Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
257
Views
0
CrossRef citations to date
0
Altmetric
Articles

An inverse analysis to estimate the thermal properties of nanoporous aerogel composites using the particle swarm optimized deep neural network

, , , &
Pages 667-688 | Received 06 Jan 2023, Accepted 18 May 2023, Published online: 16 Jun 2023

References

  • N. Hüsing and U. Schubert, “Aerogels—airy materials: chemistry, structure, and properties,” Angew. Chemie Int. Ed., vol. 37, no. 1-2, pp. 22–45, 1998. DOI: 10.1002/1521-3773(19980202)37:1/2 < 22::aid-anie22 > 3.3.co;2-9.
  • H. Maleki, L. Durães and A. Portugal, “An overview on silica aerogels synthesis and different mechanical reinforcing strategies,” J. Non. Cryst. Solid., vol. 385, pp. 55–74, 2014. DOI: 10.1016/j.jnoncrysol.2013.10.017.
  • Y. Liao, H. Wu, Y. Ding, S. Yin, M. Wang and A. Cao, “Engineering thermal and mechanical properties of flexible fiber-reinforced aerogel composites,” J. Sol-Gel. Sci. Technol., vol. 63, no. 3, pp. 445–456, 2012. DOI: 10.1007/s10971-012-2806-7.
  • S. Q. Zeng, A. Hunt and R. Greif, “Theoretical modeling of carbon content to minimize heat transfer in silica aerogel,” J. Non. Cryst. Solid., vol. 186, pp. 271–277, 1995. DOI: 10.1016/0022-3093(95)00076-3.
  • Y. Jiang, J. Feng and J. Feng, “Synthesis and characterization of ambient-dried microglass fibers/silica aerogel nanocomposites with low thermal conductivity,” J. Sol-Gel. Sci. Technol., vol. 83, no. 1, pp. 64–71, 2017. DOI: 10.1007/s10971-017-4383-2.
  • J. J. Zhao, et al., “Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation,” Int. J. Therm. Sci., vol. 70, pp. 54–64, 2013. DOI: 10.1016/j.ijthermalsci.2013.03.020.
  • L. Xu, Y. Jiang, J. Feng, J. Feng and C. Yue, “Infrared-opacified Al 2 O 3 – SiO 2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations,” Ceram. Int., vol. 41, no. 1, pp. 437–442, 2015. DOI: 10.1016/j.ceramint.2014.08.088.
  • R. Baetens, B. P. Jelle and A. Gustavsen, “Aerogel insulation for building applications: a state-of-the-art review,” Energy Build., vol. 43, no. 4, pp. 761–769, 2011. DOI: 10.1016/j.enbuild.2010.12.012.
  • J. A. Del Corso, W. E. Bruce, K. A. Liles and S. J. Hughes, “20th AIAA aerodynamic decelerator systems technology conference and seminar,” Seattle, Am. Inst. Aeronaut. Astronaut. Rest., pp. 2009–2925, 2009.
  • H. Zhang, W. Z. Fang, X. Wang, Y. M. Li and W. Q. Tao, “Thermal conductivity of fiber and opacifier loaded silica aerogel composite,” Int. J. Heat Mass Transf., vol. 115, pp. 21–31, 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.08.006.
  • K. Swimm, S. Vidi, G. Reichenauer and H. P. Ebert, “Coupling of gaseous and solid thermal conduction in porous solids,” J. Non. Cryst. Solid., vol. 456, pp. 114–124, 2017. DOI: 10.1016/j.jnoncrysol.2016.11.012.
  • Y. L. He and T. Xie, “Advances of thermal conductivity models of nanoscale silica aerogel insulation material,” Appl. Therm. Eng., vol. 81, pp. 28–50, 2015. DOI: 10.1016/j.applthermaleng.2015.02.013.
  • J. F. Guo and G. H. Tang, “A theoretical model for gas-contributed thermal conductivity in nanoporous aerogels,” Int. J. Heat Mass Transf., vol. 137, pp. 64–73, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.106.
  • H. Liu, J. Liu, Y. Tian, X. Wu and Z. Li, “Investigation of high temperature thermal insulation performance of fiber-reinforced silica aerogel composites,” Int. J. Therm. Sci., vol. 183, no. August 2022, pp. 107827, 2023. DOI: 10.1016/j.ijthermalsci.2022.107827.
  • J. J. Zhao, Y. Y. Duan, X. D. Wang and B. X. Wang, “A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure,” J. Non. Cryst. Solid., vol. 358, no. 10, pp. 1287–1297, 2012. DOI: 10.1016/j.jnoncrysol.2012.02.035.
  • S. P. Patil, B. S. Bachhav and B. Markert, “Thermal conductivity of glass fiber-reinforced silica aerogels using molecular dynamics simulations,” Ceram. Int., vol. 48, no. 2, pp. 2250–2256, 2022. DOI: 10.1016/j.ceramint.2021.10.002.
  • C. Y. Zhu, Z. Y. Li, H. Q. Pang and N. Pan, “Numerical modeling of the gas-contributed thermal conductivity of aerogels,” Int. J. Heat Mass Transf., vol. 131, pp. 217–225, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.11.052.
  • J. P. Nayak and J. Bera, “Preparation of silica aerogel by ambient pressure drying process using rice husk ash as raw material,” Trans. Indian Ceram. Soc., vol. 68, no. 2, pp. 91–94, 2009. DOI: 10.1080/0371750X.2009.11082163.
  • M. Moner-Girona, E. Martínez, A. Roig, J. Esteve and E. Molins, “Mechanical properties of silica aerogels measured by microindentation: influence of sol-gel processing parameters and carbon addition,” J. Non. Cryst. Solid., vol. 285, no. 1-3, pp. 244–250, 2001. DOI: 10.1016/S0022-3093(01)00462-8.
  • M. Y. Yang, Q. Sheng, H. Zhang and G. H. Tang, “Water molecular bridge undermines thermal insulation of nano-porous silica aerogels,” J. Mol. Liq., vol. 349, pp. 118176, 2022. DOI: 10.1016/j.molliq.2021.118176.
  • J. P. Dai, D. Li, Y. L. He, S. Du and J. N. Li, “Pore-scale investigation on the multi-component gas adsorption and diffusion in carbon xerogel microporous structure using molecular simulation methods,” Microporous Mesoporous Mater., vol. 337, no. March, pp. 111890, 2022. DOI: 10.1016/j.micromeso.2022.111890.
  • Y. Chen, D. Li, X. Q. Xie, Y. Gao and Y. L. He, “Theoretical modeling and experimental validation for the effective thermal conductivity of moist silica aerogel,” Int. J. Heat Mass Transf., vol. 147, pp. 118842, 2020. DOI: 10.1016/j.ijheatmasstransfer.2019.118842.
  • I. S. O. Standard., “Plastics-determination of thermal conductivity and thermal diffusivity-Part 2: transient plane heat source (hot disc) method,” ISO Stand, pp. 22002–22007, 2008.
  • T. Xie, Y. L. He, Z. X. Tong, W. X. Yan and X. Q. Xie, “Transient heat transfer characteristic of silica aerogel insulating material considering its endothermic reaction,” Int. J. Heat Mass Transf., vol. 68, pp. 633–640, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.074.
  • P. Talukdar, A. Das, R. and Alagirusamy, Udayraj, “Simultaneous estimation of thermal conductivity and specific heat of thermal protective fabrics using experimental data of high heat flux exposure,” Appl. Therm. Eng., vol. 107, pp. 785–796, 2016. DOI: 10.1016/j.applthermaleng.2016.07.051.
  • T. Xie, Y. L. He, Z. X. Tong, W. X. Yan and X. Q. Xie, “An inverse analysis to estimate the endothermic reaction parameters and physical properties of aerogel insulating material,” Appl. Therm. Eng., vol. 87, pp. 214–224, 2015. DOI: 10.1016/j.applthermaleng.2015.05.008.
  • M. Cui, Y. Zhao, B. Bing Xu, S. Wang and X. Wei Gao, “Inverse analysis for simultaneously estimating multi-parameters of temperature-dependent thermal conductivities of an Inconel in a reusable metallic thermal protection system,” Appl. Therm. Eng., vol. 125, pp. 480–488, 2017. DOI: 10.1016/j.applthermaleng.2017.06.113.
  • M. N. Özisik and H. R. B. Orlande, Inverse Heat Transfer: Fundamentals and Applications. Abingdon: Routledge, 2018,
  • V. Borukhov and V. Timoshpol’skii, “Functional identification of the nonlinear thermal-conductivity coefficient by gradient methods. I. conjugate operators,” J. Eng. Phys. Thermophys., vol. 78, no. 4 2005.
  • C. Y. Yang, “Determination of the temperature dependent thermophysical properties from temperature responses measured at medium’s boundaries,” Int. J. Heat Mass Transf., vol. 43, no. 7, pp. 1261–1270, 2000. DOI: 10.1016/S0017-9310(99)00142-8.
  • O. Uyanna, H. Najafi and B. Rajendra, “An inverse method for real-time estimation of aerothermal heating for thermal protection systems of space vehicles,” Int. J. Heat Mass Transf., vol. 177, pp. 121482, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121482.
  • B. Ruan, K. Yang, X. Gao and M. Cui, “Estimation of thermophysical properties of a hydrocarbon fuel at supercritical pressure,” Appl. Therm. Eng., vol. 171, no. February, pp. 115032, 2020. DOI: 10.1016/j.applthermaleng.2020.115032.
  • I. Ozkol and G. Komurgoz, “Determination of the optimum geometry of the heat exchanger body via a genetic algorithm,” Numer. Heat Transf. Part A Appl., vol. 48, no. 3, pp. 283–296, 2005. DOI: 10.1080/10407780590948891.
  • M. Gori and A. Tesi, “On the problem of local minima in backpropagation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 1, pp. 76–86, 1992. DOI: 10.1109/34.107014.
  • S. A. Kalogirou, “Artificial neural networks and genetic algorithms for the modeling, simulation, and performance prediction of solar energy systems,” Assess. Simul. Tools Sustain. Energy Syst. Theory Appl., pp. 225–245, 2013.
  • H. Liu, X. Xia, Q. Ai, X. Xie and C. Sun, “Experimental investigations on temperature-dependent effective thermal conductivity of nanoporous silica aerogel composite,” Exp. Therm. Fluid Sci., vol. 84, pp. 67–77, 2017. DOI: 10.1016/j.expthermflusci.2017.01.021.
  • E. Ruffio, D. Saury and D. Petit, “Improvement and comparison of some estimators dedicated to thermal diffusivity estimation of orthotropic materials with the 3D-flash method,” Int. J. Heat Mass Transf., vol. 64, pp. 1064–1081, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.04.041.
  • B. Liu, N. Vu-Bac and T. Rabczuk, “A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms,” Compos. Struct., vol. 273, no. October 2020, pp. 114269, 2021. DOI: 10.1016/j.compstruct.2021.114269.
  • J. Liu and X. Qiu, “A novel hybrid PSO-BP algorithm for neural network training,” Proc. 2009 Int. Jt. Conf. Comput. Sci. Optim. CSO 2009, vol. 1, no. 2, pp. 300–303, 2009. DOI: 10.1109/CSO.2009.22.
  • V. Maneesh and M. K. Pradeep, “An inverse method to estimate the principal thermal conductivities of composite material,” Int. J. Sci. Eng. Res., vol. 5, no. 7, pp. 810–813, 2014.
  • F. Y\ilmaz, A. Özdemir, A. \cSencan\cSahin and R. Selba\cs, “Prediction of thermodynamic and thermophysical properties of carbon dioxide,” J. Thermophys. Heat Transf., vol. 28, no. 3, pp. 491–498, 2014. DOI: 10.2514/1.T4042.
  • S. Grieu, O. Faugeroux, A. Traoré, B. Claudet and J. Bodnar, “Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials,” Energy Build., vol. 43, no. 2-3, pp. 543–554, 2011. ” DOI: 10.1016/j.enbuild.2010.10.020.
  • B. Czél, K. A. Woodbury and G. Gróf, “Simultaneous estimation of temperature-dependent volumetric heat capacity and thermal conductivity functions via neural networks,” Int. J. Heat Mass Transf., vol. 68, pp. 1–13, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.010.
  • Y. Liu, Y. Billaud, D. Saury and D. Lemonnier, “Simultaneous identification of thermophysical properties of semitransparent media using an artificial neural network trained by a 2-D axisymmetric direct model,” Numer. Heat Transf. Part A Appl., vol. 77, no. 10, pp. 890–912, 2020. DOI: 10.1080/10407782.2020.1746167.
  • H. Chen, K. Wang, Z. Liu and H. Zhou, “Surface temperature analysis and thermophysical property estimation for breast cancer by deep learning,” Numer. Heat Transf. Part A Appl., vol. 82, no. 8, pp. 411–427, 2022. DOI: 10.1080/10407782.2022.2079298.
  • R. Löhner, H. Antil, H. Tamaddon-Jahromi, N. K. Chakshu and P. Nithiarasu, “Deep learning or interpolation for inverse modelling of heat and fl uid fl ow problems,” HFF, vol. 31, no. 9, pp. 3036–3046, 2021. DOI: 10.1108/HFF-11-2020-0684.
  • H. W. Cho, Y. G. Park, Y. M. Seo and M. Y. Ha, “Prediction of the heat transfer performance of mixed convection in a lid-driven enclosure with an elliptical cylinder using an artificial neural network,” Numer. Heat Transf. Part A Appl., vol. 78, no. 2, pp. 29–47, 2020. DOI: 10.1080/10407782.2020.1777793.
  • L. Hamm, B. W. Brorsen and M. T. Hagan, “Comparison of stochastic global optimization methods to estimate neural network weights,” Neural Process Lett., vol. 26, no. 3, pp. 145–158, 2007. DOI: 10.1007/s11063-007-9048-7.
  • A. Ismail, D. Jeng and L. L. Zhang, “Engineering Applications of Artificial Intelligence an optimised product-unit neural network with a novel PSO – BP hybrid training algorithm : applications to load – deformation analysis of axially loaded piles,” Eng. Appl. Artif. Intell., vol. 26, no. 10, pp. 2305–2314, 2013. DOI: 10.1016/j.engappai.2013.04.007.
  • E. T. Mohamad, D. J. Armaghani, E. Momeni, A. H. Yazdavar and M. Ebrahimi, “Rock strength estimation: a PSO-based BP approach,” Neural Comput Appl., vol. 30, no. 5, pp. 1635–1646, 2018. DOI: 10.1007/s00521-016-2728-3.
  • C. Li and X. Liu, “An improved PSO-BP neural network and its application to earthquake prediction,” pp. 1–5, 2016.
  • B. Jamali, M. Rasekh, F. Jamadi, R. Gandomkar and F. Makiabadi, “Using PSO-GA algorithm for training artificial neural network to forecast solar space heating system parameters,” Appl. Therm. Eng., vol. 147, no. October 2018, pp. 647–660, 2019. DOI: 10.1016/j.applthermaleng.2018.10.070.
  • C. Zhu, J. Zhang, Y. Liu, D. Ma, M. Li and B. Xiang, Comparison of GA-BP and PSO-BP Neural Network Models with Initial BP Model for Rainfall-Induced Landslides Risk Assessment in Regional Scale: A Case Study in Sichuan, China, vol. 100, no. 1. Springer Netherlands, 2020, DOI: 10.1007/s11069-019-03806-x.
  • T. Xie, Y. L. He and Z. X. Tong, “Analysis of insulation performance of multilayer thermal insulation doped with phase change material,” Int. J. Heat Mass Transf., vol. 102, pp. 934–943, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.078.
  • J. P. Dai, D. Li, S. Du, Z. W. Cao, X. L. Xu and Y. L. He, “Study on the thermal insulation property of SiO2aerogel influenced by the phenolic resin pyrolysis gas permeation,” Heat Trans Res., vol. 52, no. 13, pp. 55–72, 2021. DOI: 10.1615/HeatTransRes.2021038627.
  • M. Bouquerel, T. Duforestel, D. Baillis and G. Rusaouen, “Heat transfer modeling in vacuum insulation panels containing nanoporous silicas: A review,” Energy Build., vol. 54, pp. 320–336, 2012. DOI: 10.1016/j.enbuild.2012.07.034.
  • J. R. Howell, M. P. Mengüç, K. Daun and R. Siegel, Thermal Radiation Heat Transfer. Boca Raton: CRC press, 2020,
  • V. R. Voller, “Fast implicit finite-difference method for the analysis of phase change problems,” Numer. Heat Transf. Part B Fundam, vol. 17, no. 2, pp. 155–169, 1990. DOI: 10.1080/10407799008961737.
  • G. H. Tang, C. Bi, Y. Zhao and W. Q. Tao, “Thermal transport in nano-porous insulation of aerogel: factors, models and outlook,” Energy, vol. 90, pp. 701–721, 2015. DOI: 10.1016/j.energy.2015.07.109.
  • F. Jia, E. R. Galea and M. K. Patel, “Numerical simulation of the mass loss process in pyrolizing char materials,” Fire Mater., vol. 23, no. 2, pp. 71–78, 1999. DOI: 10.1002/(SICI)1099-1018(199903/04)23:2 < 71::AID-FAM672 > 3.0.CO;2-5.
  • K. Jarrett, K. Kavukcuoglu, M. Ranzato and Y. LeCun, “What is the best multi-stage architecture for object recognition?,” Proc. IEEE Int. Conf. Comput. Vis, 2009. pp. 2146–2153, DOI: 10.1109/ICCV.2009.5459469.
  • J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of ICNN’95-international conference on neural networks, 1995. vol. 4, pp. 1942–1948.
  • K. He, X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers: surpassing human-level performance on imagenet classification,” in Proceedings of the IEEE International Conference on Computer Vision, 2015. pp. 1026–1034.
  • J. Machin, D. Tucker and J. V. Pearce, “A comprehensive survey of thermoelectric homogeneity of commonly used thermocouple types,” Meas. Sci. Technol., vol. 29, no. 6, pp. 067002, 2018. DOI: 10.1088/1361-6501/aabaa3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.