Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
175
Views
0
CrossRef citations to date
0
Altmetric
Articles

New gas radiation model based on the principle of weighted sum of gray gases. Application to CO2–H2O mixtures at high temperature

ORCID Icon, , , &
Pages 706-731 | Received 21 Mar 2023, Accepted 29 May 2023, Published online: 16 Jun 2023

References

  • M. F. Modest, Radiative Heat Transfer, 3rd ed. Boston: Academic Press, 2013.
  • M. F. Modest, “The treatment of nongray properties in radiative heat transfer – From past to present,” ASME J. Heat Transf., vol. 135, no. 6, pp. 4023596, 2013.
  • F. Liu et al., “The impact of radiative heat transfer in combustion processes and its modeling – with a focus on turbulent flames,” Fuel, vol. 281, pp. 118555, 2020. DOI: 10.1016/j.fuel.2020.118555.
  • L. S. Rothman et al., “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf., vol. 111, no. 15, pp. 2139–2150, 2010. DOI: 10.1016/j.jqsrt.2010.05.001.
  • T. F. Smith, Z. F. Shen, and J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,” ASME J. Heat Transf., vol. 104, no. 4, pp. 602–608, 1982. DOI: 10.1115/1.3245174.
  • V. Goutiere, A. Charette, and L. Kiss, “Comparative performance of nongray gas modeling techniques,” Numeric. Heat Transf. B, vol. 41, no. 3–4, pp. 361–381, 2002. DOI: 10.1080/104077902753541069.
  • P. J. Coelho, P. Perez, and M. El Hafi, “Benchmark numerical solutions for radiative heat transfer in two-dimensional axisymmetric enclosures with non-gray sooting media,” Numeric. Heat Transf. B, vol. 43, no. 5, pp. 425–444, 2003. DOI: 10.1080/713836240.
  • S. Dembele, J. Zhang, and J. X. Wen, “Assessments of spectral narrow band and weighted-sum-of-gray-gases models for computational fluid dynamics simulations of pool fires,” Numeric. Heat Transf. B, vol. 48, no. 3, pp. 257–276, 2005. DOI: 10.1080/10407790590959780.
  • R. Johansson, B. Leckner, K. Andersson, and F. Johnsson, “Account for variations in the H2O to CO2 molar ratio when modeling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model,” Combust. Flame, vol. 158, no. 5, pp. 893–901, 2011. DOI: 10.1016/j.combustflame.2011.02.001.
  • L. J. Dorigon et al, “WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures,” Int. J. Heat Mass Transf., vol. 64, pp. 863–873, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.05.010.
  • R. Yadav, A. Kushari, A. K. Verma, and V. Eswaran, “Weighted sum of gray gas modeling for nongray radiation in combusting environment using the hybrid solution methodology,” Numeric. Heat Transf. B, vol. 64, no. 2, pp. 174–197, 2013. DOI: 10.1080/10407790.2013.784147.
  • M. H. Bordbar, G. Wecel, and T. Hyppanen, “A line by line based weighted sum of gray gases model for inhomogeneous CO2–H2O mixture in oxy-fired combustion,” Combust. Flame, vol. 161, no. 9, pp. 2435–2445, 2014. DOI: 10.1016/j.combustflame.2014.03.013.
  • F. R. Coelho and F. H. R. França, “WSGG correlations based on HITEMP2010 for gas mixtures of H2O and CO2 in high total pressure conditions,” Int. J. Heat Mass Transf., vol. 127, pp. 105–114, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.07.075.
  • F. André et al., “Accuracy of engineering methods for radiative transfer in CO2–H2O mixtures at high temperature,” presented at the 9th International Symposium on Radiative Transfer, RAD-19, Athens, Greece, 2019.
  • H. Bordbar, G. C. Fraga, and S. Hostikka, “An extended weighted-sum-of-gray-gases model to account for all CO2–H2O molar fraction ratios in thermal radiation,” Int. Commun. Heat Mass Transf., vol. 110, pp. 104400, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104400.
  • H. Bordbar, F. R. Coelho, G. C. Fraga, F. R. França, and S. Hostikka, “Pressure-dependent weighted-sum-of-gray-gases models for heterogeneous-mixtures at sub-and super-atmospheric pressure,” Int. J. Heat Mass Transf., vol. 173, pp. 121207, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121207.
  • M. F. Modest and D. C. Haworth, Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications. New-York: Springer, 2016.
  • F. Asllanaj, S. Contassot-Vivier, O. Botella, and F. H. R. França, “Numerical solutions of radiative heat transfer in combustion systems using a parallel modified discrete ordinates method and several recent formulations of WSGG model,” J. Quant. Spectrosc. Radiat. Transf., vol. 274, pp. 107863, 2021. DOI: 10.1016/j.jqsrt.2021.107863.
  • B. Wang and Y. Xuan, “An improved WSGG model for exhaust gases of aero engines within broader ranges of temperature and pressure variations,” Int. J. Heat Mass Transf., vol. 136, pp. 1299–1310, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.03.105.
  • V. P. Solovjov, B. W. Webb, F. André, and D. Lemonnier, “Locally correlated SLW model for prediction of gas radiation in non-uniform media and its relationship to other global methods,” J. Quant. Spectrosc. Radiat. Transf., vol. 245, pp. 106857, 2020. DOI: 10.1016/j.jqsrt.2020.106857.
  • R. M. da Silva, G. C. Fraga, and F. H. R. França, “Improvement of the efficiency of the superposition method applied to the WSGG model to compute radiative transfer in gaseous mixtures,” Int. J. Heat Mass Transf., vol. 179, pp. 121662, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121662.
  • J. Guo, L. Shen, X. He, Z. Liu, and H. G. Im, “Assessment of weighted-sum-of-gray-gases models for gas-soot mixture in jet diffusion flames,” Int. J. Heat Mass Transf., vol. 181, pp. 121907, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121907.
  • G. Liu, Y. Liu, F. Liu, J. L. Consalvi, and J. Xu, “A nongray-wall emissivity model for the full-spectrum correlated k -distribution method based on uniform media assumption,” Int. J. Heat Mass Transf., vol. 179, pp. 121660, 2021. DOI: 10.1016/j.ijheatmasstransfer.2021.121660.
  • H. Sadeghi, S. Hostikka, G. C. Fraga, and H. Bordbar, “Weighted-sum-of-gray-gases models for non-gray thermal radiation of hydrocarbon fuel vapors, CH4, CO and soot, Fire,” Saf. J., vol. 125, pp. 103420, 2021. DOI: 10.1016/j.firesaf.2021.103420.
  • S. N. Dhurandhar, A. Bansal, S. P. Boppudi, and M. D. M. Kadiyala, “Application and comparative analysis of radiative heat transfer models for coal-fired furnace,” Numeric. Heat Transf. A, vol. 82, no. 4, pp. 137–168, 2022. DOI: 10.1080/10407782.2022.2067400.
  • R. J. C. da Fonseca, G. C. Fraga, F. R. Coelho, and F. H. R. França, “A wide-band based weighted-sum-of-gray-gases model for participating media: application to H2O–CO2 mixtures with or without soot,” Int. J. Heat Mass Transf., vol. 204, pp. 123839, 2023. DOI: 10.1016/j.ijheatmasstransfer.2022.123839.
  • X. Yang, Z. He, S. Dong, and H. Tan, “Evaluation of the non-gray weighted sum of gray gases models for radiative heat transfer in realistic non-isothermal and nonhomogeneous flames using decoupled and coupled calculations,” Int. J. Heat Mass Transf., vol. 134, pp. 226–236, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.01.038.
  • J. Xu, R. Chen, and H. Meng, “WSGG models for radiative heat transfer calculations in hydrogen and hydrogen-mixture flames at various pressures,” Int. J. Hydrogen Energy, vol. 46, no. 61, pp. 31452–31466, 2021. DOI: 10.1016/j.ijhydene.2021.07.040.
  • S. Shan, B. Qian, Z. Zhou, Z. Wang, and K. Cen, “New pressurized WSGG model and the effect of pressure on the radiation heat transfer of H2O/CO2 gas mixtures,” Int. J. Heat Mass Transf., vol. 121, pp. 999–1010, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.079.
  • Z. Yang and A. Gopan, “Improved global model for predicting gas radiative properties over a wide range of conditions,” Therm. Sci. Eng. Prog., vol. 22, pp. 100856, 2021. DOI: 10.1016/j.tsep.2021.100856.
  • G. Liu, Y. Liu, J. Zhu, J. L. Consalvi, and F. Liu, “An improved nongray-wall emissivity-absorptivity model for the full-spectrum correlated K-distribution method,” Int. J. Heat Mass Transf., vol. 188, pp. 122604, 2022. DOI: 10.1016/j.ijheatmasstransfer.2022.122604.
  • A. H. B. Selhorst, G. C. Fraga, F. R. Coelho, H. Bordbar, and F. H. R. França, “A compact WSGG formulation to account for inhomogeneity of H2O–CO2 mixtures in combustion systems,” ASME J. Heat Transf., vol. 144, no. 7, pp. 071301, 2022.
  • G. Liu, J. Zhu, Y. Liu, J. L. Consalvi, and F. Liu, “A full-spectrum correlated K-distribution based interpolation weighted-sum-of-gray-gases model for CO2–H2O–soot mixture,” Int. J. Heat Mass Transf., vol. 210, pp. 124160, 2023. DOI: 10.1016/j.ijheatmasstransfer.2023.124160.
  • F. Asllanaj, A. Addoum, and J. R. Roche, “Fluorescence molecular imaging based on the adjoint radiative transport equation,” Inv. Problems, vol. 34, no. 7, pp. 075009, 2018. DOI: 10.1088/1361-6420/aac28c.
  • F. Asllanaj and A. Addoum, “Simultaneous reconstruction of absorption, scattering and anisotropy factor distributions in quantitative photoacoustic tomography,” Biomed. Phys. Eng. Express., vol. 6, no. 4, pp. 045010, 2020. DOI: 10.1088/2057-1976/ab90a0.
  • M. K. Denison and B. W. Webb, “A spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers,” ASME J. Heat Transf., vol. 115, no. 4, pp. 1004–1012, 1993. DOI: 10.1115/1.2911354.
  • A. Dehghanian and S. M. H. Sarvari, “Inverse estimation of main parameters of spectral line-based weighted sum of gray gases model with few gray gases to simulate the radiation in nongray media,” ASME J. Heat Transf., vol. 140, pp. 022701, 2018.
  • J. Nocedal and S. Wright, Numerical Optimization. New-York: Springer, 1999.
  • J. F. Bonnans, J. C. Gilbert, C. Lemarechal, and C. A. Sagastizabal, Numerical Optimization Theoretical and Practical Aspects. Berlin, Heidelberg, New York: Springer Sciences and Business Media, 2016.
  • G. C. Fraga, H. Bordbar, S. Hostikka, and F. H. R. França, “Benchmark solutions of three-dimensional radiative transfer in nongray media using line-by-line integration,” ASME J. Heat Transf., vol. 142, pp. 034501, 2020.
  • F. André, R. Vaillon, C. Galizzi, H. Guo, and O. Gicquel, “A multi-spectral reordering technique for the full spectrum SLMB modeling,” J. Quant. Spectrosc. Radiat. Transf., vol. 112, no. 3, pp. 394–411, 2011. DOI: 10.1016/j.jqsrt.2010.09.011.
  • A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Philadelphia: Wiley, 1968.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.