Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 5
78
Views
0
CrossRef citations to date
0
Altmetric
Articles

Hybrid genetic algorithm-self organizing map network for decision support system: An application in combined mode conduction-radiation heat transfer in porous medium

, , , , & ORCID Icon
Pages 642-664 | Received 05 Dec 2022, Accepted 17 May 2023, Published online: 06 Jul 2023

References

  • A. J. Smith, “Applications of the self-organising map to reinforcement learning,” Neural. Netw., vol. 15, no. 8–9, pp. 1107–1124, 2002. DOI: 10.1016/s0893-6080(02)00083-7.
  • M. Edalatifar, M. B. Tavakoli, M. Ghalambaz, et al., “Using deep learning to learn physics of conduction heat transfer,” J. Therm. Anal. Calorim., vol. 146, no. 3, pp. 1435–1452, 2021. DOI: 10.1007/s10973-020-09875-6.
  • M. Edalatifar, M. Ghalambaz, M. B. Tavakoli, et al., “New loss functions to improve deep learning estimation of heat transfer,” Neural. Comput. Appl., vol. 34, no. 18, pp. 15889–15906, 2022. DOI: 10.1007/s00521-022-07233-1.
  • A. Rauber, D. Merkl and M. Dittenbach, “The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data,” IEEE Trans. Neural. Netw., vol. 13, no. 6, pp. 1331–1341, 2002. DOI: 10.1109/TNN.2002.804221.
  • T. Kohonen, et al., “Self organization of a massive document collection,” IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 574–585, 2000. DOI: 10.1109/72.846729.
  • R. Céréghino and Y. S. Park, “Review of the Self-Organizing Map (SOM) approach in water resources: commentary,” Environ. Model. Softw., vol. 24, no. 8, pp. 945–947, 2009. DOI: 10.1016/j.envsoft.2009.01.008.
  • J. Owens and A. Hunter, “Application of the self-organising map to trajectory classification,” Proceedings Third IEEE International Workshop on Visual Surveillance, pp. 77–83, 2000. DOI: 10.1109/VS.2000.856860.
  • M. L. D. Wong, L. B. Jack, and A. K. Nandi, “Modified self-organising map for automated novelty detection applied to vibration signal monitoring,” Mech. Syst. Signal Process., vol. 20, no. 3, pp. 593–610, 2006. DOI: 10.1016/j.ymssp.2005.01.008.
  • S. Shanmuganathan, P. Sallis, and J. Buckeridge, “Self-organising map methods in integrated modelling of environmental and economic systems,” Environ. Model. Softw., vol. 21, no. 9, pp. 1247–1256, 2006. DOI: 10.1016/j.envsoft.2005.04.011.
  • Y. Chung, L. Salvador-Carulla, J. A. Salinas-Pérez, et al., “Use of the self-organising map network (SOMNet) as a decision support system for regional mental health planning,” Health Res. Policy Syst., vol. 16, no. 1, pp. 35, 2018. DOI: 10.1186/s12961-018-0308-y.
  • B. Curry, F. Davies, M. Evans, L. Moutinho and P. Phillips, “The Kohonen self-organising map as an alternative to cluster analysis: an application to direct marketing,” Int. J. Market Res., vol. 45, no. 2, pp. 1–20, 2003. DOI: 10.1177/147078530304500205.
  • S. V. Verdu, M. O. Garcia, C. Senabre, A. G. Marin and F. J. G. Franco, “Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps,” IEEE Trans. Power Syst., vol. 21, no. 4, pp. 1672–1682, 2006. DOI: 10.1109/TPWRS.2006.881133.
  • S. Mirjalili, “Genetic Algorithm,” In Evolutionary Algorithms and Neural Networks, Studies in Computational Intelligence, vol. 780. Cham: Springer, 2019.
  • P. Talebizadeh, M. A. Mehrabian, and M. Abdolzadeh, “Prediction of the optimum slope and surface azimuth angles using the genetic algorithm,” Energy Build., vol. 43, no. 11, pp. 2998–3005, 2011. DOI: 10.1016/j.enbuild.2011.07.013.
  • A. Shahsavar, P. Talebizadeh, and H. Tabaei, “Optimization with genetic algorithm of a PV/T air collector with natural air flow and a case study,” J. Renew. Sustain. Energy, vol. 5, no. 2, pp. 023118, 2013. DOI: 10.1063/1.4798312.
  • D. Datta, A. R. S. Amaral, and J. R. Figueira, “Single row facility layout problem using a permutation-based genetic algorithm,” Eur. J. Oper. Res., vol. 213, no. 2, pp. 388–394, 2011. DOI: 10.1016/j.ejor.2011.03.034.
  • A. Sadrzadeh, “A genetic algorithm with the heuristic procedure to solve the multi-line layout problem,” Comput. Ind. Eng., vol. 62, no. 4, pp. 1055–1064, 2012. DOI: 10.1016/j.cie.2011.12.033.
  • X. Wu, C.-H. Chu, Y. Wang and W. Yan, “A genetic algorithm for cellular manufacturing design and layout,” Eur. J. Oper. Res., vol. 181, no. 1, pp. 156–167, 2007. DOI: 10.1016/j.ejor.2006.05.035.
  • S. S. Chouhan, A. Kaul and U. P. Singh, “Soft computing approaches for image segmentation: a survey,” Multimed. Tools Appl., vol. 77, no. 21, pp. 28483–28537, 2018. DOI: 10.1007/s11042-018-6005-6.
  • A. Khan, Z. Rehman, M. A. Jaffar, J. Ullah, A. Din, et al., “Color image segmentation using genetic algorithm with aggregation-based clustering validity index (CVI),” SIViP, vol. 13, no. 5, pp. 833–841, 2019. DOI: 10.1007/s11760-019-01419-2.
  • U. Mehboob, J. Qadir, S. Ali, and A. Vasilakos, “Genetic algorithms in wireless networking: techniques, applications, and issues,” Soft. Comput., vol. 20, no. 6, pp. 2467–2501, 2016. DOI: 10.1007/s00500-016-2070-9.
  • H. Cheng, S. Yang, and J. Cao, “Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc net-works,” Expert. Syst. Appl., vol. 40, no. 4, pp. 1381–1392, 2013. DOI: 10.1016/j.eswa.2012.08.050.
  • D. Ballabio and M. Vasighi, “A MATLAB toolbox for self organizing maps and supervised neural network learning strategies,” Chemometr. Intell. Laborat. Syst., vol. 118, pp. 24–32, 2012. DOI: 10.1016/j.chemolab.2012.07.005.
  • H. Parastar, G. van Kollenburg, Y. Weesepoel, A. van den Doel, L. Buydens, and J. Jansen, “Integration of handheld NIR and machine learning to “Measure & Monitor” chicken meat authenticity,” Food Control, vol. 112, pp. 107149, 2020. DOI: 10.1016/j.foodcont.2020.107149.
  • N. K. Mishra and P. Muthukumar, “Development and testing of energy efficient and environment friendly porous radiant burner operating on liquefied petroleum gas,” Appl. Therm. Eng., vol. 129, pp. 482–489, 2018. DOI: 10.1016/j.applthermaleng.2017.10.068.
  • S. Panigrahy, N. K. Mishra, S. C. Mishra and P. Muthukumar, “Numerical and experimental analyses of LPG (liquefied petroleum gas) combustion in a domestic cooking stove with a porous radiant burner,” Energy, vol. 95, pp. 404–414, 2016. DOI: 10.1016/j.energy.2015.12.015.
  • Z. Li, et al., “Heat storage system for air conditioning purpose considering melting in existence of nanoparticles,” J. Energy Storage, vol. 55, pp. 105408, 2022. DOI: 10.1016/j.est.2022.105408.
  • X. Liu, M. Adibi, M. Shahgholi, I. Tlili, S. M. Sajadi, et al., “Phase change process in a porous carbon-paraffin matrix with different volume fractions of copper oxide nanoparticles: a molecular dynamics study,” J. Mol. Liquids, vol. 366, pp. 120296, 2022. DOI: 10.1016/j.molliq.2022.120296.
  • Z. Li, J. Leng, Z. J. Talabany, N. H. Abu-Hamdeh, E. T. Attar, et al., “Numerical modeling for phase change within storage system including adaptive grid,” J. Energy Storage, vol. 57, pp. 106227, 2023. DOI: 10.1016/j.est.2022.106227.
  • S. R. Shabanian and A. A. Abdoos, “A hybrid soft computing approach based on feature selection for estimation of filtration combustion characteristics,” Neural Comput. Appl., vol. 30, no. 12, pp. 3749–3757, 2018. DOI: 10.1007/s00521-017-2956-1.
  • V. K. Mishra, S. C. Mishra, and D. N. Basu, “Simultaneous estimation of parameters in analyzing porous medium combustion—assessment of seven optimization tools,” Numer. Heat Transf. (A), vol. 71, no. 6, pp. 666–676, 2017. DOI: 10.1080/10407782.2016.1139908.
  • T. Ding, T. Readshaw, S. Rigopoulos, and W. P. Jones, “Machine learning tabulation of thermochemistry in turbulent combustion: an approach based on hybrid flamelet/random data and multiple multilayer perceptrons,” Combust. Flame, vol. 231, pp. 111493, 2021. DOI: 10.1016/j.combustflame.2021.111493.
  • P. Valliappan and S. J. Wilcox, “Development of a flame monitoring and control system for oxy-coal flames,” IEEE International Conference on Mechatronics (ICM), 2017, pp. 482–486.
  • L. C. F. Lucas, A. K. Chatzopoulos, and S. Rigopoulos, “Tabulation of combustion chemistry via Artificial Neural Networks (ANNs): Methodology and application to LES-PDF simulation of Sydney flame L,” Combust. Flame, vol. 185, pp. 245–260, 2017. DOI: 10.1016/j.combustflame.2017.07.014.
  • T. T. Dele-Afolabi, M. A. Azmah Hanim, M. Norkhairunnisa, S. Sobri, R. Calin, et al., “Agro-waste shaped porous Al2O3/Ni composites: corrosion resistance performance and artificial neural network modeling,” Mater. Character., vol. 142, pp. 77–85, 2018. DOI: 10.1016/j.matchar.2018.05.026.
  • A. P. Horsman and K. J. Daun, “Design optimization of a two-stage porous radiant burner through response surface modeling,” Numer. Heat Transf. (A), vol. 60, no. 9, pp. 727–745, 2011. DOI: 10.1080/10407782.2011.627782.
  • V. K. Mishra, S. C. Mishra, and D. N. Basu, “Simultaneous estimation of four parameters in a combined-mode heat transfer in a 2D porous matrix with heat generation,” Numer. Heat Transf. (A), vol. 71, no. 6, pp. 677–692, 2017. DOI: 10.1080/10407782.2016.1139910.
  • S. Saravanan, R. K. Chidambaram, and V. E. Geo, “An experimental study to analyze influence of porous media combustor on performance and emission characteristics of a DI diesel engine,” Fuel., vol. 280, pp. 118645, 2020. DOI: 10.1016/j.fuel.2020.118645.
  • S. M. Vahidhosseini, J. A. Esfahani and K. C. Kim, “Cylindrical porous radiant burner with internal combustion regime: energy saving analysis using response surface method,” Energy, vol. 207, pp. 118231, 2020. DOI: 10.1016/j.energy.2020.118231.
  • V. K. Mishra, K. Anand and A. Bhardwaj, “A Clustering assisted artificial neural network for handling noisy big data: an application for estimation of parameters in combined mode conduction and radiation heat transfer,” Heat. Trans., vol. 51, no. 6, pp. 5386–5416, 2022. DOI: 10.1002/htj.22552.
  • V. K. Mishra, U. Dasgupta, S. Patra, R. Pal, and K. Anand, “A dynamic two-level artificial neural network for estimation of parameters in combined mode conduction-radiation heat transfer in porous medium: an application to handle huge dataset with noise,” Heat Trans., vol. 51, no. 2, pp. 1306–1335, 2022. DOI: 10.1002/htj.22353.
  • V. K. Mishra, S. C. Mishra, and D. N. Basu, “Combined mode conduction and radiation heat transfer in a porous medium and estimation of the optical properties of the porous matrix,” Numer. Heat Transf. (A), vol. 67, no. 10, pp. 1119–1135, 2015. DOI: 10.1080/10407782.2014.955358.
  • V. K. Mishra, S. C. Mishra, and D. N. Basu, “Simultaneous estimation of properties in a combined mode conduction–radiation heat transfer in a porous medium,” Heat Trans. Asian Res., vol. 45, no. 8, pp. 699–713, 2016. DOI: 10.1002/htj.21184.
  • K. Anand, A. Bhardwaj, S. Chaudhuri, et al., “Self-organizing map network for the decision making in combined mode conduction-radiation heat transfer in porous medium,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 15175–15194, 2022. DOI: 10.1007/s13369-021-06489-4.
  • Y. Zhao and G. H. Tang, “Monte Carlo study on extinction coefficient of silicon carbide porous media used for solar receiver,” Int. J. Heat Mass Transf., vol. 92, pp. 1061–1065, 2016. DOI: 10.1016/j.ijheatmasstransfer.2015.08.105.
  • T. Klason, X. S. Bai, M. Bahador, T. K. Nilsson, and B. Sundén, “Investigation of radiative heat transfer in fixed bed biomass furnaces,” Fuel., vol. 87, no. 10–11, pp. 2141–2153, 2008. DOI: 10.1016/j.fuel.2007.11.016.
  • S. E. Ahmed, H. F. Oztop, and K. Al-Salem, “Natural convection coupled with radiation heat transfer in an inclined porous cavity with corner heater,” Comput. Fluid., vol. 102, pp. 74–84, 2014. DOI: 10.1016/j.compfluid.2014.06.024.
  • F. Wang, Y. Shuai, H. Tan, X. Zhang, and Q. Mao, “Heat transfer analyses of porous media receiver with multi-dish collector by coupling MCRT and FVM method,” Solar Energy, vol. 93, pp. 158–168, 2013. DOI: 10.1016/j.solener.2013.04.004.
  • J. Abdesslem, S. Khalifa, N. Abdelaziz and M. Abdallah, “Radiative properties effects on unsteady natural convection inside a saturated porous medium, application for porous heat exchangers,” Energy, vol. 61, pp. 224–233, 2013. DOI: 10.1016/j.energy.2013.09.015.
  • E. J. Javaran, S. A. G. Nassab, and S. Jafari, “Thermal analysis of a 2-D heat recovery system using porous media including lattice Boltzmann simulation of fluid flow,” Int. J. Therm. Sci., vol. 49, no. 6, pp. 1031–1041, 2010. DOI: 10.1016/j.ijthermalsci.2009.12.004.
  • A. J. Chamkha, C. Issa, and K. Khanafer, “Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation,” Int. J. Therm. Sci., vol. 41, no. 1, pp. 73–81, 2002. DOI: 10.1016/S1290-0729(01)01305-9.
  • M. A. Hossain and I. Pop, “Radiation effects on free convection over a vertical flat plate embedded in a porous medium with high porosity,” Int. J. Therm. Sci., vol. 40, no. 3, pp. 289–295, 2001. DOI: 10.1016/S1290-0729(00)01210-2.
  • D. Ballabio, M. Vasighi, V. Consonni, and M. Kompany-Zareh, “Genetic algorithms for architecture optimisation of counterpropagation artificial neural networks,” Chemometr. Intell. Laborat. Syst., vol. 105, no. 1, pp. 56–64, 2011. DOI: 10.1016/j.chemolab.2010.10.010.
  • R. Henriques, F. BaÇão, and V. Lobo, “Carto‐SOM: cartogram creation using self‐organizing maps,” Int. J. Geograph. Inform. Sci., vol. 23, no. 4, pp. 483–511, 2009. DOI: 10.1080/13658810801958885.
  • S. Clark, S. A. Sisson, and A. Sharma, “Tools for enhancing the application of self-organizing maps in water resources research and engineering,” Adv. Water Res., vol. 143, pp. 103676, 2020. DOI: 10.1016/j.advwatres.2020.103676.
  • H. Mhatre, A. Gorchetchnikov, and S. Grossberg, “Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex,” Hippocampus, vol. 22, no. 2, pp. 320–334, 2012. DOI: 10.1002/hipo.20901.
  • J. L. Giraudel and S. Lek, “A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination,” Ecol. Model., vol. 146, no. 1–3, pp. 329–339, 2001. DOI: 10.1016/S0304-3800(01)00324-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.