Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
76
Views
1
CrossRef citations to date
0
Altmetric
Articles

Impact of magnetic dipole on unsteady ferromagnetic Casson nanofluid flow over a static/moving wedge in the presence of viscous dissipation

ORCID Icon
Pages 773-793 | Received 06 Mar 2023, Accepted 28 May 2023, Published online: 16 Jun 2023

References

  • V. M. Falkneb and S. W. Skan, “Solutions of the boundary-layer equations,” London Edinburgh Dublin Phil. Mag. J. Sci., vol. 12, no. 80, pp. 865–896, 1931. DOI: 10.1080/14786443109461870.
  • D. R. Hartree, “On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer,” Math. Proc. Camb. Phil. Soc., vol. 33, no. 2, pp. 223–239, 1937. DOI: 10.1017/S0305004100019575.
  • H. T. Lin and L. K. Lin, “Similarity solutions for laminar forced convection heat transfer from wedges to fluids of any Prandtl number,” Int. J. Heat Mass Transf., vol. 30, no. 6, pp. 1111–1118, 1987. DOI: 10.1016/0017-9310(87)90041-X.
  • T. Y. Na, “Computational Methods in Engineering Boundary Value Problems,” in Mathematics in Science and Engineering, vol. 145. New York, NY: Academic Press Inc., 1979, pp. 319.
  • K. R. Rajagopal, A. S. Gupta, and T. Y. Na, “A note on the Falkner–Skan flows of a non-Newtonian fluid,” Int. J. Nonlinear Mech., vol. 18, no. 4, pp. 313–320, 1983. DOI: 10.1016/0020-7462(83)90028-8.
  • N. Riley and P. D. Weidman, “Multiple solutions of the Falkner–Skan equation for flow past a stretching boundary,” SIAM J. Appl. Math., vol. 49, no. 5, pp. 1350–1358, 1989. DOI: 10.1137/0149081.
  • T. Watanabe, “Thermal boundary layers over a wedge with uniform suction or injection in forced flow,” Acta Mech., vol. 83, no. 3–4, pp. 119–126, 1990. DOI: 10.1007/BF01172973.
  • T. Watanabe and I. Pop, “Magnetohydrodynamic free convection flow over a wedge in the presence of a transverse magnetic field,” Int. Commun. Heat Mass Transf., vol. 20, no. 6, pp. 871–881, 1993. DOI: 10.1016/0735-1933(93)90040-3.
  • N. S. Asaithambi, “A numerical method for the solution of the Falkner–Skan equation,” Appl. Math. Comput., vol. 81, no. 2-3, pp. 259–264, 1997. DOI: 10.1016/S0096-3003(95)00325-8.
  • A. Asaithambi, “A finite-difference method for the Falkner–Skan equation,” Appl. Math. Comput., vol. 92, no. 2-3, pp. 135–141, 1998. DOI: 10.1016/S0096-3003(97)10042-X.
  • M. Kumari, H. S. Takhar, and G. Nath, “Mixed convection flow over a vertical wedge embedded in a highly porous medium,” Heat Mass Transf., vol. 37, no. 2–3, pp. 139–146, 2001. DOI: 10.1007/s002310000154.
  • B. L. Kuo, “Application of the differential transformation method to the solutions of Falkner–Skan wedge flow,” Acta Mech., vol. 164, no. 3–4, pp. 161–174, 2003. DOI: 10.1007/s00707-003-0019-4.
  • A. Ishak, R. Nazar, and I. Pop, “Moving wedge and flat plate in a micropolar fluid,” Int. J. Eng. Sci., vol. 44, no. 18-19, pp. 1225–1236, 2006. DOI: 10.1016/j.ijengsci.2006.08.005.
  • A. Ishak, R. Nazar, and I. Pop, “Falkner–Skan equation for flow past a moving wedge with suction or injection,” J. Appl. Math. Comput., vol. 25, no. 1–2, pp. 67–83, 2007. DOI: 10.1007/BF02832339.
  • T. Fang and J. Zhang, “An exact analytical solution of the Falkner–Skan equation with mass transfer and wall stretching,” Int. J. Nonlinear Mech., vol. 43, no. 9, pp. 1000–1006, 2008. DOI: 10.1016/j.ijnonlinmec.2008.05.006.
  • E. Alizadeh, M. Farhadi, K. Sedighi, H. R. E. Kebria, and A. Ghafourian, “Solution of the Falkner–Skan equation for wedge by Adomian decomposition method,” Commun. Nonlinear Sci. Numeric. Simul., vol. 14, no. 3, pp. 724–733, 2009. DOI: 10.1016/j.cnsns.2007.11.002.
  • N. A. Yacob, A. Ishak, and I. Pop, “Falkner–Skan problem for a static or moving wedge in nanofluids,” Int. J. Therm. Sci., vol. 50, no. 2, pp. 133–139, 2011. DOI: 10.1016/j.ijthermalsci.2010.10.008.
  • T. Fang, S. Yao, J. Zhang, Y. Zhong, and H. Tao, “Momentum and heat transfer of the Falkner–Skan flow with algebraic decay: an analytical solution,” Commun. Nonlinear Sci. Numeric. Simul., vol. 17, no. 6, pp. 2476–2488, 2012. DOI: 10.1016/j.cnsns.2011.10.021.
  • W. A. Khan and I. Pop, “Boundary layer flow past a wedge moving in a nanofluid,” Math. Problems Eng., vol. 2013, pp. 1–7, 2013. DOI: 10.1155/2013/637285.
  • R. Ahmad and W. A. Khan, “Effect of viscous dissipation and internal heat generation/absorption on heat transfer flow over a moving wedge with convective boundary condition,” Heat Trans. Asian Res., vol. 42, no. 7, pp. 589–602, 2013. DOI: 10.1002/htj.21055.
  • M. S. Khan, I. Karim, M. S. Islam, and M. Wahiduzzaman, “MHD boundary layer radiative, heat generating and chemical reacting flow past a wedge moving in a nanofluid,” Nano Converg., vol. 1, no. 1, pp. 20, 2014. DOI: 10.1186/s40580-014-0020-8.
  • M. Ganapathirao, R. Ravindran, and E. Momoniat, “Effects of chemical reaction, heat and mass transfer on an unsteady mixed convection boundary layer flow over a wedge with heat generation/absorption in the presence of suction or injection,” Heat Mass Transf., vol. 51, no. 2, pp. 289–300, 2015. DOI: 10.1007/s00231-014-1414-1.
  • T. N. El- Dabe, A. Y. Ghaly, R. R. Rizkallah, K. M. Ewis, and A. S. Al-Bareda, “Numerical solution of MHD boundary layer flow of non-Newtonian Casson fluid on a moving wedge with heat and mass transfer and induced magnetic field,” J. Appl. Math. Phys., vol. 03, no. 06, pp. 649–663, 2015. DOI: 10.4236/jamp.2015.36078.
  • I. Ullah, I. Khan, and S. Shafie, “Hydromagnetic Falkner–Skan flow of Casson fluid past a moving wedge with heat transfer,” Alexandria Eng. J., vol. 55, no. 3, pp. 2139–2148, 2016. DOI: 10.1016/j.aej.2016.06.023.
  • C. K. Raju and N. Sandeep, “A comparative study on heat and mass transfer of the Blasius and Falkner–Skan flow of a bio-convective Casson fluid past a wedge,” Eur. Phys. J. Plus, vol. 131, no. 11, pp. 1–13, 2016. DOI: 10.1140/epjp/i2016-16405-y.
  • C. K. Raju and N. Sandeep, “Nonlinear radiative magnetohydrodynamic Falkner–Skan flow of Casson fluid over a wedge,” Alexandria Eng. J., vol. 55, no. 3, pp. 2045–2054, 2016. DOI: 10.1016/j.aej.2016.07.006.
  • C. K. Raju and N. Sandeep, “MHD slip flow of a dissipative Casson fluid over a moving geometry with heat source/sink: A numerical study,” Acta Astronaut., vol. 133, pp. 436–443, 2017. DOI: 10.1016/j.actaastro.2016.11.004.
  • A. Zeeshan, A. Majeed, and R. Ellahi, “Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation,” J. Mol. Liq., vol. 215, no. 5, pp. 549–554, 2016. DOI: 10.1016/j.molliq.2015.12.110.
  • A. Majeed, A. Zeeshan, and R. Ellahi, “Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux,” J. Mol. Liq., vol. 223, pp. 528–533, 2016. DOI: 10.1016/j.molliq.2016.07.145.
  • T. Yasmeen, T. Hayat, M. Ijaz Khan, M. Imtiaz, and A. Alsaedi, “Ferrofluid flow by a stretched surface in the presence of magnetic dipole and homogeneous-heterogeneous reactions,” J. Mol. Liq., vol. 223, pp. 1000–1005, 2016. DOI: 10.1016/j.molliq.2016.09.028.
  • K. R. Sekhar et al., “Aligned magnetic dipole in nonlinear radiative Falkner-Skan flow of Casson fluid over a wedge containing suspension of nanoparticles and microorganisms,” Int. J. Nanoparticles, vol. 9, no. 4, pp. 213–233, 2017. DOI: 10.1504/IJNP.2017.089447.
  • M. Arshad et al., “Thermal energy investigation of magneto-hydrodynamic nano-material liquid flow over a stretching sheet: comparison of single and composite particles,” Alexandria Eng. J., vol. 61, no. 12, pp. 10453–10462, 2022. DOI: 10.1016/j.aej.2022.03.069.
  • S. Eswaramoorthi, K. Loganathan, M. Faisal, T. Botmart, and N. A. Shah, “Analytical and numerical investigation of Darcy-Forchheimer flow of a nonlinear-radiative non-Newtonian fluid over a Riga plate with entropy optimization,” Ain Shams Eng. J., vol. 14, no. 3, pp. 101887, 2023. DOI: 10.1016/j.asej.2022.101887.
  • K. Sajjan et al., “Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties,” AIMS Math., vol. 7, no. 10, pp. 18416–18449, 2022. DOI: 10.3934/math.20221014.
  • M. D. Kumar, C. S. K. Raju, K. Sajjan, E. R. El-Zahar, and N. A. Shah, “Linear and quadratic convection on 3D flow with transpiration and hybrid nanoparticles,” Int. Commun. Heat Mass Transf., vol. 134, pp. 105995, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.105995.
  • A. Abderrahmane et al., “MHD hybrid nanofluid mixed convection heat transfer and entropy generation in a 3-D triangular porous cavity with zigzag wall and rotating cylinder,” Mathematics, vol. 10, no. 5, pp. 769, 2022. DOI: 10.3390/math10050769.
  • M. Z. Ashraf et al., “Insight into significance of bioconvection on mhd tangent hyperbolic nanofluid flow of irregular thickness across a slender elastic surface,” Mathematics, vol. 10, no. 15, pp. 2592, 2022. DOI: 10.3390/math10152592.
  • Q. Lou et al., “Micropolar dusty fluid: coriolis force effects on dynamics of MHD rotating fluid when Lorentz force is significant,” Mathematics, vol. 10, no. 15, pp. 2630, 2022. DOI: 10.3390/math10152630.
  • A. Hassan, N. Alsubaie, F. M. Alharbi, A. Alhushaybari, and A. M. Galal, “Scrutinization of Stefan suction/blowing on thermal slip flow of ethylene glycol/water based hybrid ferro-fluid with nano-particles shape effect and partial slip,” J. Magn. Magn. Mater., vol. 565, pp. 170276, 2023. DOI: 10.1016/j.jmmm.2022.170276.
  • S. Islam et al., “Unsteady ferrofluid slip flow in the presence of magnetic dipole with convective boundary conditions,” IEEE Access, vol. 8, pp. 138551–138562, 2020. DOI: 10.1109/ACCESS.2020.3011894.
  • K. Jabeen, M. Mushtaq, and R. M. Akram, “A comparative study of MHD flow analysis in a porous medium by using differential transformation method and variational iteration method,” J. Contemp. Appl. Math., vol. 9, no. 2, pp. 1–15, 2019.
  • K. Jabeen, M. Mushtaq, and R. M. A. Muntazir, “Analysis of MHD fluids around a linearly stretching sheet in porous media with thermophoresis, radiation, and chemical reaction,” Math. Problems Eng., vol. 2020, pp. 9685482, 2020. DOI: 10.1155/2020/9685482.
  • R. M. A. Muntazir, M. Mushtaq, S. Shahzadi, and K. Jabeen, “Influence of chemically reacting ferromagnetic carreau nanofluid over a stretched sheet with magnetic dipole and viscous dissipation,” Math. Problems Eng., vol. 2021, no. 5, pp. 6652522, 2021. DOI: 10.1155/2021/6652522.
  • R. M. A. Muntazir, M. Mushtaq, and K. Jabeen, “A numerical study of MHD carreau nanofluid flow with gyrotactic microorganisms over a plate, wedge, and stagnation point,” Math. Problems Eng., vol. 2021, pp. 5520780, 2021. DOI: 10.1155/2021/5520780.
  • N. Amar and N. Kishan, “Heat and mass transfer analysis of Casson fluid flow over a moving wedge filled with nanofluid,” Adv. Math. Sci. J., vol. 10, no. 3, pp. 1357–1370, 2021. DOI: 10.37418/amsj.10.3.23.
  • R. M. A. Muntazir, M. Mushtaq, S. Shahzadi, and K. Jabeen, “MHD nanofluid flow around a permeable stretching sheet with thermal radiation and viscous dissipation,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 236, no. 1, pp. 137–152, 2022. DOI: 10.1177/09544062211023094.
  • K. Jabeen, M. Mushtaq, and R. M. Akram, “Analysis of the MHD boundary layer flow over a nonlinear stretching sheet in a porous medium using semianalytical approaches,” Math. Problems Eng., vol. 2020, pp. 3012854, 2020. DOI: 10.1155/2020/3012854.
  • K. Jabeen, M. Mushtaq, and R. M. A. Muntazir, “Suction and injection impacts on casson nanofluid with gyrotactic micro-organisms over a moving wedge,” J. Fluids Eng., vol. 144, no. 1, pp. 1–23, 2022. DOI: 10.1115/1.4051484.
  • R. Sajjad, M. Mushtaq, S. Farid, K. Jabeen and R. M. A. Muntazir, “Numerical simulations of magnetic dipole over a nonlinear radiative eyring–powell nanofluid considering viscous and ohmic dissipation effects,” Math. Problems Eng., vol. 2021, pp. 9776759, 2021. DOI: 10.1155/2021/9776759.
  • U. Shahzad, M. Mushtaq, S. Farid, K. Jabeen, and R. M. A. Muntazir, “A Numerical Approach for an unsteady tangent hyperbolic nanofluid flow past a wedge in the presence of suction/injection,” Math. Problems Eng., vol. 2021, pp. 8653091, 2021. DOI: 10.1155/2021/8653091.
  • A. Shaukat, M. Mushtaq, S. Farid, K. Jabeen and R. M. Akram Muntazir, “A study of magnetic/nonmagnetic nanoparticles fluid flow under the influence of nonlinear thermal radiation,” Math. Problems Eng., vol. 2021, pp. 2210414, 2021. DOI: 10.1155/2021/2210414.
  • K. Jabeen, M. Mushtaq, R and M. A. Muntazir, “Analysis of magnetic and non-magnetic nanoparticles with Newtonian/non-Newtonian base fluids over a nonlinear stretching sheet,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., pp. 095440622211036, 2023. DOI: 10.1177/09544062221103697.
  • S. Ashraf, M. Mushtaq, K. Jabeen, S. Farid and R. M. Muntazir, “Heat and mass transfer of unsteady mixed convection flow of Casson fluid within the porous media under the influence of magnetic field over a nonlinear stretching sheet,” Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci., vol. 237, no. 1, pp. 20–38, 2023. DOI: 10.1177/09544062221110397.
  • K. Jabeen, M. Mushtaq, T. Mushtaq and R. M. Akram Muntazir, “A numerical study of boundary layer flow of Williamson nanofluid in the presence of viscous dissipation, bioconvection, and activation energy,” Numeric. Heat Transf. A: Appl., pp. 1–22, 2023. DOI: 10.1080/10407782.2023.2187494.
  • K. Jabeen, M. Mushtaq and S. Naeem, “Role of suction/injection with magnetic dipole and double diffusion on nonlinear radiative Eyring–Powell nanofluid,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., pp. 095440892311627, 2023. DOI: 10.1177/09544089231162715.
  • M. Arshad and A. Hassan, “A numerical study on the hybrid nanofluid flow between a permeable rotating system,” Eur. Phys. J. Plus, vol. 137, no. 10, pp. 1126, 2022. DOI: 10.1140/epjp/s13360-022-03313-2.
  • A. Hassan, A. Hussain, M. Arshad, M. M. Alanazi and H. Y. Zahran, “Numerical and thermal investigation of magneto-hydrodynamic hybrid nanoparticles (SWCNT-Ag) under Rosseland radiation: A prescribed wall temperature case,” Nanomaterials, vol. 12, no. 6, pp. 891, 2022. DOI: 10.3390/nano12060891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.