Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 1
85
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Flow inspection of micropolar nanofluids with motile gyrotactic microorganisms across symmetric channel in porous medium by quasi-linearization technique

, , , ORCID Icon, ORCID Icon &
Pages 58-75 | Received 02 Mar 2023, Accepted 09 Jun 2023, Published online: 04 Jul 2023

References

  • A. C. Eringen, “Theory of micro-polar fluids,” Indiana Univ. Math. J., vol. 16, no. 1, pp. 1–18, 1966. DOI: 10.1512/iumj.1967.16.16001.
  • A. C. Eringen, “Theory of thermo-microfluids,” J. Math Anal. Appl., vol. 38, no. 2, pp. 480–496, 1972. DOI: 10.1016/0022-247X(72)90106-0.
  • A. Mirzaaghaian and D. D. Ganji, “Application of differential transformation method in micro-polar fluid flow and heat transfer through permeable walls,” Alex. Eng. J., vol. 55, no. 3, pp. 2183–2191, 2016. DOI: 10.1016/j.aej.2016.06.011.
  • L. A. Lund et al., “MHD flow of micro-polar fluid with effects of viscous dissipation and joule heating over an exponential shrinking sheet: Triple solutions & stability analysis,” Symmetry, vol. 12, no. 1, pp. 142, 2020. DOI: 10.3390/sym12010142.
  • D. Srinivasacharya and I. Sreenath, “Bioconvection in a squeezing flow of a micro-polar fluid in a horizontal channel,” Heat Trans. Asian Res., vol. 48, no. 6, pp. 2155–2173, 2019. DOI: 10.1002/htj.21477.
  • K. Singh, A. K. Pandey, and M. Kumar, “Entropy generation impact on flow of micro-polar fluid via an inclined channel with non-uniform heat source and variable fluid properties,” Int. J. Appl. Comput. Math., vol. 6, 85, 2020. DOI: 10.1007/s40819-020-00831-4.
  • K. Khanafar and K. Vafi, “The role of porous media in biomedical engineering as related to magnetic resonance imaging and drug delivery,” Heat Mass Transf., vol. 42, pp. 939-953, 2006.
  • A. Riaz et al., “Thermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous medium,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 1997–2009, 2021. DOI: 10.1007/s10973-020-09454-9.
  • D. A. Nield and A. V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid: A revised model,” Int. J. Heat Mass Transf., vol. 68, pp. 211–214, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.026.
  • A. Zeeshan, N. Ijaz, A. Riaz, A. B. Mann, and A. Hobiny, “Flow of nonspherical nanoparticles in electromagnetohydodynamics of nanofluids through a porous medium between eccentric cylinders,” J. Por. Media, vol. 23, no. 12, pp. 1201–1212, 2020. DOI: 10.1615/JPorMedia.2020024813.
  • S. U. Khan, M. M. Bhatti, and A. Riaz, “A revised viscoelastic micro-polar nanofluid model with motile micro-organisms and variable thermal conductivity,” Heat Transf., vol. 49, no. 6, pp. 3726–3741, 2020. DOI: 10.1002/htj.21797.
  • A. Yasin, N. Ullah, S. Saleem, S. Nadeem, and A. Al-Zubaidi, “Impact of uniform and non-uniform heated rods on free convective flow inside a porous closure: Finite element analysis,” Phys. Scr., vol. 96, no. 8, pp. 085203, 2021. DOI: 10.1088/1402-4896/abfba7.
  • R. Sivaraj, I. L. Animasaun, A. S. Olabiyi, S. Saleem, and N. Sandeep, “Gyrotactic microorganisms and thermoelectric effects on the dynamics of 29nm CuO-water nanofluid over an upper horizontal surface of paraboloid of revolution,” Multidiscipline Modeling in Materials and Structures, vol. 14, no. 4, pp. 695-721, 2018.
  • S. Nadeem, M. I. Rehman, S. Saleem, and E. Bonyah, “Dual solutions in MHD stagnation point flow of nanofluid induced by porous stretching/shrinking sheet with anisotropic slip,” AIP Adv., vol. 10, no. 6, pp. 065207, 2020. DOI: 10.1063/5.0008756.
  • S. Saleem et al., “Magneto Jeffery nanofluid bioconvection over a rotating vertical cone due to gyrotactic microorganism,” Math. Probl. Eng., vol. 2019, pp. 1–11, 2019. DOI: 10.1155/2019/3478037.
  • A. J. Chamkha, A. M. Rashad, P. K. Kameswaran, and M. M. Abduo, “Radiation effects on natural bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical plate with streamwise temperature variation,” J. Nanofluids, vol. 6, no. 3, pp. 587–595, 2017. DOI: 10.1166/jon.2017.1351.
  • H. Waqas, S. U. Khan, M. Hassan, M. M. Bhatti, and M. Imran, “Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles,” J. Mol. Liq., vol. 291, pp. 111231, 2019. DOI: 10.1016/j.molliq.2019.111231.
  • I. Tlili et al., “Macroscopic modeling for convection of hybrid nanofluid with magnetic effects,” Phys. A, vol. 534, pp. 122136, 2019. DOI: 10.1016/j.physa.2019.122136.
  • A. Mahdy, “Gyrotactic microorganisms mixed convection nanofluid flow along an isothermal vertical wedge in porous media,” Int. J. Aerosp. Mech. Eng., vol. 11, pp. 829–839, 2017.
  • M. Z. Ullah, S. Serra-Capizzano, and D. Baleanu, “A numerical simulation for Darcy-Forchheimer flow of nanofluid by a rotating disk with partial slip effects,” Front. Phys., vol. 7, pp. 219, 2020. DOI: 10.3389/fphy.2019.00219.
  • Z. Shah, H. Babazadeh, P. Kumam, A. Shafee, and P. Thounthong, “Numerical simulation of magnetohydrodynamic nanofluids under the influence of shape factor and thermal transport in a porous media using CVFEM,” Front. Phys., vol. 7, pp. 164, 2019. DOI: 10.3389/fphy.2019.00164.
  • A. Zeeshan, N. Shehzad, T. Abbas, and R. Ellahi, “Effects of radiative electro-magnetohydrodynamics diminishing internal energy of pressure-driven flow of titanium dioxide-water nanofluid due to entropy generation,” Entropy, vol. 21, no. 3, pp. 236, 2019. DOI: 10.3390/e21030236.
  • M. S. Kumar, N. Sandeep, B. R. Kumar, and S. Saleem, “A comparative study of chemically reacting 2D flow of Casson an Maxwell fluids,” Alex. Eng. J., vol. 57, no. 3, pp. 2027–2034, 2018. DOI: 10.1016/j.aej.2017.05.010.
  • U. Nazir, S. Saleem, A. Al-Zubaidi, I. Shahzadi, and N. Feroz, “Thermal and mass species transportation in tri-hybridized Sisko martial with heat source over a vertical heated cylinder,” Int. Commun. Heat Mass Transf., vol. 134, pp. 106003, 2022.
  • U. Nazir, S. Saleem, M. Nawaz, M. A. Saqib, and A. A. Alderremy, “Study of transport phenomenon in Carreau fluid using Cattaneo-Christov heat flux model with temperature dependent diffusion coefficient,” Phys. A: Stat. Mech. Appl., vol. 554, pp. 123921, 2020.
  • U. Nazir et al., “Applications of Cattaneo–Christov fluxes on modelling the boundary value problem of Prandtl fluid comprising variable properties,” Sci. Rep., vol. 11, no. 1, pp. 17837, 2021. DOI: 10.1038/s41598-021-97420-2.
  • M. Saqib, S. Shafie, I. Khan, Y.-M. Chu, and K. S. Nisar, “Symmetric MHD channel flow of nonlocal fractional model of BTF containing hybrid nanoparticles,” Symmetry, vol. 12, no. 4, pp. 663, 2020. DOI: 10.3390/sym12040663.
  • Z. Fu, X. Liang, and K. Zhang, “Asymmetrical velocity distribution in the drag-reducing channel flow of surfactant solution caused by an injected ultrathin water layer,” Symmetry, vol. 12, no. 5, pp. 846, 2020. DOI: 10.3390/sym12050846.
  • E. Fornalik-Wajs, A. Roszko, and J. Donizak, “Symmetry and asymmetry in the thermo-magnetic convection of silver nanofluid,” Symmetry, vol. 12, no. 11, pp. 1891, 2020. DOI: 10.3390/sym12111891.
  • M. Miansari et al., “Numerical investigation of grooves effects on the thermal performance of helically grooved shell and coil tube heat exchanger,” Chin. J. Chem. Eng., vol. 44, pp. 424–434, 2022. DOI: 10.1016/j.cjche.2021.05.038.
  • P. Barnoon, “Numerical assessment of heat transfer and mixing quality of a hybrid nanofluid in a microchannel equipped with a dual mixer,” Int. J. Thermofluids, vol. 12, pp. 100111, 2021. DOI: 10.1016/j.ijft.2021.100111.
  • Y. Song, O. Kaviyani, P. Barnoon, W. Xia, and D. Toghraie, “Numerical analysis of heat transfer in peripheral air vaporizers used in cryogenic storage tanks,” J. Energy Storage, vol. 40, pp. 102774, 2021. DOI: 10.1016/j.est.2021.102774.
  • W. Cai et al., “Eulerian-Lagrangian investigation of nanoparticle migration in the heat sink by considering different block shape effects,” Appl. Therm. Eng., vol. 199, pp. 117593, 2021. DOI: 10.1016/j.applthermaleng.2021.117593.
  • C. Xiao et al., “Investigation of thermal behavior and performance of different microchannels: A case study for traditional and manifold microchannels,” Case Stud. Therm. Eng., vol. 39, pp. 102393, 2022. DOI: 10.1016/j.csite.2022.102393.
  • D. Rajkumar, A. S. Reddy, P. V. S. Narayana, K. Jagadeshkumar, and A. J. Chamkha, “Pulsating magnetohydrodynamic flow of Fe3O4-blood based micropolar nanofluid between two vertical porous walls with Cattaneo–Christov heat flux and entropy generation,” J. Magnet. Magnet. Mater., vol. 571, pp. 170564, 2023. DOI: 10.1016/j.jmmm.2023.170564.
  • D. Rajkumar, A. S. Reddy, and A. J. Chamkha, “Entropy generation of magnetohydrodynamic pulsating flow of micropolar nanofluid in a porous channel through Cattaneo–Christov heat flux model with Brownian motion, thermophoresis and heat source/sink,” Waves Random Complex Media, pp. 1–26, 2022. DOI: 10.1080/17455030.2022.2124467.
  • D. Rajkumar and A. Subramanyam Reddy, “Pulsating hydromagnetic flow of Au-blood micropolar nanofluid in a channel with Ohmic heating, thermal radiation and heat source/sink,” NAMC., vol. 27, no. 3, pp. 1–16, 2022. DOI: 10.15388/namc.2022.27.26602.
  • D. Rajkumar and A. Subramanyam Reddy, “Pulsating electrically conducting flow of Au/SWCNTs-blood micropolar nanofluid in a porous channel with Ohmic heating, thermal radiation,” Phys. Scr., vol. 96, no. 12, pp. 125233, 2021. DOI: 10.1088/1402-4896/ac2e81.
  • D. Rajkumar, A. Subramanyam Reddy, S. Srinivas, and K. Jagadeshkumar, “Numerical investigation on pulsating hydromagnetic flow of chemically reactive micropolar nanofluid in a channel with brownian motion, thermophoresis and ohmic heating,” Int. J. Appl. Comput. Math., vol. 8, no. 3, pp. 119, 2022. DOI: 10.1007/s40819-022-01313-5.
  • M. M. Bhatti and R. Ellahi, “Numerical investigation of non-Darcian nanofluid flow across a stretchy elastic medium with velocity and thermal slips,” Numer. Heat Transf. B: Fund., vol. 83, no. 5, pp. 323–343, 2023. DOI: 10.1080/10407790.2023.2174624.
  • N. Vijay and K. Sharma, “Entropy generation analysis in MHD hybrid nanofluid flow: Effect of thermal radiation and chemical reaction,” Numer. Heat Transf. B: Fund., vol. 84, no. 1, pp. 66–82, 2023. DOI: 10.1080/10407790.2023.2186989.
  • E. Liana, A. Fauzi, S. Ahmad, and I. Pop, “Flow over a permeable stretching sheet in micro polar nanofluids with suction,” AIP Conf. Proc., vol. 1605, pp. 428, 2014.
  • N. C. Roy, M. A. Hossain, and I. Pop, “Analysis of dual solutions of unsteady micro polar hybrid nanofluid flow over a stretching/shrinking sheet,” J. Appl. Comput. Mech., vol. 7, pp. 19–33, 2021.
  • S. Ahmad, M. Ashraf, and K. Ali, “Numerical simulation of viscous dissipation in a micropolar fluid flow through a porous medium,” J. Appl. Mech. Tech. Phys., vol. 60, no. 6, pp. 996–1004, 2019. DOI: 10.1134/S0021894419060038.
  • M. Sheikholeslami, M. Hatami, and D. D. Ganji, “Micro-polar fluid flow and heat transfer in a permeable channel using analytical method,” J. Mol. Liq., vol. 194, pp. 30–36, 2014. DOI: 10.1016/j.molliq.2014.01.005.
  • Z. Ziabakhsh and G. Domairry, “Homotopy analysis solution of micro-polar flow in a porous channel with high mass transfer,” Adv. Theor. Appl. Mech., vol. 1, no. 2, pp. 79–94, 2008.
  • S. Xinhui, L. Zheng, L. Ping, X. Zhang, and Y. Zhang, “Flow and heat transfer of a micro-polar fluid in a porous channel with expanding or contracting walls,” Int. J. Heat Mass Transf., vol. 67, pp. 885–895, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.012.
  • S. Ahmad, M. Ashraf, and K. Ali, “Simulation of thermal radiation in a micro-polar fluid flow through a porous medium between channel walls,” J. Therm. Anal. Calorim., vol. 144, no. 3, pp. 941–953, 2021. DOI: 10.1007/s10973-020-09542-w.
  • M. Sheikholeslami, H. R. Ashorenejad, D. D. Ganji, and M. M. Rashidi, “Heat and mass transfer of a micro-polar fluid in a porous channel,” Commun. Numer. Anal., vol. 2014, pp. 1–20, 2014. DOI: 10.5899/2014/cna-00166.
  • A. Aziz, W. Jamshed, T. Aziz, H. M. S. Bahaidarah, and K. U. Rehman, “Entropy analysis of Powell-Eyring hybrid nanofluid including effect of linear thermal radiation and viscous dissipation,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 1331–1343, 2021. DOI: 10.1007/s10973-020-10210-2.
  • W. Jamshed et al., “Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study,” Case Stud. Therm. Eng., vol. 26, pp. 101160, 2021. DOI: 10.1016/j.csite.2021.101160.
  • W. Jamshed, K. S. Nisar, R. J. P. Gowda, R. N. Kumar, and B. C. Prasannakumara, “Radiative heat transfer of second grade nanofluid flow past a porous flat surface: A single-phase mathematical model,” Phys. Scr., vol. 96, no. 6, pp. 064006, 2021. DOI: 10.1088/1402-4896/abf57d.
  • W. Jamshed et al., “Computational frame work of Cattaneo-Christov heat flux effects on Engine Oil based Williamson hybrid nanofluids: A thermal case study,” Case Stud. Therm. Eng., vol. 26, pp. 101179, 2021. DOI: 10.1016/j.csite.2021.101179.
  • W. Jamshed, S. U. Devi, and K. S. Nisar, “Single phase-based study of Ag-Cu/EO Williamson hybrid nanofluid flow over a stretching surface with shape factor,” Phys. Scr., vol. 96, no. 6, pp. 065202, 2021. DOI: 10.1088/1402-4896/abecc0.
  • S. M. Hussain and W. Jamshed, “A comparative entropy-based analysis of tangent hyperbolic hybrid nanofluid flow: Implementing finite difference method,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105671, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.