Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
194
Views
0
CrossRef citations to date
0
Altmetric
Articles

On application of the regularized lattice Boltzmann method for isothermal flows with non-vanishing Knudsen numbers

ORCID Icon, ORCID Icon & ORCID Icon
Pages 756-772 | Received 08 Mar 2023, Accepted 25 May 2023, Published online: 16 Jun 2023

References

  • P. L. Bhatnagar, E. P. Gross, and M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems,” Phys. Rev, vol. 94, no. 3, pp. 511–525, May 1954. DOI: 10.1103/PhysRev.94.511.
  • Y. H. Qian, D. D’Humières, and P. Lallemand, “Lattice BGK models for Navier-Stokes equation,” Europhys. Lett., vol. 17, no. 6, pp. 479–484, Feb. 1992. DOI: 10.1209/0295-5075/17/6/001.
  • X. Shan, X.-F. Yuan, and H. Chen, “Kinetic theory representation of hydrodynamics: A way beyond the Navier–Stokes equation,” J. Fluid Mech., vol. 550, no. 1, pp. 413–441, 2006. DOI: 10.1017/S0022112005008153.
  • M. Atif, M. Namburi, and S. Ansumali, “Higher-order lattice Boltzmann model for thermohydrodynamics,” Phys. Rev. E., vol. 98, no. 5, pp. 053311, Nov. 2018. DOI: 10.1103/PhysRevE.98.053311.
  • P. K. Kolluru, M. Atif, M. Namburi, and S. Ansumali, “Lattice Boltzmann model for weakly compressible flows,” Phys. Rev. E., vol. 101, no. 1–1, pp. 013309, Jan. 2020. DOI: 10.1103/PhysRevE.101.013309.
  • X. Nie, G. D. Doolen, and S. Chen, “Lattice-Boltzmann simulations of fluid flows in MEMS,” J. Statistic. Phy., vol. 107, no. 1/2, pp. 279–289, 2002. DOI: 10.1023/A:1014523007427.
  • S. Succi, “Lattice Boltzmann beyond Navier-Stokes: Where do we stand?” presented at AIP Conf. Proc. 2016. vol. 1786, pp. 030001. DOI: 10.1063/1.4967538.
  • S. K. Singh, C. Thantanapally, and S. Ansumali, “Gaseous microflow modeling using the Fokker-Planck equation,” Phys. Rev. E., vol. 94, no. 6–1, pp. 063307, Dec. 2016. DOI: 10.1103/PhysRevE.94.063307.
  • Y. Yuan and S. Rahman, “Extended application of lattice Boltzmann method to rarefied gas flow in micro-channels,” Phys. A: Stat. Mech. Appl., vol. 463, pp. 25–36, 2016. DOI: 10.1016/j.physa.2016.06.123.
  • G. Silva and V. Semiao, “Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: application to plane boundaries,” Phys. Rev. E, vol. 96, no. 1–1, pp. 013311, Jul. 2017. DOI: 10.1103/PhysRevE.96.013311.
  • S. F. Kharmiani and E. Roohi, “Rarefied transitional flow through diverging nano and microchannels: A TRT lattice Boltzmann study,” Int. J. Mod. Phys. C., vol. 29, no. 12, pp. 1850117, 2018. DOI: 10.1142/S0129183118501176.
  • G. Silva, “Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries,” Phys. Rev. E., vol. 98, no. 2–1, pp. 023302, Aug. 2018. DOI: 10.1103/PhysRevE.98.023302.
  • E. K. Ahangar, M. B. Ayani, and J. A. Esfahani, “Simulation of rarefied gas flow in a microchannel with backward facing step by two relaxation times using lattice Boltzmann method – slip and transient flow regimes,” Int. J. Mech. Sci., vol. 157–158, pp. 802–815, 2019. DOI: 10.1016/j.ijmecsci.2019.05.025.
  • E. K. Ahangar, M. B. Ayani, J. A. Esfahani, and K. C. Kim, “Lattice Boltzmann simulation of diluted gas flow inside irregular shape microchannel by two relaxation times on the basis of wall function approach,” Vacuum., vol. 173, pp. 109104, 2020. DOI: 10.1016/j.vacuum.2019.109104.
  • G. Silva and I. Ginzburg, “Slip velocity boundary conditions for the lattice Boltzmann modeling of microchannel flows,” Numer. Methods Fluids., vol. 94, no. 12, pp. 2104–2136, 2022. DOI: 10.1002/fld.5138.
  • C. Y. Lim, C. Shu, X. D. Niu, and Y. T. Chew, “Application of lattice Boltzmann method to simulate microchannel flows,” Phys. Fluids., vol. 14, no. 7, pp. 2299–2308, 2002. DOI: 10.1063/1.1483841.
  • A. Agrawal and A. Agrawal, “Three-dimensional simulation of gaseous slip flow in different aspect ratio microducts,” Phys. Fluids., vol. 18, no. 10, pp. 103604, 2006. DOI: 10.1063/1.2354546.
  • Z. Guo, C. Zheng, and B. Shi, “Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow,” Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., vol. 77, no. 3 Pt 2, pp. 036707, Mar. 2008. DOI: 10.1103/PhysRevE.77.036707.
  • Q. Li, Y. He, G. Tang, and W. Tao, “Lattice Boltzmann modeling of microchannel flows in the transition flow regime,” Microfluid Nanofluid, vol. 10, no. 3, pp. 607–618, 2011. DOI: 10.1007/s10404-010-0693-1.
  • J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, “Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows,” J. Fluid Mech., vol. 718, pp. 347–370, 2013. DOI: 10.1017/jfm.2012.616.
  • J. A. Esfahani and A. Norouzi, “Two relaxation time lattice Boltzmann model for rarefied gas flows,” Phys. A: Stat. Mech. Appl., vol. 393, pp. 51–61, 2014. DOI: 10.1016/j.physa.2013.08.058.
  • Y. Bakhshan and A. Omidvar, “Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using lattice Boltzmann (MRT) method,” Phys. A: Stat. Mech. Appl., vol. 440, pp. 161–175, 2015. DOI: 10.1016/j.physa.2015.08.012.
  • A. Montessori, P. Prestininzi, M. La Rocca, and S. Succi, “Lattice Boltzmann approach for complex nonequilibrium flows,” Phys. Rev. E., vol. 92, no. 4, pp. 043308, 2015. DOI: 10.1103/PhysRevE.92.043308.
  • S. Ansumali, I. V. Karlin, S. Arcidiacono, A. Abbas, and N. I. Prasianakis, “Hydrodynamics beyond Navier-Stokes: Exact solution to the lattice Boltzmann hierarchy,” Phys. Rev. Lett., vol. 98, no. 12, pp. 124502, 2007. DOI: 10.1103/PhysRevLett.98.124502.
  • S. H. Kim, H. Pitsch, and I. D. Boyd, “Accuracy of higher-order lattice Boltzmann methods for microscale flows with finite Knudsen numbers,” J. Comput. Phy., vol. 227, no. 19, pp. 8655–8671, 2008. DOI: 10.1016/j.jcp.2008.06.012.
  • J. Meng and Y. Zhang, “Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows,” Phys. Rev. E., vol. 83, no. 3, pp. 036704, 2011. DOI: 10.1103/PhysRevE.83.036704.
  • L. Yang, C. Shu, J. Wu, and Y. Wang, “Comparative study of discrete velocity method and high-order lattice Boltzmann method for simulation of rarefied flows,” Comput. Fluids, vol. 146, pp. 125–142, 2017. DOI: 10.1016/j.compfluid.2017.01.014.
  • Y. Shi, P. L. Brookes, Y. W. Yap, and J. E. Sader, “Accuracy of the lattice Boltzmann method for low-speed noncontinuum flows,” Phys. Rev. E Stat. Nonlin. Soft Matter. Phys., vol. 83, no. 4 Pt 2, pp. 045701, Apr. 2011. DOI: 10.1103/PhysRevE.83.045701.
  • C. Feuchter and W. Schleifenbaum, “High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers,” Phys. Rev. E, vol. 94, no. 1–1, pp. 013304, Jul. 2016. DOI: 10.1103/PhysRevE.94.013304.
  • O. Malaspinas, “Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization,” 2015. arXiv: 1505.06900 [physics.flu-dyn].
  • R. Zhang, X. Shan, and H. Chen, “Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation,” Phys. Rev. E., vol. 74, no. 4, pp. 046703, 2006. DOI: 10.1103/PhysRevE.74.046703.
  • X.-D. Niu, S.-A. Hyodo, T. Munekata, and K. Suga, “Kinetic lattice Boltzmann method for microscale gas flows: Numbers on boundary condition, relaxation time, and regularization,” Phys. Rev. E., vol. 76, no. 3, pp. 036711, 2007. DOI: 10.1103/PhysRevE.76.036711.
  • J. Latt and B. Chopard, “Lattice Boltzmann method with regularized pre-collision distribution functions,” Math. Comput. Simul., vol. 72, no. 2–6, pp. 165–168, 2006. DOI: 10.1016/j.matcom.2006.05.017.
  • C. Coreixas, G. Wissocq, G. Puigt, J.-F. Boussuge, and P. Sagaut, “Recursive regularization step for high-order lattice Boltzmann methods,” Phys. Rev. E., vol. 96, no. 3, pp. 033306, 2017. DOI: 10.1103/PhysRevE.96.033306.
  • H. Chen, P. Gopalakrishnan, and R. Zhang, “Recovery of Galilean invariance in thermal lattice Boltzmann models for arbitrary Prandtl number,” Int. J. Mod. Phys. C., vol. 25, no. 10, pp. 1450046, 2014. DOI: 10.1142/S0129183114500466.
  • H. Chen, R. Zhang, and P. Gopalakrishnan, “Filtered lattice Boltzmann collision formulation enforcing isotropy and Galilean invariance,” Phys. Scr., vol. 95, no. 3, pp. 034003, Feb. 2020. DOI: 10.1088/1402-4896/ab4b4d.
  • J. Jacob, O. Malaspinas, and P. Sagaut, “A new hybrid recursive regularised Bhatnagar–Gross–Krook collision model for lattice Boltzmann method-based large eddy simulation,” J. Turbul., vol. 19, no. 11–12, pp. 1051–1076, 2018. DOI: 10.1080/14685248.2018.1540879.
  • K. K. Mattila, P. C. Philippi, and L. A. Hegele, “High-order regularization in lattice-Boltzmann equations,” Phys. Fluids., vol. 29, no. 4, pp. 046103, 2017. DOI: 10.1063/1.4981227.
  • A. Jonnalagadda, A. Sharma, and A. Agrawal, “Revisiting the lattice Boltzmann method through a nonequilibrium thermodynamics perspective,” J. Heat Transfer., vol. 143, no. 5, pp. 052102, 2021. DOI: 10.1115/1.4050311.
  • A. Jonnalagadda, A. Sharma, and A. Agrawal, “Onsager-regularized lattice Boltzmann method: A nonequilibrium thermodynamics-based regularized lattice Boltzmann method,” Phys. Rev. E., vol. 104, no. 1, pp. 015313, Jul. 2021. DOI: 10.1103/PhysRevE.104.015313.
  • A. K. Mahendra and R. K. Singh, “Onsager reciprocity principle for kinetic models and kinetic schemes,” 2013. arXiv: 1308.4119 [physics.flu-dyn].
  • A. K. Mahendra, “Meshless method for Slip flows,” Ph.D. dissertation, Homi Bhabha National Institute, 2011.
  • X. He, Q. Zou, L.-S. Luo, and M. Dembo, “Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model,” J. Stat. Phys., vol. 87, no. 1–2, pp. 115–136, 1997. DOI: 10.1007/BF02181482.
  • S. Succi, “Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces with Heterogeneous Catalysis,” Phys. Rev. Lett., vol. 89, no. 6, pp. 064502, 2002. DOI: 10.1103/PhysRevLett.89.064502.
  • S. Ansumali and I. V. Karlin, “Kinetic boundary conditions in the lattice Boltzmann method,” Phys. Rev. E., vol. 66, no. 2, pp. 026311, 2002. DOI: 10.1103/PhysRevE.66.026311.
  • X. Niu, C. Shu, and Y. Chew, “A lattice Boltzmann BGK model for simulation of micro flows,” EPL (Europhys. Lett.), vol. 67, no. 4, pp. 600–606, 2004. DOI: 10.1209/epl/i2003-10307-8.
  • V. Sofonea and R. F. Sekerka, “Boundary conditions for the upwind finite difference lattice Boltzmann model: Evidence of slip velocity in micro-channel flow,” J. Comput. Phys., vol. 207, no. 2, pp. 639–659, 2005. DOI: 10.1016/j.jcp.2005.02.003.
  • V. Sofonea and R. F. Sekerka, “Diffuse-reflection boundary conditions for a thermal lattice Boltzmann model in two dimensions: Evidence of temperature jump and slip velocity in microchannels,” Phys. Rev. E., vol. 71, no. 6, pp. 066709, 2005. DOI: 10.1103/PhysRevE.71.066709.
  • G. Tang, W. Tao and Y. He, “Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions,” Phys. Fluids., vol. 17, no. 5, pp. 058101, 2005. DOI: 10.1063/1.1897010.
  • J. Meng and Y. Zhang, “Diffuse reflection boundary condition for high-order lattice Boltzmann models with streaming-collision mechanism,” J. Comput. Phys., vol. 258, pp. 601–612, 2014. DOI: 10.1016/j.jcp.2013.10.057.
  • C. Cercignani, Theory and Application of the Boltzmann Equation. Edinburgh, London: Scottish Academic Press, 1975.
  • N. Dongari and A. Agrawal, “Modeling of Navier–Stokes equations for high Knudsen number gas flows,” Int. J. Heat Mass Transf., vol. 55, no. 15–16, pp. 4352–4358, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.002.
  • D. Stops, “The mean free path of gas molecules in the transition regime,” J. Phys. D: Appl. Phys., vol. 3, no. 5, pp. 685–696, 1970. DOI: 10.1088/0022-3727/3/5/307.
  • Z. Guo, T. Zhao, and Y. Shi, “Physical symmetry, spatial accuracy, and relaxation time of the lattice Boltzmann equation for microgas flows,” J. Appl. Phys., vol. 99, no. 7, pp. 074903, 2006. DOI: 10.1063/1.2185839.
  • S. Ansumali, I. Karlin, C. Frouzakis, and K. Boulouchos, “Entropic lattice Boltzmann method for microflows,” Phys. A: Stat. Mech. Appl., vol. 359, pp. 289–305, 2006. DOI: 10.1016/j.physa.2005.04.039.
  • W. P. Yudistiawan, S. Ansumali, and I. V. Karlin, “Hydrodynamics beyond Navier-Stokes: The slip flow model,” Phys. Rev. E., vol. 78, no. 1, pp. 016705, 2008. DOI: 10.1103/PhysRevE.78.016705.
  • S. H. Kim, H. Pitsch, and I. D. Boyd, “Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows,” Phys. Rev. E., vol. 77, no. 2, pp. 026704, 2008. DOI: 10.1103/PhysRevE.77.026704.
  • F. Verhaeghe, L.-S. Luo, and B. Blanpain, “Lattice Boltzmann modeling of microchannel flow in slip flow regime,” J. Comput. Phys., vol. 228, no. 1, pp. 147–157, 2009. DOI: 10.1016/j.jcp.2008.09.004.
  • R. S. Jadhav, N. Singh, and A. Agrawal, “Force-driven compressible plane Poiseuille flow by Onsager-Burnett equations,” Phys. Fluids, vol. 29, no. 10, pp. 102002, 2017. DOI: 10.1063/1.4999420.
  • Z. Guo, B. Shi, T. S. Zhao, and C. Zheng, “Discrete effects on boundary conditions for the lattice Boltzmann equation in simulating microscale gas flows,” Phys. Rev. E., vol. 76, no. 5, pp. 056704, 2007. DOI: 10.1103/PhysRevE.76.056704.
  • S. S. Chikatamarla and I. V. Karlin, “Lattices for the lattice Boltzmann method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 79, no. 4 Pt 2, pp. 046701, Apr. 2009. DOI: 10.1103/PhysRevE.79.046701.
  • Y. Li and X. Shan, “Lattice Boltzmann method for adiabatic acoustics,” Phil. Trans. R. Soc. A, vol. 369, no. 1944, pp. 2371–2380, 2011. DOI: 10.1098/rsta.2011.0109.
  • Y. Shi, L. Wu, and X. Shan, “Accuracy of high-order lattice Boltzmann method for non-equilibrium gas flow,” J. Fluid Mech., vol. 907, pp. A25, 2021. DOI: 10.1017/jfm.2020.813.
  • C. Shu, X. Niu, and Y. Chew, “A lattice Boltzmann kinetic model for microflow and heat transfer,” J. Stat. Phys., vol. 121, no. 1–2, pp. 239–255, 2005. DOI: 10.1007/s10955-005-8413-z.
  • M. Sbragaglia and S. Succi, “Analytical calculation of slip flow in lattice Boltzmann models with kinetic boundary conditions,” Phys. Fluids., vol. 17, no. 9, pp. 093602, 2005. DOI: 10.1063/1.2044829.
  • A. Sreekanth, “Slip flow through long circular tubes,” presented at Proc. Sixth Int. Sympo. Rarefied Gas Dyn. Ser. Adv. Appl. Mech.: Suppl. 5. Academic Press, 1969.
  • A. Agrawal and S. V. Prabhu, “Survey on measurement of tangential momentum accommodation coefficient,” J. Vacuum Sci. Technol. A., vol. 26, no. 4, pp. 634–645, 2008. DOI: 10.1116/1.2943641.
  • T. Reis and P. J. Dellar, “Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions,” Phys. Fluids, vol. 24, no. 11, pp. 112001, 2012. DOI: 10.1063/1.4764514.
  • S. Mohammed and T. Reis, “Lattice Boltzmann method with moment-based boundary conditions for rarefied flow in the slip regime,” Phys. Rev. E., vol. 104, no. 4–2, pp. 045309, Oct. 2021. DOI: 10.1103/PhysRevE.104.045309.
  • J. Latt, C. Coreixas, J. Beny, and A. Parmigiani, “Efficient supersonic flow simulations using lattice Boltzmann methods based on numerical equilibria,” Phil. Trans. R. Soc. A., vol. 378, no. 2175, pp. 20190559, 2020. DOI: 10.1098/rsta.2019.0559.
  • Y. Gan, A. Xu, G. Zhang, Y. Zhang, and S. Succi, “Discrete Boltzmann trans-scale modeling of high-speed compressible flows,” Phys. Rev. E., vol. 97, no. 5, pp. 053312, 2018. DOI: 10.1103/PhysRevE.97.053312.
  • A. Agrawal, H. M. Kushwaha, and R. S. Jadhav, Microscale Flow and Heat Transfer. Switzerland: Springer, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.