Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 84, 2023 - Issue 6
153
Views
0
CrossRef citations to date
0
Altmetric
Articles

Homotopy analysis approach to Ferro-hydrodynamic bio-nanofluid flow over a co-axial rotating discs with Stefan blowing and magnetic dipole

, ORCID Icon, &
Pages 816-843 | Received 23 Mar 2023, Accepted 02 Jun 2023, Published online: 18 Jun 2023

References

  • T. V. Karman, “Uber laminare and turbulente reibung,” Z. Angew. Math. Mech., vol. 1, no. 4, pp. 233–252, Aug. 1921. DOI: 10.1002/zamm.19210010401.
  • W. G. Cochran, “The flow due to a rotating disc,” Math. Proc. Camb. Phil. Soc., vol. 30, no. 3, pp. 365–375, Oct. 1934. DOI: 10.1017/S0305004100012561.
  • K. Millsaps and K. Pohlhausen, “Heat transfer by laminar flow from a rotating plate,” J Aeronaut Sci., vol. 19, no. 2, pp. 120–126, Jan. 1952. DOI: 10.2514/8.2175.
  • H. A. Attia, “Rotating disc flow and heat transfer of a conducting non-Newtonian fluid with Suction-Injection and Ohmic heating,” J. Braz. Soc. Mech. Sci. Eng., vol. 29, no. 2, pp. 168–173, Jun. 2007. DOI: 10.1590/S1678-58782007000200006.
  • M. Turkyilmazoglu, “Exact solutions corresponding to the viscous incompressible and conducting fluid flow due to a porous rotating disc,” J. Heat Transf., vol. 131, no. 9, pp. 091701, Sep. 2009. DOI: 10.1115/1.3139187.
  • C. Ming, L. Zheng, and X. Zhang, “Steady flow and heat transfer of the power-law fluid over a rotating disc,” Int. Commun. Heat Mass Transf., vol. 38, no. 3, pp. 280–284, Mar. 2011. DOI: 10.1016/j.icheatmasstransfer.2010.11.013.
  • M. Turkyilmazoglu, “Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disc,” Int. J. Eng. Sci., vol. 51, pp. 233–240, Feb. 2012. DOI: 10.1016/j.ijengsci.2011.09.011.
  • V. B. Awati, M. Jyoti and K. V. Prasad, “Series analysis for the flow between two stretchable discs,” Eng. Sci. Technol. Int. J., vol. 20, no. 3, pp. 1211–1219, Jun. 2017. DOI: 10.1016/j.jestch.2016.11.011.
  • J. Ahmed, M. Khan, and L. Ahmad, “MHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating discs with variable thermal conductivity,” Chin. J. Phys., vol. 60, pp. 22–34, Aug. 2019. DOI: 10.1016/j.cjph.2019.02.010.
  • Usman, P. Lin, and A. Ghaffari, “Steady flow and heat transfer of the powerlaw fluid between two stretchable rotating discs with non-uniform heat source/sink,” J. Therm. Anal. Calorim., 4., vol. 146, pp. 1735–1749, Aug. 2021. DOI: 10.1007/s10973-020-10142-x.
  • B. K. Jha, M. M. Altine, and A. M. Hussaini, “Role of suction/injection on free convective flow in a vertical channel in the presence of point/line heat source/sink,” J. Heat Transf., vol. 144, no. 6, pp. 062602, Jun. 2022. DOI: 10.1115/1.4054120.
  • A. Shafiq, A. B. Olak, and T. N. Sindhu, “Optimization of the numerical treatment of the Darcy–Forchheimer flow of Ree-Eyring fluid with chemical reaction by using artificial neural networks,” Numerical Methods Fluids, vol. 95, no. 1, pp. 176–192, Jan. 2023. DOI: 10.1002/fld.5147.
  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticle,” ASME Int. Mec. Engg. Congress and Exposition, San Francisco, USA. FED 231/MD66, Oct, 1995
  • J. Buongiorno, “Convective transport in nanofluids,” ASME J Heat Transf., vol. 128, no. 3, pp. 240–250, Mar. 2006. DOI: 10.1115/1.2150834.
  • F. Mabood, T. A. Yusuf, and G. Bognar, “Features of entropy optimization on MHD couple stress nanofluid slip flow with melting heat transfer and nonlinear thermal radiation,” Sci. Rep., vol. 10, no. 1, pp. 19163, Nov. 2020. DOI: 10.1038/s41598-020-76133-y.
  • M. Ramzan, S. Riasat, S. Kadry, Y.-M. Chu, H. A. S. Ghazwani, and A. K. Alzahrani, “Influence of autocatalytic chemical reaction with heterogeneous catalysis in the flow of Ostwald-de-Waele nanofluid past a rotating disc with variable thickness in porous media,” Int. Comm. Heat Mass Tranf., vol. 128, pp. 105653, Nov. 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105653.
  • M. T. Akolade, “Thermophysical impact on the squeezing motion of non-Newtonian fluid with quadratic convection, velocity slip, and convective surface conditions between parallel discs,” Partial Differ. Eq. Appl. Math., vol. 4, pp. 100056, Dec. 2021. DOI: 10.1016/j.padiff.2021.100056.
  • U. Hani, J. A. Khan, A. Rauf, F. Mustafa, and S. A. Shehzad, “Bayesian and numerical techniques for non-Newtonian Bdewadt nanofluid flow above a stretchable stationary disc,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 15931–15945, Dec. 2022. DOI: 10.1007/s13369-022-06773-x.
  • R. Agrawal and P. Kaswan, “Entropy generation minimization of Ag−Fe3O4/water-ethylene glycol squeezed hybrid nanofluid flow between parallel discs,” HFF, vol. 33, no. 1, pp. 65–95, Jan. 2023. DOI: 10.1108/HFF-01-2022-0005.
  • H. Upreti, Z. Uddin, A. K. Pandey, and N. Joshi, “Particle swarm optimization based numerical study for pressure, flow, and heat transfer over a rotating disc with temperature dependent nanofluid properties,” Numer. Heat Transf. Part A Appl., vol. 83, no. 8, pp. 815–844, Jan. 2023. DOI: 10.1080/10407782.2022.2156412.
  • J. C. Umavathi, “Magnetohydrodynamic squeezing Casson nanofluid flow between parallel convectively heated discs,” Int. J. Modern Phys. B, vol. 37, no. 4, pp. 2350031, Feb. 2023. DOI: 10.1142/S0217979223500315.
  • S. Nasir, W. Alghamdi, T. Gul, I. Ali, S. Sirisubtawee, and A. Aamir, “Comparative analysis f the hydrothermal features of Tio2 water and ethylene glycol-based nanofluid transportation over a radially stretchable disc,” Numer. Heat Transf. Part B Fundam., vol. 83, no. 5, pp. 276–291, Feb. 2023. DOI: 10.1080/10407790.2023.2173343.
  • Y. Zhao et al., “Effect of flow rate on condensation of CO2-water vapor mixture on a vertical flat plate,” Appl. Thermal Eng., vol. 229, pp. 120557, Jul. 2023. DOI: 10.1016/j.applthermaleng.2023.120557.
  • L. S. R. Titus and A. Abraham. “Ferromagnetic liquid dlow due to gravity-aligned stretching of an elastic sheet,” JAFM, vol. 8, no. 3, pp. 591–600, Apr. 2015. DOI: 10.18869/acadpub.jafm.67.222.21973.
  • S. Nadeem, N. Ullah, A. U. Khan, and T. Akbar, “Effect of homogeneous-heterogeneous reactions on ferrofluid in the presence of magnetic dipole along a stretching cylinder,” Results Phys., vol. 7, pp. 3574–3582, Sep. 2017. DOI: 10.1016/j.rinp.2017.09.006.
  • A. Bhandari, “Water-based ferrofluid flow and heat transfer over a stretchable rotating disc under the influence of an alternating magnetic field,” Proc. IMechE Part C: J. Mech. Eng. Sci., vol. 235, no. 12, pp. 2201–2214, Aug. 2021. DOI: 10.1177/0954406220952515.
  • I. Ali, A. R. Seadawy, S. T. R. Rizvi, M. Younis, and K. Ali, “Conserved quantities along with Painleve analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model,” Int. J. Mod. Phys. B, vol. 34, no. 30, pp. 2050283, Dec. 2020. DOI: 10.1142/S0217979220502835.
  • B. C. Prasannakumara, “Numerical simulation of heat transport in Maxwell nanofluid flow over a stretching sheet considering magnetic dipole effect,” Partial Diff. Eqns. Appl. Math, vol. 4, pp. 100064, Dec. 2021. DOI: 10.1016/j.padiff.2021.100064.
  • M. G. Reddy, M. V. V. N. L. Sudharani, M. M. Praveena, and K. G. Kumar, “Effect of thermal conductivity on Blasius-Rayleigh-Stokes flow and heat transfer over a moving plate by considering magnetic dipole moment,” Eur. Phys. J. Plus, vol. 137, no. 1, pp. 29, Jan. 2022. DOI: 10.1140/epjp/s13360-021-02259-1.
  • M. Ramzan et al., “Significance of nanoparticle radius and interparticle spacing toward the radiative waterbased alumina nanofluid flow over a rotating disc,” Nanotechnol. Rev., vol. 12, no. 1, pp. 20220501, Jan. 2023. DOI: 10.1515/ntrev-2022-0501.
  • N. A. Latiff, M. J. Uddin, and A. M. Ismail, “Stefan blowing effect on bioconvective flow of nanofluid over a solid rotating stretchable disc,” Propuls. Power Res., vol. 5, no. 4, pp. 267–278, Dec. 2016. DOI: 10.1016/j.jppr.2016.11.002.
  • S. Z. Alamri, R. Ellahi, N. Shehzad, and A. Zeeshan, “Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing,” J. Mol. Liq., vol. 273, pp. 292–304, Jan. 2019. DOI: 10.1016/j.molliq.2018.10.038.
  • N. S. Khan et al., “Lorentz forces effects on the interactions of nanoparticles in emerging mechanisms with innovative approach,” Symmetry, vol. 12, no. 10, pp. 1700, Oct. 2020. DOI: 10.3390/sym12101700.
  • S. Dero, M. J. Uddin and A. M. Rohni, “Stefan blowing and slip effects on unsteady nanofluid transport past a shrinking sheet: multiple solutions,” Heat Transf. Asian Res., vol. 48, no. 6, pp. 2047–2066, Sep. 2019. DOI: 10.1002/htj.21470.
  • F. Mabood, A. Rauf, B. C. Prasannakumara, M. Izadi, and S. A. Shehzad, “Impacts of Stefan blowing and mass convention on flow of Maxwell nanofluid of variable thermal conductivity about a rotating disc,” Chin. J. Phys., vol. 71, pp. 260–272, Jun. 2021. DOI: 10.1016/j.cjph.2021.03.003.
  • R. A. Hamid, R. Nazar, K. Naganthran, and I. Pop, “Effects of magnetic fields, coupled Stefan blowing and thermo diffusion on ferrofluid transport phenomena,” Mathematics, vol. 10, no. 10, pp. 1646, May 2022. DOI: 10.3390/math10101646.
  • E. Osalusi, J. Side, R. Harris, and B. Johnston, “On the effectiveness of viscous dissipation and Joule heating on steady MHD flow and heat transfer of a Bingham fluid over a porous rotating disc in the presence of Hall and ion-slip currents,” Int. Commun. Heat Mass Transf., vol. 34, no. 9-10, pp. 1030–1040, Nov-Dec. 2007. DOI: 10.1016/j.icheatmasstransfer.2007.05.008.
  • M. Turkyilmazoglu, “Heat and mass transfer on the MHD fluid flow due to a porous rotating disc with Hall current and variable properties,” J. Heat Transf., vol. 133, no. 2, pp. 021701, Feb. 2011. DOI: 10.1115/1.4002634.
  • A. R. Seadawy, “Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma,” Comp. Math. Appl., vol. 67, no. 1, pp. 172–180, Jan. 2014. DOI: 10.1016/j.camwa.2013.11.001.
  • S. M. Hussain, J. Jain, G. S. Seth, and M. M. Rashidi, “Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system,” J. Magn. Magn. Mater., vol. 422, pp. 112–123, Jan. 2017. DOI: 10.1016/j.jmmm.2016.08.081.
  • L. R. Ribeiro, E. Passos, C. Furtado, and S. Sergeenkov, “Analogue of the quantum Hall effect for neutral particles with magnetic dipole moment,” Phys. Lett. A, vol. 381, no. 9, pp. 849–851, Mar. 2017. DOI: 10.1016/j.physleta.2017.01.004.
  • N. Acharya, R. Bag, and P. K. Kundu, “Influence of Hall current on radiative nanofluid flow over a spinning disc: a hybrid approach,” Phys. E: Low Dimen. Syst. Nanostruct., vol. 111, pp. 103–112, Jul. 2019. DOI: 10.1016/j.physe.2019.03.006.
  • P. Megaraju, S. R. Sheri, and M. N. R. Shekar, “Transient MHD flows through an exponentially accelerated isothermal vertical plate with Hall effect and chemical reaction effect: FEM,” Part. Diff. Eqns. Appl. Math., vol. 4, pp. 100047, Dec. 2021. DOI: 10.1016/j.padiff.2021.100047.
  • R. J. P. Gowda, A. Rauf, R. Naveen Kumar, B. C. Prasannakumara, and S. A. Shehzad, “Slip flow of Casson-Maxwell nanofluid confined through stretchable discs,” Indian J. Phys., vol. 96, no. 7, pp. 2041–2049, Jun. 2022. DOI: 10.1007/s12648-021-02153-7.
  • N. S. Khan et al., “Thermodynamics of second-grade nanofluid over a stretchable rotating porous disc subject to Hall current and cubic autocatalysis chemical reactions,” Front. Phys., vol. 10, pp. 961774, Oct. 2022. DOI: 10.3389/fphy.2022.961774.
  • M. Yaseen et al., “Inspection of unsteady buoyancy and stagnation point flow incorporated by Ag−TiO2 hybrid nanoparticles towards a spinning disc with Hall effects,” Case Stud. Ther. Eng., vol. 44, pp. 102889, Apr. 2023. DOI: 10.1016/j.csite.2023.102889.
  • F. Mabood, W. A. Khan, and A. I. Md. Ismail, “Analytical investigation for free convective flow of non-Newtonian nanofluids flowing porous media with gyrotactic microorganisms,” J. Porous Media, vol. 18, no. 7, pp. 653–663, Aug. 2015. DOI: 10.1615/JPorMedia.v18.i7.10.
  • M. Satish Kumar, N. Sandeep, and B. Kumar, “Dual solutions for heat and mass transfer in MHD bio-convective flow over a stretching/shrinking surface with suction/injection,” JERA, vol. 21, pp. 84–101, Jan. 2016. DOI: 10.4028/www.scientific.net/JERA.21.84.
  • K. Anantha Kumar, V. Sugunamma, N. Sandeep, and J.V. Ramana Reddy, “Impact of Brownian motion and thermophoresis on bioconvective flow of nanoliquids past a variable thickness surface with slip effects,” MMMS, vol. 15, no. 1, pp. 103–132, Jan. 2019. DOI: 10.1108/MMMS-02-2018-0023.
  • N. S. Khan, Q. Shah, and A. Sohail, “Dynamics with Cattaneo-Christov heat and mass flux theory of bioconvection Oldroyd-B nanofluid,” Adv. Mech. Eng., vol. 12, no. 8, pp. 1–20, Apr. 2020. DOI: 10.1177/1687814020930464.
  • N. S. Khan et al., “Mechanical aspects of Maxwell nanofluid in dynamic system with irreversible analysis,” Z. Angew Math. Mech., vol. 101, no. 12, pp. e202000212, Dec. 2021. DOI: 10.1002/zamm.202000212.
  • S. Ahmad et al., “Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms,” Ain Shams Eng. J., vol. 13, no. 5, pp. 101668, Sep. 2022. DOI: 10.1016/j.asej.2021.101668.
  • A. Shahzad et al., “Brownian motion and thermophoretic diffusion impact on Darcy-Forchheimer flow of bioconvective micropolar nanofluid between double discs with Cattaneo-Christov heat flux,” Alex. Eng. J., vol. 62, pp. 1–15, Jan. 2023. DOI: 10.1016/j.aej.2022.07.023.
  • S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method. Boca Raton, London, New York, Washington, D.C: CHAPMAN & HALL/CRC, A CRC Press Company, 2004,
  • R. A. V. Gorder and K. Vajravelu, “On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: a general approach,” Commun. Nonlinear Sci. Numer. Simulat., vol. 14, no. 12, pp. 4078–4089, Dec. 2009. DOI: 10.1016/j.cnsns.2009.03.008.
  • S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations. Higher Education Press, Springer, Berlin, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.