015.06.032.
  • P. Solin, K. Segeth, and I. Dolezel, Higher-Order Finite Element Methods, 1st ed. New York, NY, USA: CRC Press, 2003.
  • C. Geuzaine and J.-F. Remacle, “Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities,” Int. J. Numer. Meth. Eng., vol. 79, no. 11, pp. 1309–1331, 2009. DOI: 10.1002/nme.2579.
  • G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular graphs,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 359–392, 1998. DOI: 10.1137/S1064827595287997.
  • S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient management of parallelism in object-oriented numerical software libraries,” in Modern Software Tools for Scientific Computing. Boston, MA: Birkhäuser Boston, 1997, pp. 163–202. DOI: 10.1007/978-1-4612-1986-6_8.
  • B. Kaaks and D. Lathouwers, 1D Discontinuous Galerkin Method Code Solving Stefan Problem Linearized Enthalpy Approach, Zenodo, 2022. DOI: 10.5281/zenodo.6801340
  • B. Kaaks, M. Rohde, J.-L. Kloosterman, and D. Lathouwers, Numerical Data Set Belonging to: Numerical Modelling of Solid-Liquid Phase Change with a Conservative Linearised Enthalpy Approach and the Discontinuous Galerkin Method, Zenodo, 2022. DOI: 10.5281/ZENODO.6802376.
  • N. Hu, L.-W. Fan, and Z.-Q. Zhu, “Can the numerical simulations of melting in a differentially-heated rectangular cavity be rationally reduced to 2D? A comparative study between 2D and 3D simulation results,” Int. J. Heat Mass Transf., vol. 166, pp. 120751–00179310, 2021. DOI: 10.1016/j.ijheatmasstransfer.2020.120751.
  • M. Faden, A. König-Haagen, E. Franquet, and D. Brüggemann, “Influence of density change during melting inside a cavity: theoretical scaling laws and numerical analysis,” Int. J. Heat Mass Transf., vol. 173, pp. 121260, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121260.
  • K. Wittig and P. A. Nikrityuk, “Three-dimensionality of fluid flow in the benchmark experiment for a pure metal melting on a vertical wall,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 27, no. 1, pp. 012054, 2012. DOI: 10.1088/1757-899X/27/1/012054.
  • Y. Belhamadia, A. S. Kane, and A. Fortin, “An enhanced mathematical model for phase change problems with natural convection,” Int. J. Numer. Anal. Model. Ser. B, vol. 3, no. 2, pp. 192–206, 2012.