Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 5
188
Views
2
CrossRef citations to date
0
Altmetric
Articles

Thermal analysis on electromagnetic regulated peristaltic blood-based graphane/diamond nanofluid flow with entropy optimization

, , , , & ORCID Icon
Pages 514-538 | Received 27 Jan 2023, Accepted 01 May 2023, Published online: 22 May 2023

References

  • T. W. Latham, “Fluid motions in peristaltic pump,” MS thesis. MIT, Cambridge, 1966.
  • A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, no. 4, pp. 799–825, 1969. DOI: 10.1017/S0022112069000899.
  • K. K. Raju and R. Devanathan, “Peristaltic motion of a non-Newtonian fluid,” Rheol Acta, vol. 11, no. 2, pp. 170–178, 1972. DOI: 10.1007/BF01993016.
  • S. I. Abdelsalam and K. Vafai, “Particulate suspension effect on peristaltically induced unsteady pulsatile flow in a narrow artery: blood flow model,” Math Biosci, vol. 283, pp. 91–105, 2017. DOI: 10.1016/j.mbs.2016.11.012.
  • R. Ellahi, A. Zeeshan, F. Hussain, and A. Asadollahi, “Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy,” Symmetry, vol. 11, no. 2, pp. 276, 2019. DOI: 10.3390/sym11020276.
  • T. Hayat, S. I. Shah, B. Ahmad, and M. Mustafa, “Effect of slip on peristaltic flow of Powell-Eyring fluid in a symmetric channel,” Appl. Bionics. Biomech., vol. 11, no. 1–2, pp. 69–79, 2014. DOI: 10.3233/ABB-140087.
  • A. A. Khan, R. Ellahi, and M. Usman, “Effects of variable viscosity on the flow of non-Newtonian fluid through a porous medium in an inclined channel with slip conditions,” J. Por. Media, vol. 16, no. 1, pp. 59–67, 2013. DOI: 10.1615/JPorMedia.v16.i1.60.
  • D. Tripathi, P. K. Gupta, and S. Das, “Influence of slip condition on peristaltic transport of a viscoelastic fluid fractional Burger’s Model,” Therm. Sci., vol. 15, no. 2, pp. 501–515, 2011. DOI: 10.2298/TSCI1102501T.
  • S. Akram and S. Nadeem, “Significance of nanofluid and partial slip on the peristaltic transport of a non-Newtonian fluid with different wave forms,” IEEE Trans. Nanotechnol., vol. 13, no. 2, pp. 375–385, 2014. DOI: 10.1109/TNANO.2014.2305666.
  • S. Srinivas, R. Gayathri, and M. Kothandapani, “The influence of slip condition, wall properties and heat transfer on MHD peristaltic transport,” Comput. Phys. Commun., vol. 180, no. 11, pp. 2115–2122, 2009. DOI: 10.1016/j.cpc.2009.06.015.
  • T. Hayat, S. Hina, and N. Ali, “Simultaneous effects of slip and heat transfer on the peristaltic flow,” Commun. Nonlinear Sci., vol. 15, no. 6, pp. 1526–1537, 2010. DOI: 10.1016/j.cnsns.2009.06.032.
  • A. Ebaid, “Effects of magnetic field and wall slip conditions on the peristaltic transport of a Newtonian fluid in an asymmetric channel,” Phys. Lett. A, vol. 372, no. 24, pp. 4493–4499, 2008. DOI: 10.1016/j.physleta.2008.04.031.
  • S. Srinivas and M. Kothandapani, “Peristaltic transport in an asymmetric channel with heat transfer-A note,” Int. Commun. Heat Mass Transf., vol. 35, no. 4, pp. 514–522, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.08.011.
  • Z. Abbas, M. Y. Rafiq, J. Hasnain, and H. Umer, “Impacts of lorentz force and chemical reaction on peristaltic transport of Jeffrey fluid in a penetrable channel with injection/suction at walls,” Alex. Eng. J., vol. 60, no. 1, pp. 1113–1122, 2021. DOI: 10.1016/j.aej.2020.10.035.
  • M. Khan, T. Salahuddin, A. Tanveer, M. Y. Malik, and A. Hussain, “Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity,” Chin. J. Chem. Eng., vol. 27, no. 10, pp. 2352–2358, 2019. DOI: 10.1016/j.cjche.2018.12.023.
  • O. U. Mehmood, N. Mustapha, and S. Shafie, “Heat transfer on peristaltic flow of Fourth-grade fluid in inclined asymmetric channel with partial slip,” Appl. Math. Mech.-Engl. Ed., vol. 33, no. 10, pp. 1313–1328, 2012. DOI: 10.1007/s10483-012-1624-6.
  • K. Das and S. Debnath, “Influence of slip condition and heat transfer on MHD Pulsatile flow of Third order fluid in an asymmetric channel,” Afr. Mat., vol. 24, no. 4, pp. 597–613, 2013. DOI: 10.1007/s13370-012-0080-z.
  • M. M. Bhatti, A. Zeeshan, R. Ellahi, and G. C. Shit, “Mathematical modeling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium,” Adv. Powder Technol., vol. 29, no. 5, pp. 1189–1197, 2018. DOI: 10.1016/j.apt.2018.02.010.
  • T. Hayat, B. Ahmed, F. M. Abbasi, and A. Alsaedi, “Numerical investigation for peristaltic flow of Carreau-Yasuda magneto-nanofluid with modified Darcy and radiation,” J. Therm Anal. Calorim., vol. 137, no. 4, pp. 1359–1367, 2019. DOI: 10.1007/s10973-019-08018-w.
  • Z. Asghar, N. Ali, R. Ahmed, M. Waqas, and W. A. Khan, “A mathematical framework for peristaltic flow analysis of non-Newtonian Sisko fluid in an undulating porous curved channel with heat and mass transfer effects,” Comput. Methods Programs Biomed., vol. 182, pp. 105040, 2019. DOI: 10.1016/j.cmpb.2019.105040.
  • M. Javed and T. Hayat, “Heat transfer analysis of MHD peristaltic motion in a Jeffrey fluid with compliant walls,” J. Por. Media, vol. 23, no. 12, pp. 1223–1238, 2020. DOI: 10.1615/JPorMedia.2020029065.
  • Q. Hussain, S. Asghar, T. Hayat, and A. Alsaedi, “Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity,” Appl. Math. Mech.-Engl. Ed., vol. 36, no. 4, pp. 499–516, 2015. DOI: 10.1007/s10483-015-1926-9.
  • J. Rani, S. Hina, and M. Mustafa, “A Novel formulation for MHD slip flow of Elastico-Viscous fluid induced by peristaltic waves with heat/mass transfer effects,” Arab. J. Sci. Eng., vol. 45, no. 11, pp. 9213–9225, 2020. DOI: 10.1007/s13369-020-04722-0.
  • S. K. Asha and J. Beleri, “Effect of partial slip on peristaltic transport of MHD-Carreau fluid in a flexible channel with non-uniform heat source and sink,” Advances Math. Modelling, Appl. Anal. Comput., Lecture Notes Networks Systems, vol. 415, pp. 337–358, 2023. DOI: 10.1007/978-981-19-0179-9_20.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluid with nanoparticles developments and applications of non-Newtonian flow,” ASME, vol. 66, pp. 99–105, 1995.
  • M. Alizadeh, A. S. Dogonchi and D. D. Ganji, “Micropolar nanofluid flow and heat transfer between penetrable walls in the presence of thermal radiation and magnetic field,” Case Stud. Therm. Eng., vol. 12, pp. 319–332, 2018. DOI: 10.1016/j.csite.2018.05.002.
  • A. Wakif, I. L. Animasaun, P. V. S. Narayana, and G. Sarojamma, “Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids,” Chinese J. Phys., vol. 68, pp. 293–307, 2020. DOI: 10.1016/j.cjph.2019.12.002.
  • M. Akbarzadeh, S. Rashidi, M. Bovand, and R. Ellahi, “A sensitivity analysis on thermal and pumping power for the flow of nanofluid inside a wavy channel,” J. Mol. Liq., vol. 220, pp. 1–13, 2016. DOI: 10.1016/j.molliq.2016.04.058.
  • Z. Nisar, T. Hayat, A. Alsaedi, and B. Ahmad, “Significance of activation energy in radiative peristaltic transport of Eyring-Powell nanofluid,” Int. Commun. Heat Mass Transf., vol. 116, pp. 104655, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104655.
  • A. Wakif, et al., “Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: a differential quadrature analysis,” Front. Phys., vol. 10, pp. 988275, 2022. DOI: 10.3389/fphy.2022.988275.
  • A. Wakif, M. Zaydan, A. S. Alshomrani, T. Muhammad, and R. Sehaqui, “New insights into the dynamics of alumina-(60% ethylene glycol + 40% water) over an isothermal stretching sheet using a renovated Buongiorno’s approach: a numerical GDQLLM analysis,” Int. Commun. Heat Mass Transf., vol. 133, pp. 105937, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105937.
  • S. Akram, M. Athar, and K. Saeed, “Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field,” Case Stud. Therm. Eng., vol. 25, no. 2, pp. 100965, 2021. DOI: 10.1016/j.csite.2021.100965.
  • Z. Nisar, T. Hayat, A. Alsaedi, and B. Ahmad, “Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring–Powell nanofluid,” J. Therm. Anal. Calorim., vol. 144, no. 4, pp. 1199–1208, 2021. DOI: 10.1007/s10973-020-09576-0.
  • T. Anwar, M. Tahir, P. Kumam, S. Ahmed, and P. Thounthong, “Magnetohydrodynamic mixed convective peristaltic slip transport of carbon nanotubes dispersed in water through an inclined channel with Joule heating,” Heat Trans., vol. 50, no. 3, pp. 2064–2089, 2021. DOI: 10.1002/htj.21969.
  • T. Sajid, et al., “Study on heat transfer aspects of solar aircraft wings for the case of Reiner-Philippoff hybrid nanofluid past a parabolic trough: Keller box method,” Phys. Scr., vol. 96, no. 9, pp. 095220, 2021. DOI: 10.1088/1402-4896/ac0a2a.
  • R. Dadsetani, et al., “Thermal and mechanical design of tangential hybrid microchannel and high-conductivity inserts for cooling of disk-shaped electronic components,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2125–2133, 2021. DOI: 10.1007/s10973-020-10232-w.
  • N. Acharya and A. J. Chamkha, “On the magnetohydrodynamic Al2O3-water nanofluid flow through parallel fins enclosed inside a partially heated hexagonal cavity,” Int. Commun. Heat Mass Transf., vol. 132, no. 12, pp. 105885, 2022. DOI: 10.1016/j.ijheatmasstransfer.2018.08.088.
  • M. K. Sarangi, et al., “Rotational flow and thermal behavior of ternary hybrid nanomaterials at small and high Prandtl numbers,” Int. Commun. Heat Mass Transf., vol. 138, no. 2, pp. 106337, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106337.
  • V. S. Patil, M. D. Shamshuddin, K. Ramesh, and G. R. Rajput, “Slipperation of thermal and flow speed impacts on natural convective two-phase nanofluid model across Riga surface: computational scrutinization,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106135, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106135.
  • A. Wakif and N. A. Shah, “Hydrothermal and mass impacts of azimuthal and transverse components of Lorentz forces on reacting Von Kármán nanofluid flows considering zero mass flux and convective heating conditions,” Waves Random Complex Media, pp. 1–22, 2022. DOI: 10.1080/17455030.2022.2136413.
  • A. Wakif, A. Chamkha, T. Tirupathi, I. L. Animasaun, and R. Sehaqui, “Thermal radiation and surface roughness efects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofuids utilizing the generalized Buongiorno’s nanofluid model,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1201–1220, 2021. DOI: 10.1007/s10973-020-09488-z.
  • A. Wakif, I. L. Animasaun, U. Khan, N. A. Shah, and T. Thirupathi, “Dynamics of radiative-reactive Walters-b fluid due to mixed convection conveying gyrotactic microorganisms, tiny particles experience haphazard motion, thermo-migration, and Lorentz force,” Phys. Scr., vol. 96, no. 12, pp. 125239, 2021. DOI: 10.1088/1402-4896/ac2b4b.
  • M. M. Bhatti and S. I. Abdelsalam, “Scientific breakdown of a ferromagnetic nanofluid in hemodynamics: enhanced therapeutic approach,” Math. Model. Nat. Phenom., vol. 17, pp. 44, 2022. DOI: 10.1051/mmnp/2022045.
  • A. Wakif, I. L. Animasaun, and R. Sehaqui, “A brief technical note on the onset of convection in a horizontal nanofluid layer of finite depth via Wakif-Galerkin weighted residuals technique (WGWRT),” DDF, vol. 409, pp. 90–94, 2021. DOI: 10.4028/www.scientific.net/DDF.409.90.
  • Y. S. Zhou, et al., “Manipulating nanoscale contact electrification by an applied electric field,” Nano Lett., vol. 14, no. 3, pp. 1567–1572, 2014. DOI: 10.1021/nl404819w.
  • D. J. Beebe, G. A. Mensing, and G. M. Walker, “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng., vol. 4, no. 1, pp. 261–286, 2002. DOI: 10.1146/annurev.bioeng.4.112601.125916.
  • D. Tripathi, S. Bhushan, and O. A. Bég, “Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics,” J. Mech. Med. Biol., vol. 17, no. 3, pp. 1750052, 2017. DOI: 10.1142/S021951941750052X.
  • A. Bandopadhyay, D. Tripathi, and S. Chakraborty, “Electro-osmosis-modulated peristaltic transport in microfluidic channels,” Phys. Fluids, vol. 28, no. 5, pp. 052002, 2016. DOI: 10.1063/1.4947115.
  • D. Tripathi, A. Borode, R. Jhorar, O. A. Bég, and A. K. Tiwari, “Computer modelling of electro-osmotically augmented three layered microvascular peristaltic blood flows,” Microvasc Res, vol. 114, pp. 65–83, 2017. DOI: 10.1016/j.mvr.2017.06.004.
  • J. Misra, S. Chandra, G. C. Shit, and P. Kundu, “Electroosmotic oscillatory flow of micropolar fluid in micro-channels: application to dynamics of blood flow in microfluidic devices,” Appl. Math. Mech.-Engl. Ed., vol. 35, no. 6, pp. 749–766, 2014. DOI: 10.1007/s10483-014-1827-6.
  • P. Goswami, J. Chakraborty, A. Bandopadhyay, and S. Chakraborty, “Electro-kinetically modulated peristaltic transport of power-law fluids,” Microvasc Res., vol. 103, pp. 41–54, 2016. DOI: 10.1016/j.mvr.2015.10.004.
  • G. C. Shit, N. K. Ranjit, and A. Sinha, “Electro-magneto-hydro-dynamic flow of bio-fluid induced by peristaltic wave: a non-Newtonian model,” J. Bionic. Eng., vol. 13, no. 3, pp. 436–448, 2016. DOI: 10.1016/S1672-6529(16)60317-7.
  • D. Tripathi, R. Jhorar, O. A. Bég, and A. Kadir, “Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel,” J. Mol. Liq., vol. 236, pp. 358–367, 2017. DOI: 10.1016/j.molliq.2017.04.037.
  • D. Tripathi, A. Yadav, and O. A. Bég, “Electro-kinetically driven peristaltic transport of viscoelastic physiological fluids through a finite length capillary: mathematical modeling,” Math Biosci., vol. 283, pp. 155–168, 2017. DOI: 10.1016/j.mbs.2016.11.017.
  • N. K. Ranjit, G. C. Shit, and A. Sinha, “Transportation of ionic liquids in a porous micro-channel induced by peristaltic wave with Joule heating and wall-slip conditions,” Chem. Eng. Sci., vol. 171, no. 2, pp. 545–557, 2017. DOI: 10.1016/j.ces.2017.06.012.
  • D. Tripathi, A. Sharma, O. A. Bég, and A. Tiwari, “Electro-thermal transport in biological systems: an analytical approach for electro-kinetically modulated peristaltic flow,” J. Therm. Sci. Eng., vol. 9, no. 4, pp. 041010, 2017. DOI: 10.1115/1.4036803.
  • M. M. Bhatti, A. Zeeshan, R. Ellahi, and N. Ijaz, “Heat and mass transfer of two-phase flow with electric double layer effects induced due to peristaltic propulsion in the presence of transverse magnetic field,” J. Mol. Liq., vol. 230, pp. 237–246, 2017. DOI: 10.1016/j.molliq.2017.01.033.
  • S. Noreen, D. Tripathi, and Quratulain, “Heat transfer analysis on electroosmotic flow via peristaltic pumping in non-Darcy porous medium,” Therm. Sci. Eng. Prog., vol. 11, pp. 254–262, 2019. DOI: 10.1016/j.tsep.2019.03.015.
  • M. Azari, A. Sadeghi, and S. Chakraborty, “Electroosmotic flow and heat transfer in a heterogeneous circular microchannel,” Appl. Math. Model, vol. 87, pp. 640–654, 2020. DOI: 10.1016/j.apm.2020.06.022.
  • S. I. Abdelsalam and A. Z. Zaher, “On behavioral response of ciliated cervical canal on the development of electroosmotic forces in spermatic fluid,” Math. Model. Nat. Phenom., vol. 17, pp. 27, 2022. DOI: 10.1051/mmnp/2022030.
  • G. Rasool and A. Wakif, “Numerical spectral examination of EMHD mixed convective fow of second-grade nanofuid towards a vertical Riga plate using an advanced version of the revised Buongiorno’s nanofuid model,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2379–2393, 2021. DOI: 10.1007/s10973-020-09865-8.
  • A. Bejan, Entropy Generation Minimization. Boca Raton, FL, USA: CRC Press, 1996.
  • A. Bejan, “A study of Entropy generation in fundamental convective heat transfer,” J. Heat Mass Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • A. Bejan, “Second-law analysis in heat transfer and thermal design,” Adv. Heat Transf, vol. 15, pp. 1–58, 1982. DOI: 10.1016/S0065-2717(08)70172-2.
  • A. Bejan, “Entropy generation through heat and fluid flow,” J. Appl. Mech., vol. 50, no. 2, pp. 475, 1983. DOI: 10.1115/1.3167072.
  • L. Zhao and L. H. Liu, “Entropy generation analysis of electro-osmotic flow in open-end and closed-end micro-channels,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 418–427, 2010. DOI: 10.1016/j.ijthermalsci.2009.07.009.
  • Z. Abbas, M. Y. Rafiq, A. S. Alshomrani, and M. Z. Ullah, “Analysis of entropy generation on peristaltic phenomena of MHD slip flow of viscous fluid in a diverging tube,” Case Stud. Therm. Eng., vol. 23, no. 4, pp. 100817, 2021. DOI: 10.1016/j.csite.2020.100817.
  • M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. Achi Reddy, and S. I. Abdelsalam, “Entropy analysis of Sutterby nanofluid flow over a Riga Sheet with gyrotactic microorganisms and Cattaneo–Christov double diffusion,” Mathematics, vol. 10, no. 17, pp. 3157, 2022. DOI: 10.3390/math10173157.
  • R. Raza, R. Naz, and S. I. Abdelsalam, “Microorganisms swimming through radiative Sutterby nanofluid over stretchable cylinder: hydrodynamic effect,” Numer. Methods Partial, vol. 39, no. 2, pp. 975–994, 2023. DOI: 10.1002/num.22913.
  • N. Ranjit and G. C. Shit, “Entropy generation on electroosmotic flow pumping by a uniform peristaltic wave under magnetic environment,” Energy, vol. 128, no. 1, pp. 649–660, 2017. DOI: 10.1016/j.energy.2017.04.035.
  • T. Hayat, Z. Nisar, and A. Alsaedi, “Impacts of slip in radiative MHD peristaltic flow of fourth grade nanomaterial with chemical reaction,” Int. Commun. Heat Mass Transf., vol. 119, pp. 104976, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104976.
  • V. K. Narla, D. Tripathi, and O. A. Bég, “Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with joule dissipation,” Therm. Sci. Eng. Prog, vol. 15, pp. 100424, 2020. DOI: 10.1016/j.tsep.2019.100424.
  • Y. Liu, Y. Jian and C. Yang, “Steric-effect-induced enhancement of electrokinetic energy conversion efficiency in curved nanochannels with rectangular sections at high zeta potentials,” Colloids Surf. A Physicochem. Eng. Asp, vol. 591, pp. 124558, 2020. DOI: 10.1016/j.colsurfa.2020.124558.
  • A. Tanveer, S. Mahmood, T. Hayat and A. Alsaedi, “On electroosmosis in peristaltic activity of MHD non-Newtonian fluid,” Alex. Eng. J., vol. 60, no. 3, pp. 3369–3377, 2021. DOI: 10.1016/j.aej.2020.12.051.
  • F. Mabood, W. Farooq, and A. Abbasi, “Entropy generation analysis in the electro-osmosis-modulated peristaltic flow of Eyring–Powell fluid,” J. Therm. Anal. Calorim., vol. 147, no. 5, pp. 3815–3830, 2022. DOI: 10.1007/s10973-021-10736-z.
  • Q. Afzal, S. Akram, R. Ellahi, S. M. Sait, and F. Chaudhry, “Thermal and concentration convection in nanofluids for peristaltic flow of magneto couple stress fluid in a nonuniform channel,” J. Therm. Anal. Calorim., vol. 144, no. 6, pp. 2203–2218, 2021. DOI: 10.1007/s10973-020-10340-7.
  • T. Hayat, H. Yasmin, and A. Alsaedi, “Exact solution for peristaltic flow of a couple stress fluid in an asymmetric channel under convective conditions,” Heat Trans Res., vol. 47, no. 4, pp. 327–342, 2016. DOI: 10.1615/HeatTransRes.2016007485.
  • D. Tripathi, J. Prakash, M. G. Reddy, and R. Kumar, “Numerical study of electroosmosis-induced alterations in peristaltic pumping of couple stress hybrid nanofluids through microchannel,” Indian J. Phys., vol. 95, no. 11, pp. 2411–2421, 2021. DOI: 10.1007/s12648-020-01906-0.
  • F. Almeida, B. J. Gireesha, P. Venkatesh and G. K. Ramesh, “Intrinsic irreversibility of Al2O3–H2O nanofluid Poiseuille flow with variable viscosity and convective cooling,” Int. HFF, vol. 31, no. 6, pp. 2042–2063, 2021. DOI: 10.1108/HFF-09-2020-0575.
  • U. Khan, T. A. Alkanhal, N. Ahmed, I. Khan, S. T. Mohyud-Din, and Adnan, “Stimulations of thermophysical characteristics of nano diamond and silver nanoparticles for nonlinear radiative curved surface flow,” IEEE Access, vol. 7, pp. 55509–55517, 2019. DOI: 10.1109/ACCESS.2019.2907304.
  • M. D. Massoudi and M. B. B. Hamida, “MHD natural convection and thermal radiation of diamond-water nanofluid around rotating elliptical baffle inside inclined trapezoidal cavity,” Eur. Phys. J. Plus, vol. 136, no. 2, pp. 902, 2021. DOI: 10.1140/epjp/s13360-020-00921-8.
  • M. Khazayinejad, M. Hafezi, and B. Dabir, “Peristaltic transport of biological graphene-blood nanofluid considering inclined magnetic field and thermal radiation in a porous media,” Powder Technol., vol. 384, pp. 452–465, 2021. DOI: 10.1016/j.powtec.2021.02.036.
  • F. M. Abbasi, T. Hayat, F. Alsaadi, A. M. Dobai, and H. Gao, “MHD peristaltic transport of spherical and cylindrical magneto-nanoparticles suspended in water,” AIP Adv., vol. 5, no. 7, pp. 077104, 2015. DOI: 10.1063/1.4926368.
  • S.Alharbi, et al., “Entropy generation in MHD Eyring–Powell fluid flow over an unsteady oscillatory porous stretching surface under the impact of thermal radiation and heat source/sink,” Appl. Sci., vol. 8, no. 12, pp. 2588, 2018. DOI: 10.3390/app8122588.
  • J. Prakash and D. Tripathi, “Electroosmotic flow of Williamson ionic nanoliquids in a tapered microfluidic channel in presence of thermal radiation and peristalsis,” J. Mol. Liq, vol. 256, pp. 352–371, 2018. DOI: 10.1016/j.molliq.2018.02.043.
  • M. I. Khan, S. Farooq, T. Hayat, F. Shah, and A. Alsaedi, “Numerical simulation for entropy generation in peristaltic flow with single and multi-wall carbon nanotubes,” HFF, vol. 29, no. 9, pp. 3290–3304, 2019. DOI: 10.1108/HFF-02-2019-0148.
  • T. Hayat, M. U. Qureshi, and Q. Hussain, “Effect of heat transfer on the peristaltic flow of an electrically conducting fluid in a porous space,” Appl. Math. Modelling, vol. 33, no. 4, pp. 1862–1873, 2009. DOI: 10.1016/j.apm.2008.03.024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.