Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 5
111
Views
0
CrossRef citations to date
0
Altmetric
Articles

Development of a Lagrangian–Eulerian approach-based five-equation two-fluid model for simulation of multiphase reactive flows

&
Pages 556-600 | Received 22 Aug 2022, Accepted 03 Apr 2023, Published online: 22 Jun 2023

References

  • F. Xiao, Z. Wang, M. Sun, J. Liang, and N. Liu, “Large eddy simulation of liquid jet primary breakup in supersonic air crossflow,” Int. J. Multiphase Flow, vol. 87, pp. 229–240, 2016. DOI: 10.1016/j.ijmultiphaseflow.2016.08.008.
  • R. D. Reitz and R. Diwakar, “Effect of drop breakup on fuel sprays,” SAE Trans., pp. 218–227, 1986.
  • P. J. O'Rourke and A. A. Amsden, “The TAB method for numerical calculation of spray droplet breakup,” SAE Tech. Paper, pp. 0148–7191, 1987.
  • M. A. Patterson and R. D. Reitz, “Modeling the effects of fuel spray characteristics on diesel engine combustion and emission,” SAE Trans., pp. 27–43, 1998.
  • A. B. Liu, D. Mather, and R. D. Reitz, “Modeling the effects of drop drag and breakup on fuel sprays,” SAE Trans., pp. 83–95, 1993.
  • P. Li, Z. Wang, M. Sun, and H. Wang, “Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow,” Acta Astronaut., vol. 134, pp. 333–344, 2017. DOI: 10.1016/j.actaastro.2016.12.025.
  • Y.-Y. Niu, C.-H. Wu, Y.-H. Huang, Y.-J. Chou, and S.-C. Kong, “Evaluation of breakup models for liquid side jets in supersonic cross flows,” Numer. Heat Transf. A: Appl., vol. 79, no. 5, pp. 353–369, 2021. DOI: 10.1080/10407782.2020.1847513.
  • K.-S. Im, K.-C. Lin, and M.-C. Lai, “Spray atomization of liquid jet in supersonic cross flows,” presented at the 43rd AIAA Aerosp. Sci. Meet. and Exhibit, Reno, Nevada, 2005, p. 732.
  • X. Fan, J. Wang, F. Zhao, J. Li, and T. Yang, “Eulerian–Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model,” Adv. Mech. Eng., vol. 10, no. 2, pp. 168781401876129, 2018. DOI: 10.1177/1687814018761295.
  • V. Viti, R. Neel, and J. A. Schetz, “Detailed flow physics of the supersonic jet interaction flow field,” Phys. Fluids, vol. 21, no. 4, pp. 046101, 2009. DOI: 10.1063/1.3112736.
  • S. Arunajatesan, “Evaluation of two-equations RANS models for simulation of jet-in-crossflow problems,” presented at the 50th AIAA Aerosp. Sci. Meet. Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 2012. DOI: 10.2514/6.2012-1199.
  • S. Arunajatesan and M. A. McWherter-Payne, “Unsteady modeling of jet-in-crossflow problems,” presented at the 43rd AIAA Fluid Dyn. Conf., San Diego, CA, 2013, p. 3099. DOI: 10.2514/6.2013-3099.
  • S. Kawai and S. Lele, “Large-eddy simulation of jet mixing in a supersonic turbulent crossflow,” presented at the 19th AIAA Comput. Fluid Dyn., San Antonio, Texas, 2009. p. 3795. DOI: 10.2514/6.2009-3795.
  • S. Kawai and S. Lele, “Mechanisms of jet mixing in a supersonic crossflow: A study using large-eddy simulation,” presented at the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 2008, p. 4575. DOI: 10.2514/6.2008-4575.
  • S. Kawai and S. K. Lele, “Large-eddy simulation of jet mixing in supersonic crossflows,” AIAA J., vol. 48, no. 9, pp. 2063–2083, 2010. DOI: 10.2514/1.J050282.
  • J. Boles, J. Edwards, and R. Baurle, “Hybrid LES/RANS simulation of transverse sonic injection into a Mach 2 flow,” presented at the 46th AIAA Aerosp. Sci. Meet. and Exhibit, Reno, Nevada, 2008, p. 622. DOI: 10.2514/6.2008-622.
  • J. A. Boles, J. R. Edwards, and R. A. Baurle, “Large-eddy/Reynolds-averaged Navier–Stokes simulations of sonic injection into Mach 2 crossflow,” AIAA J., vol. 48, no. 7, pp. 1444–1456, 2010. DOI: 10.2514/1.J050066.
  • E. Hassan, H. Aono, J. Boles, D. Davis, and W. Shyy, “Multi-scale turbulence model in simulation of supersonic crossflow,” presented at the 49th AIAA Aerosp. Sci. Meet. Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida, 2011, p. 478. DOI: 10.2514/6.2011-478.
  • E. Hassan, H. Aono, J. Boles, D. Davis, and W. Shyy, “Multi-scale turbulence model in simulation of supersonic crossflow part 2: Inclined Injection,” presented at the50th AIAA Aerosp. Sci. Meet. Including the New Horizons Forum and Aerospace Exposition, 2012, p. 566, Nashville, Tennessee. DOI: 10.2514/6.2012-566.
  • E. Hassan, H. Aono, W. Shyy, J. Boles, and D. Davis, “Adaptive turbulent Schmidt Number approach for multi-scale simulation of supersonic crossflow,” presented at the 20th AIAA Comput. Fluid Dyn. Conf., Honolulu, Hawaii, 2011, p. 3702. DOI: 10.2514/6.2011-3702.
  • E. Hassan, J. Boles, H. Aono, D. Davis, and W. Shyy, “Supersonic jet and crossflow interaction: Computational modeling,” Prog. Aerosp. Sci., vol. 57, pp. 1–24, 2013. DOI: 10.1016/j.paerosci.2012.06.002.
  • K. Brinckman, A. Hosangadi, V. Ahuja, S. Dash, and G. Feldman, “A CFD methodology for liquid jet breakup and vaporization predictions of compressible flows,” presented at the 46th AIAA Aerosp. Sci. Meet. and Exhibit, Seattle, Washington, 2008, p. 1023. DOI: 10.2514/6.2008-1023.
  • F. Xiao, M. Dianat, and J. J. McGuirk, “Large eddy simulation of liquid-jet primary breakup in air crossflow,” AIAA J., vol. 51, no. 12, pp. 2878–2893, 2013. DOI: 10.2514/1.J052509.
  • J. Waters, D. B. Carrington, and M. M. Francois, “Modeling multiphase flow: Spray breakup using volume of fluids in a dynamics LES FEM method,” Numer. Heat Transf. B: Fund., vol. 72, no. 4, pp. 285–299, 2017. DOI: 10.1080/10407790.2017.1400307.
  • M. Ishii, “Thermo-fluid dynamic theory of two-phase flow,” STIA., vol. 75, pp. 29657, 1975.
  • M. Baer and J. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials,” Int. J. Multiphase Flow, vol. 12, no. 6, pp. 861–889, 1986. DOI: 10.1016/0301-9322(86)90033-9.
  • A. Zein, M. Hantke, and G. Warnecke, “Modeling phase transition for compressible two-phase flows applied to metastable liquids,” J. Comput. Phys., vol. 229, no. 8, pp. 2964–2998, 2010. DOI: 10.1016/j.jcp.2009.12.026.
  • R. Saurel, F. Petitpas, and R. Abgrall, “Modelling phase transition in metastable liquids: Application to cavitating and flashing flows,” Phys. Fluids, vol. 607, pp. 313–350, 2008.
  • R. Saurel, F. Petitpas, and R. A. Berry, “Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures,” J. Comput. Phys., vol. 228, no. 5, pp. 1678–1712, 2009. DOI: 10.1016/j.jcp.2008.11.002.
  • A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. S. Stewart, “Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations,” Phys. Fluids, vol. 13, no. 10, pp. 3002–3024, 2001. DOI: 10.1063/1.1398042.
  • M. Pelanti and K.-M. Shyue, “A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves,” J. Comput. Phys., vol. 259, pp. 331–357, 2014. DOI: 10.1016/j.jcp.2013.12.003.
  • Y.-Y. Niu, “Computations of two-fluid models based on a simple and robust hybrid primitive variable Riemann solver with AUSMD,” J. Comput. Phys., vol. 308, pp. 389–410, 2016. DOI: 10.1016/j.jcp.2015.12.045.
  • G. Allaire, S. Clerc, and S. Kokh, “A five-equation model for the simulation of interfaces between compressible fluids,” J. Comput. Phys., vol. 181, no. 2, pp. 577–616, 2002. DOI: 10.1006/jcph.2002.7143.
  • A. Murrone and H. Guillard, “A five equation reduced model for compressible two phase flow problems,” J. Comput. Phys., vol. 202, no. 2, pp. 664–698, 2005. DOI: 10.1016/j.jcp.2004.07.019.
  • Y.-Y. Niu, Y.-C. Chen, T.-Y. Yang, and F. Xiao, “Development of a less-dissipative hybrid AUSMD scheme for multi-component flow simulations,” Shock Waves, vol. 29, no. 5, pp. 691–704, 2019. DOI: 10.1007/s00193-018-0872-7.
  • G.-S. Yeom and K.-S. Chang, “Flux-based wave decomposition scheme for an isentropic hyperbolic two-fluid model,” Numer. Heat Transf. B: Fund., vol. 59, no. 4, pp. 288–318, 2011. DOI: 10.1080/10407790.2011.572715.
  • E. Jouguet, “On the propagation of chemical reactions in gases,” J. Math. Pures Appl., vol. 1, no. 2, pp. 347–425, 1905.
  • D. L. Chapman, “VI. On the rate of explosion in gases,” The London, Edinburgh, Dublin Philosoph. Mag. J. Sci., vol. 47, no. 284, pp. 90–104, 1899. DOI: 10.1080/14786449908621243.
  • F. Ma, J.-Y. Choi, and V. Yang, “Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines,” J. Propuls. Power, vol. 21, no. 3, pp. 512–526, 2005. DOI: 10.2514/1.7393.
  • E. Oran et al., “Numerical simulations of detonations in hydrogen-air and methane-air mixtures,” Symp. (Int.) Combustion, vol. 18, no. 1, pp. 1641–1649, 1981.
  • V. N. Gamezo, D. Desbordes, and E. S. Oran, “Formation and evolution of two-dimensional cellular detonations,” Combust. Flame, vol. 116, no. 12, pp. 154–165, 1999. DOI: 10.1016/S0010-2180(98)00031-5.
  • J. Choi, F. Ma, and V. Yang, “Some numerical issues on simulation of detonation cell structures,” Combust. Explos. Shock Waves, vol. 44, no. 5, pp. 560–578, 2008. DOI: 10.1007/s10573-008-0086-x.
  • Z. Han and R. D. Reitz, “Turbulence modeling of internal combustion engines using RNG κ-ε models,” Combust. Sci. Technol., vol. 106, no. 46, pp. 267–295, 1995. DOI: 10.1080/00102209508907782.
  • T. Siikonen, “An application of Roe’s flux‐difference splitting for k‐ϵ turbulence model,” Int. J. Numer. Meth. Fluids, vol. 21, no. 11, pp. 1017–1039, 1995. DOI: 10.1002/fld.1650211102.
  • E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. New York, USA: Springer Science & Business Media, 2013.
  • E. F. Toro, M. Spruce, and W. Speares, “Restoration of the contact surface in the HLL-Riemann solver,” Shock Waves, vol. 4, no. 1, pp. 25–34, 1994. DOI: 10.1007/BF01414629.
  • S. Davis, “Simplified second-order Godunov-type methods,” SIAM J. Sci. Stat. Comput., vol. 9, no. 3, pp. 445–473, 1988. DOI: 10.1137/0909030.
  • D. A. Cassidy, J. R. Edwards, and M. Tian, “An investigation of interface-sharpening schemes for multi-phase mixture flows,” J. Comput. Phys., vol. 228, no. 16, pp. 5628–5649, 2009. DOI: 10.1016/j.jcp.2009.02.028.
  • C. T. Crowe, M. P. Sharma, and D. E. Stock, “The particle-source-in cell (PSI-CELL) model for gas-droplet flows,” J. Fluids Eng., vol. 99, no. 2, pp. 325–332, 1977.
  • S. R. Turns, Introduction to Combustion. New York, USA: McGraw-Hill Companies, 1996.
  • K.-C. Lin, A. L. Kastengren, S. Hammack, and C. Carter, “Exploration of water jets in supersonic crossflow using X-ray diagnostics,” Atomiz Spr., vol. 30, no. 5, pp. 331–350, 2020. DOI: 10.1615/AtomizSpr.2020034448.
  • K.-C. Lin, P. Kennedy, and T. Jackson, “Penetration heights of liquid jets in high-speed crossflows,” presented at the 40th AIAA Aerosp. Sci. Meet. & Exhibit, Reno, NV, USA, 2002, p. 873. DOI: 10.2514/6.2002-873.
  • S. Tambe, S.-M. Jeng, H. Mongia, and G. Hsiao, “Liquid jets in subsonic crossflow,” presented at the 43rd AIAA Aerosp. Sci. Meet. and Exhibit, Reno, Nevada, 2005, p, 731. DOI: 10.2514/6.2005-731.
  • K.-C. Lin and P. Kennedy, “Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows,” presented at the 38th Aerosp. Sci. Meet. and Exhibit, Reno, NV, USA, 2000, p. 194. DOI: 10.2514/6.2000-194.
  • J. Austin, F. Pintgen, and J. Shepherd, “Reaction zones in highly unstable detonations,” Proc. Combust. Inst., vol. 30, no. 2, pp. 1849–1857, 2005. DOI: 10.1016/j.proci.2004.08.157.
  • W. Waidmann et al., “Experimental investigation of the combustion process in a supersonic combustion ramjet (scramjet),” DGLR Jahrbuch, 1994, pp. 629–638.
  • M. Oevermann, “Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling,” Aerosp. Sci. Technol., vol. 4, no. 7, pp. 463–480, 2000. DOI: 10.1016/S1270-9638(00)01070-1.
  • F. Génin and S. Menon, “Simulation of turbulent mixing behind a strut injector in supersonic flow,” AIAA J., vol. 48, no. 3, pp. 526–539, 2010. DOI: 10.2514/1.43647.
  • C. Gong, M. Jangi, X.-S. Bai, J.-H. Liang, and M.-B. Sun, “Large eddy simulation of hydrogen combustion in supersonic flows using an Eulerian stochastic fields method,” Int. J. Hydrogen Energy, vol. 42, no. 2, pp. 1264–1275, 2017. DOI: 10.1016/j.ijhydene.2016.09.017.
  • Z. Huang, M. Zhao, and H. Zhang, “Modelling n-heptane dilute spray flames in a model supersonic combustor fueled by hydrogen,” Fuel, vol. 264, pp. 116809, 2020. DOI: 10.1016/j.fuel.2019.116809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.