Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
147
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study of the evolution of bubbles during nucleation and droplets during condensation on a surface of variable wettability using the pseudopotential MRT-LBM method

ORCID Icon, ORCID Icon & ORCID Icon
Pages 131-158 | Received 12 Sep 2022, Accepted 19 Jun 2023, Published online: 18 Jul 2023

References

  • Y. Chen, H. Ohashi and M. Akiyama, “Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 50, no. 4, pp. 2776–2783, 1994. DOI: 10.1103/PhysRevE.50.2776.
  • Y. Shi, T. S. Zhao and Z. L. Guo, “Thermal lattice Bhatnagar-Gross-Krook model for flows with viscous heat dissipation in the incompressible limit,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 70, no. 6, p. 066310, 2004. DOI: 10.1103/PhysRevE.70.066310.
  • L. S. Luo, W. Liao, X. Chen, Y. Peng and W. Zhang, “Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 83, no. 5, p. 056710, 2011. DOI: 10.1103/PhysRevE.83.056710.
  • S. Channouf, A. Youssef, M. Jami and M. A. Moussaoui, “Study of Two Layered Immiscible Fluids Flow in a Channel with Obstacle by Using Lattice Boltzmann RK Color Gradient Model,” Int. J. Renew. Energy Dev., vol. 12, no. 1, pp. 22–34, 2023. DOI: 10.14710/ijred.2023.46696.
  • S. Leclaire, M. Reggio and J. Y. Trépanier, “Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model,” Appl. Math. Modell., vol. 36, no. 5, pp. 2237–2252, 2012. DOI: 10.1016/j.apm.2011.08.027.
  • X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with multiple phases and components,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 47, no. 3, pp. 1815–1819, 1993. DOI: 10.1103/PhysRevE.47.1815.
  • S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329–364, 1998. DOI: 10.1146/annurev.fluid.30.1.329.
  • M. R. Swift, W. R. Osborn and J. M. Yeomans, “Lattice Boltzmann simulation of nonideal fluids,” Phys. Rev. Lett., vol. 75, no. 5, pp. 830–833, 1995. DOI: 10.1103/PhysRevLett.75.830.
  • E. Orlandini, M. R. Swift and J. M. Yeomans, “A lattice Boltzmann model of binary-fluid mixtures,” Europhys. Lett., vol. 32, no. 6, pp. 463–468, 1995. DOI: 10.1209/0295-5075/32/6/001.
  • H. Huang, M. Sukop and X. Lu, “Multiphase lattice Boltzmann methods: theory and application,” Wiley Blackwell, 2015. DOI: 10.1002/9781118971451.
  • S. Channouf, J. Benhamou and M. Jami, “Condensation behaviors of droplet under the gravity effect on hydrophobic surface by using the hybrid thermal pseudopotential LBM model,” in 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, 2022, pp. 1–5. DOI: 10.1109/IRASET52964.2022.9737978.
  • S. Channouf, M. Jami and A. Mezrhab, “Numerical hybrid thermal MRT-LBM for condensation and boiling phenomena on horizontal walls of different wettability,” Fluid Dyn. Res., vol. 54, no. 2, pp. 025502, 2022. DOI: 10.1088/1873-7005/ac5d1e.
  • C. Peng, Y. Liu and L. Li, “Lattice Boltzmann method simulation of power-law phase change materials’ solid–liquid phase change,” J. Thermophys. Heat Transfer, vol. 36, no. 2, pp. 233–241, 2022. DOI: 10.2514/1.T6192.
  • T. Sun, N. Gui, X. Yang, J. Tu and S. Jiang, “Effect of contact angle on flow boiling in vertical ducts: A pseudo-potential MRT-thermal LB coupled study,” Int. J. Heat Mass Transfer, vol. 121, pp. 1229–1233, 2018. DOI: 10.1016/j.ijheatmasstransfer.2018.01.088.
  • X. Chang, H. Huang, Y. P. Cheng and X. Y. Lu, “Lattice Boltzmann study of pool boiling heat transfer enhancement on structured surfaces,” Int. J. Heat Mass Transfer, vol. 139, pp. 588–599, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.05.041.
  • S. Gong and P. Cheng, “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling,” Int. J. Heat Mass Transfer, vol. 64, pp. 122–132, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.03.058.
  • X. Wang, B. Xu, Z. Chen, Y. Yang and Q. Cao, “Lattice Boltzmann modeling of condensation heat transfer on downward-facing surfaces with different wettabilities,” Langmuir, vol. 36, no. 31, pp. 9204–9214, 2020. DOI: 10.1021/acs.langmuir.0c01469.
  • E. Ezzatneshan, A. Salehi and H. Vaseghnia, “Study of micro-heater shape and wettability effects on inception of boiling phenomenon using a multiphase lattice Boltzmann method,” Int. J. Therm. Sci., vol. 184, p. 107913, 2023. DOI: 10.1016/j.ijthermalsci.2022.107913.
  • A. Hu, L. Li, S. Chen, Q. Liao and J. Zeng, “On equations of state in pseudo-potential multiphase lattice Boltzmann model with large density ratio,” Int. J. Heat Mass Transfer, vol. 67, pp. 159–163, 2013. DOI: 10.1016/j.ijheatmasstransfer.2013.08.005.
  • L. Chen, Q. Kang, Y. Mu, Y. L. He and W. Q. Tao, “A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications,” Int. J. Heat Mass Transfer, vol. 76, pp. 210–236, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.04.032.
  • E. Ezzatneshan, A. Salehi and H. Vaseghnia, “Study on forcing schemes in the thermal lattice Boltzmann method for simulation of natural convection flow problems,” Heat Transfer, vol. 50, no. 8, pp. 7604–7631, 2021. DOI: 10.1002/htj.22245.
  • M. L. Shan, C. P. Zhu, C. Yao, C. Yin and X. Y. Jiang, “Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio,” Chin. Phys. B, vol. 25, no. 10, p. 104701, 2016. DOI: 10.1088/1674-1056/25/10/104701.
  • S. Channouf and M. Jami, “Study of falling condensate droplets on parallelepiped solid surface using hybrid 3D MRT-LBM,” Int. J. Comput. Fluid Dyn., vol. 36, no. 6, pp. 488–505, 2022. DOI: 10.1080/10618562.2022.2153834.
  • Y. Wu, N. Gui, X. Yang, J. Tu and S. Jiang, “Fourth-order analysis of force terms in multiphase pseudopotential lattice Boltzmann model,” Comput. Math. Appl., vol. 76, no. 7, pp. 1699–1712, 2018. DOI: 10.1016/j.camwa.2018.07.022.
  • Q. Li, K. H. Luo and X. J. Li, “Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 86, no. 1, p. 016709, 2012. DOI: 10.1103/PhysRevE.86.016709.
  • A. A. Mohamad, Lattice Boltzmann Method, vol. 70. London: Springer, 2011. DOI: 10.1007/978-1-4471-7423-3.
  • M. Sukop, Jr.and D. T. Thorne, Lattice Boltzmann Modeling Lattice Boltzmann Modeling. Heidelberg: Springer, 2006, pp. 14–17. DOI: 10.1007/978-3-540-27982-2.
  • S. Gong and P. Cheng, “A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer,” Int. J. Heat Mass Transfer, vol. 55, no. 17–18, pp. 4923–4927, 2012. DOI: 10.1016/j.ijheatmasstransfer.2012.04.037.
  • M. Nemati, A. R. S. N. Abady, D. Toghraie and A. Karimipour, “Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows,” Phys. A, vol. 489, pp. 65–77, 2018. DOI: 10.1016/j.physa.2017.07.013.
  • Z. Guo and C. Shu, Lattice Boltzmann Method and Its Application in Engineering, vol. 3, World Scientific, 2013. DOI: 10.1016/j.cnsns.2008.10.017.
  • C. K. Aidun and J. R. Clausen, “Lattice-Boltzmann method for complex flows,” Annu. Rev. Fluid Mech., vol. 42, no. 1, pp. 439–472, 2010. DOI: 10.1146/annurev-fluid-121108-145519.
  • J. M. Buick and C. A. Greated, “Gravity in a lattice Boltzmann model,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, vol. 61, no. 5A, pp. 5307–5320, 2000. DOI: 10.1103/PhysRevE.61.5307.
  • Z. Guo, C. Zheng and B. Shi, “Discrete lattice effects on the forcing term in the lattice Boltzmann method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 65, no. 4, p. 046308, 2002. DOI: 10.1103/PhysRevE.65.046308.
  • P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann model,” Phys. Fluids, vol. 18, no. 4, p. 042101, 2006. DOI: 10.1063/1.2187070.
  • J. Zeng, L. Li, Q. Liao, W. Cui, Q. Chen and L. Pan, “Simulation of phase transition process using lattice Boltzmann method,” Sci. Bull., vol. 54, no. 24, pp. 4596–4603, 2009. DOI: 10.1007/s11434-009-0734-x.
  • M. A. Gallivan, D. R. Noble, J. G. Georgiadis and R. O. Buckius, “An evaluation of the bounce‐back boundary condition for lattice Boltzmann simulations,” Int. J. Numer. Meth. Fluids, vol. 25, no. 3, pp. 249–263, 1997. DOI: 10.1002/(SICI)1097-0363(19970815)25:3 < 249::AID-FLD546 > 3.0.CO;2-7.
  • R. S. Maier, R. S. Bernard and D. W. Grunau, “Boundary conditions for the lattice Boltzmann method,” Phys. Fluids, vol. 8, no. 7, pp. 1788–1801, 1996. DOI: 10.1063/1.868961.
  • L. Wang, H. B. Huang and X. Y. Lu, “Scheme for contact angle and its hysteresis in a multiphase lattice Boltzmann method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 87, no. 1, p. 013301, 2013. DOI: 10.1103/PhysRevE.87.013301.
  • J. Zhang and D. Y. Kwok, “Lattice Boltzmann study on the contact angle and contact line dynamics of liquid − vapor interfaces,” Langmuir, vol. 20, no. 19, pp. 8137–8141, 2004. DOI: 10.1021/la049293q.
  • A. Mazloomi, S. S. Chikatamarla and I. V. Karlin, “Entropic lattice Boltzmann method for multiphase flows: fluid-solid interfaces,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys., vol. 92, no. 2, p. 023308, 2015. DOI: 10.1103/PhysRevLett.114.174502.
  • Y. Yuan and T. R. Lee, “Contact angle and wetting properties,” Surf. Sci.-Tech., vol. 51, pp. 3–34, 2013. DOI: 10.1007/978-3-642-34243-1_1.
  • S. Schmieschek and J. Harting, “Contact angle determination in multicomponent lattice Boltzmann simulations,” Commun. Comput. Phys., vol. 9, no. 5, pp. 1165–1178, 2011. DOI: 10.4208/cicp.201009.271010s.
  • S. Zheng, F. Eimann, T. Fieback, G. Xie and U. Gross, “Numerical investigation of convective dropwise condensation flow by a hybrid thermal lattice Boltzmann method,” Appl. Therm. Eng., vol. 145, pp. 590–602, 2018. DOI: 10.1016/j.applthermaleng.2018.09.076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.