Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
106
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of radiative MHD Carreau nanofluid over an inclined stretching cylinder with activating energy, Wu’s slip, and convective heating

, , , &
Pages 1-19 | Received 27 Sep 2022, Accepted 02 Jun 2023, Published online: 21 Jun 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Development and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., FED-vol. 231/MD-vol. 66, New York: ASME, 1995, pp. 99–106.
  • J. A. Eastman, U. S. Choi, S. Li, W. Yu, and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing Copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. DOI: 10.1063/1.1341218.
  • S. K. Das, N. Putra, P. Thiesen, and W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids,” ASME J. Heat Transf., vol. 125, no. 4, pp. 567–574, 2003. DOI: 10.1115/1.1571080.
  • C. Yang, W. Li, Y. Sano, M. Mochizuki, and A. Nakayama, “On the anomalous convective heat transfer enhancement in nanofluids: a theoretical answer to the nanofluids controversy,” J. Heat Transf., vol. 135, no. 5, Article ID 54504, p. 9, 2013. DOI: 10.1115/1.4023539.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • D. Wen, “Enhanced thermal conductivity of TiO2 water-based nanofluids,” Int. J. Therm. Sci., vol. 44, pp. 367–373, 2005. DOI: 10.1016/j.ijthermalsci.2004.12.005.
  • W. Daungthongsuk and S. A. Wongwises, “A critical review of convective heat transfer of nanofluids,” Renew. Sustain. Energy Rev., vol. 11, no. 5, pp. 797–817, 2007. DOI: 10.1016/j.rser.2005.06.005.
  • H. F. Oztop and E. Abu-Nada, “Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids,” Int. J. Heat Fluid Flow, vol. 29, no. 5, pp. 1326–1336, 2008. DOI: 10.1016/j.ijheatfluidflow.2008.04.009.
  • D. A. Nield and A. V. Kuznetsov, “The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model,” Int. J. Heat Mass Transf., vol. 65, pp. 682–685, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.06.054.
  • A. J. Chamkha, A. M. Aly, and H. F. Mudaf, “Laminar mhd mixed convection flow of a nanofluid along a stretching permeable surface in the presence of heat generation or absorption effects,” Int. J. Microscale Nanoscale Therm., vol. 2, pp. 51–69, 2011. https://doi.org/https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3c5ae9c0887fe7f98b3c2018d5b7348e9229d843.
  • Khan and Aziz.
  • P. Rana and R. Bhargava, “Flow and heat transfer of nanofluid over a nonlinearly stretching sheet: a numerical study,” Commun. Nonlinear Sci. Numer. Simul., vol. 17, no. 1, pp. 212–226, 2012. DOI: 10.1016/j.cnsns.2011.05.009.
  • M. Turkyilmazoglu and I. Pop, “Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect,” Int. J. Heat Mass Transfer, vol. 59, pp. 167–171, 2013. DOI: 10.1016/j.ijheatmasstransfer.2012.12.009.
  • K. Logannathan, G. Muhiuddin, A.M, Alanazi, F.S Alshammari, B. M. Alqurashi and S. Rajan, “Entropy optimization of third-grade nanofluid slip flow embedded in a porous sheet with zero mass flux and a non-fourier heat flux model”, Front. Phys., vol.8, pp. 1–14, 2020. DOI: 10.3389/fphy.2020.00250.
  • M. J. Uddin, M. Ferdows, and O. A. Bég, “Group analysis and numerical computation of magneto-convective non-Newtonian nanofluid slip flow from a permeable stretching sheet,” Appl. Nanosci., vol. 4, no. 7, pp. 897–910, 2014. https://link.springer.com/article/10.1007/s13204-013-0274-1#Sec2. DOI: 10.1007/s13204-013-0274-1.
  • P. Rana, R. Bhargava, and O. A. Beg, “Finite element simulation of unsteady magneto-hydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid,” Proc. Inst. Eng., Part N, 10, 2012., pp. 4–20. DOI: 10.1177/1740349912463312.
  • M. Sheikholeslami, M. G. Bandpy, D. D. Ganji, and S. Soleimani, “Effect of a magnetic field on natural convection in a half annulus enclosure with one wall under a constant heat flux using control volume based finite element method,” Adv. Powder Technol., vol. 24, no. 6, pp. 980–991, 2013. DOI: 10.1016/j.apt.2013.01.012.
  • M. Turkyilmazoglu, “Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids,” Chem. Eng. Sci., vol. 84, pp. 182–187, 2012. DOI: 10.1016/j.ces.2012.08.029.
  • R. Vemula, A. Chamkha and M. P. Mallesh, “Nanofluid flow past an impulsively started vertical plate with variable surface temperature,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 328–347, 2016. DOI: 10.1108/HFF-07-2014-0209.
  • T. Hayat, T. Muhammad, S. A. Shehzad, and A. Alsaedi, “Three dimensional rotating flow of Maxwell nanofluid,” J. Mol. Liq., vol. 229, pp. 495–500, 2017. DOI: 10.1016/j.molliq.2016.12.095.
  • T. Hayat, T. Muhammad, S. A. Shehzad, and A. Alsaedi, “An analytical solution for magnetohydrodynamic Oldroyd B nanofluid flow induced by a stretching sheet with heat generation/absorption,” Int. J. Therm. Sci., vol. 111, pp. 274–288, 2017. DOI: 10.1016/j.ijthermalsci.2016.08.009.
  • S. Gupta and K. Sharma, “Numerical simulation for magnetohydrodynamic three dimensional flow of Casson nanofluid with convective boundary conditions and thermal radiation,” Eng. Comput., vol. 34, no. 8, pp. 2698–2722, 2017. DOI: 10.1108/EC-02-2017-0064.
  • S. Gupta, D. Kumar, and J. Singh, “MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation,” Int. J. Heat Mass Transf., vol. 118, pp. 378–387, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.007.
  • S. Gupta and K. Sharma, “Mixed convective MHD flow and heat transfer of uniformly conducting nanofluid past an inclined cylinder in presence of thermal radiation,” J Nanofluids, vol. 6, no. 6, pp. 1031–1045, 2017. DOI: 10.1166/jon.2017.1413.
  • K. Sharma and S. Gupta, “Viscous dissipation and thermal radiation effects in MHD flow of Jeffrey nanofluid through impermeable surface with heat generation/absorption,” Nonlinear Eng., vol. 6, no. 2, pp. 153–166, 2017. DOI: 10.1515/nleng-2016-0078.
  • K. Sharma and S. Gupta, “Radiation effects on MHD boundary layer flow and heat transfer along a stretching cylinder with variable thermal conductivity in a porous medium,” J Por Media, vol. 21, no. 8, pp. 763–779, 2018. DOI: 10.1615/JPorMedia.2018019284.
  • K. Sharma and S. Gupta, “Homotopy analysis solution to thermal radiation effects on MHD boundary layer flow and heat transfer towards an inclined plate with convective boundary conditions,” Int. J. Appl. Comput. Math., vol. 3, no. 3, pp. 2533–2552, 2017. https://link.springer.com/article/10.1007/s40819-016-0249-5. DOI: 10.1007/s40819-016-0249-5.
  • S. Gupta and S. Gupta, “MHD three dimensional flow of Oldroyd-B nanofluid over a bidirectional stretching sheet: DTM-Padé Solution,” Nonlinear Eng., vol. 8, no. 1, pp. 744–754, 2019. DOI: 10.1515/nleng-2018-0047.
  • J. A. Khan and M. Mustafa, “A numerical analysis for non-linear radiation in MHD flow around a cylindrical surface with chemically reactive species,” Results Phys., vol. 8, pp. 963–970, 2018. DOI: 10.1016/j.rinp.2017.12.067.
  • M. I. Khan, M. Tamoor, T. Hayat and A. Alsaedi, “MHD boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation,” Results Phys., vol. 7, pp. 1207–1211, 2017. DOI: 10.1016/j.rinp.2017.03.009.
  • I. Khan, M.Y., Malik, A. Hussain, and M. Khan, “Magnetohydrodynamic Carreau nanofluid flow over an inclined convective heated stretching cylinder with Joule heating,” Results Phys., 7, 2017, 4001–4012. DOI: 10.1016/j.rinp.2017.10.015.
  • A. Mishra, A. K. Pandey, and M. Kumar, “Ohmic-viscous dissipation and slip effects on nanofluid flow over a stretching cylinder with suction/injection,” Nano Sci. Technol. Int. J., vol. 9, no. 2, pp. 99–115, 2018. DOI: 10.1615/NanoSciTechnolIntJ.2018025410.
  • T. Hayat, A. Naseem, M. I. Khan, M. Farooq, and A. Al-Saeidi, “Magnetohydrodynamic (MHD) flow of nanofluid with double stratification and slip conditions,” Phys. Chem. Liquids, vol. 56, no. 2, pp. 189–208, 2018. DOI: 10.1155/2019/8129564.
  • C. S. K. Raju, P. Sanjeevi, M. C. Raju, S. M. Ibrahim, G. Lorenzini, and E. Lorenzini, “The flow of magnetohydrodynamic Maxwell nanofluid flow over a cylinder with Cattaneo-Christov heat flux model,” Contin. Mech. Thermodyn., vol. 29, no. 6, pp. 1347–1363, 2017. DOI: 10.1007/s00161-017-0580-z.
  • D. Lu, M. Ramzan, N. Huda, J. D. Chung, and U. Farooq, “Nonlinear radiation effect on MHD Carreau nanofluid over a radially stretching sheet with zero mass flux conditions at the surface,” Sci. Rep., vol. 8, no. 1, pp. 17, 2018. DOI: 10.1038/s41598-018-22000-w.
  • O. D. Makinde, F. Mabood, W. A. Khan, and M. S. Tshehla, “MHD flow of a variable viscosity nanofluid over a radially stretching surface with radiative heat,” J. Mol. Liq., vol. 219, pp. 624–630, 2016. DOI: 10.1016/j.molliq.2016.03.078.
  • M. Azam, M. Khan, and A. S. Alshomrani, “Unsteady radiative stagnation point flow of MHD Carreau nanofluid over expanding/contracting cylinders,” Int. J. Mech. Sci., vol. 130, pp. 64–73, 2017. DOI: 10.1016/j.ijmecsci.2017.06.010.
  • S. Arrhenius, “Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte,” Z. Phys. Chem., vol. 4U, no. 1, pp. 96–116, 1889. DOI: 10.1515/zpch-1889-0408.
  • A. R. Bestman, “Natural convection boundary layer with suction and mass transfer in a porous medium,” Int. J. Energy Res., vol. 14, no. 4, pp. 389–396, 1990. DOI: 10.1002/er.4440140403.
  • Z. Shafique, M. Mustafa, and A. Mushtaq, “Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy,” Results Phys., vol. 6, pp. 627–633, 2016. DOI: 10.1016/j.rinp.2016.09.006.
  • O. D. Makinde, P. O. Olanrewaju, and W. M. Charles, “Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture,” Afr. Mat., vol. 22, no. 1, pp. 65–78, 2011. https://link.springer.com/article/10.1007/s13370-011-0008-z. DOI: 10.1007/s13370-011-0008-z.
  • A. Zeeshan, N. Shehzad, and R. Ellahi, “Analysis of activation energy in Couette-Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions,” Results Phys., vol. 8, pp. 502–512, 2018. DOI: 10.1016/j.rinp.2017.12.024.
  • Z. H. Khan, W. A. Khan, and I. Pop, “Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition,” Int. J. Heat Mass Transf., vol. 66, pp. 603–612, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.07.074.
  • A. Noreen, Z. Khan, S. Nadeem, and W. Khan, “Double-diffusive natural convective boundary-layer flow of a nanofluid over a stretching sheet with magnetic field,” Int. J. Numer. Methods Heat Fluid Flow, vol. 26, no. 1, pp. 108–121, 2016. DOI: 10.1108/HFF-01-2015-0019.
  • A. Noreen and Z. Khan, “Effect of variable thermal conductivity and thermal radiation with CNTS suspended nanofluid over a stretching sheet with convective slip boundary conditions: numerical study,” J. Mol. Liq., vol. 222, pp. 279–286, 2016. DOI: 10.1016/j.molliq.2016.06.102.
  • Z. H. Khan, W. A. Khan, and M. Hamid, “Non-Newtonian fluid flow around a Y-shaped fin embedded in a square cavity,” J. Therm. Anal. Calorim., vol. 143, no. 1, pp. 573–585, 2021. DOI: 10.1007/s10973-019-09201-9.
  • K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Reactive solute transfer in magnetohydrodynamic boundary layer stagnation-point flow over a stretching sheet with suction/blowing,” Chem. Eng. Commun., vol. 199, no. 3, pp. 368–383, 2012. DOI: 10.1080/00986445.2011.592444.
  • S. Mukhopadhyay, K. Bhattacharyya, and T. Hayat, “Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects,” Chin. Phys. B, vol. 22, no. 11, pp. 114701, 2013. DOI: 10.1088/1674-1056/22/11/114701.
  • S. Rajput, A. K. Verma, K. Bhattacharyya, and A. J. Chamkha, “Unsteady nonlinear mixed convective flow of nanofluid over a wedge: Buongiorno model,” Waves Random Complex Media, pp. 1–15, 2021. DOI: 10.1080/17455030.2021.1987586.
  • A. K. Verma, K. Bhattacharyya, S. Rajput, M. Shankar Mandal, A. J. Chamkha, and D. Yadav, “Buoyancy driven non-Newtonian Prandtl-Eyring nanofluid flow in Darcy-Forchheimer porous medium over inclined non-linear expanding sheet with double stratification,” Waves Random Complex Media, vol.12, pp. 1–33, 2022. DOI: 10.1080/17455030.2022.2062482.
  • A. K. Verma, S. Rajput, K. Bhattacharyya, and J. A. Chamkha, “Nanoparticle’s radius effect on unsteady mixed convective copper-water nanofluid flow over an expanding sheet in porous medium with boundary slip,” Chem. Eng. J. Adv., vol. 12, pp. 100366, 2022. DOI: 10.1016/j.ceja.2022.100366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.