Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chebyshev spectral approach to an exponentially space-based heat generating single-phase nanofluid flowing on an elongated sheet with angled magnetic field

ORCID Icon, , ORCID Icon, &
Pages 159-176 | Received 08 Feb 2023, Accepted 23 Jun 2023, Published online: 09 Jul 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Developments and Applications of Non-Newtonian Flows, vol. 66, D. A. Siginer and H. P. Wang, Eds. New York: American Society of Mechanical Engineers, 1995, pp. 99–105.
  • S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions,” Appl. Phys. Lett., vol. 79, no. 14, pp. 2252–2254, 2001. DOI: 10.1063/1.1408272.
  • N. Arora and M. Gupta, “An updated review on application of nanofluids in flat tubes radiators for improving cooling performance,” Renew. Sust. Energy Rev., vol. 134, pp. 110242, 2020. DOI: 10.1016/j.rser.2020.110242.
  • S. S. Murshed and C. N. de Castro, “Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids–A review,” Appl. Energy, vol. 184, pp. 681–695, 2016. DOI: 10.1016/j.apenergy.2016.11.017.
  • K. V. Wong and O. De Leon, “Applications of nanofluids: Current and future,” in Nanotechnology Energy. New York: Jenny Stanford Publishing, 2017, pp. 105–132.
  • K. Khanafer and K. Vafai, “A review on the applications of nanofluids in solar energy field,” Renew. Energy, vol. 123, pp. 398–406, 2018. DOI: 10.1016/j.renene.2018.01.097.
  • M. R. Safaei et al., “Thermal analysis of a binary base fluid in pool boiling system of glycol–water alumina nano-suspension,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 2453–2462, 2021. DOI: 10.1007/s10973-020-09911-5.
  • MD. Shamshuddin, F. Mabood, W. A. Khan, and G. R. Rajput, “Exploration of thermal Peclet number, Vortex viscosity and Reynolds number on two-dimensional flow of micropolar fluid through a channel due to mixed convection,” Heat Transf., vol. 52, no. 1, pp. 854–873, 2023. DOI: 10.1022/htj.22719.
  • T. K. Kumar and MD. Shamshuddin, “Thermal performance on radiative and Ohmic dissipative magneto-nanoliquid over moving flat plate suspended by SWCNTs and MWCNTs,” J. Nanofluids, vol. 12, no. 1, pp. 192–201, 2023. DOI: 10.1166/jon.2023.1945.
  • P. Forchheimer, Wasserbewegung Durch Boden, 45th ed. Z. Ver. Deutsch, Ing., 1901.
  • M. Muskat, The Flow of Homogeneous Fluids through Porous Media. New York, NY: McGraw-Hill Book Company, 1937.
  • M. A. Sadiq and T. Hayat, “Darcy–Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet,” Res. Phys., vol. 6, pp. 884–890, 2016. DOI: 10.1016/j.rinp.2016.10.019.
  • M. I. Khan, F. Alzahrani, A. Hobiny, and Z. Ali, “Fully developed second order velocity slip Darcy-Forchheimer flow by a variable thicked surface of disk with entropy generation,” Int. Commun. Heat Mass Transf., vol. 117, pp. 104778, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104778.
  • G. Rasool, A. Shafiq, and D. Baleanu, “Consequences of Soret-Dufour effects, thermal radiation, and binary chemical reaction on Darcy Forchheimer flow of nanofluids,” Symmetry, vol. 12, no. 9, pp. 1421, 2020. DOI: 10.3390/sym12091421.
  • A. A. Khan, S. Naeem, R. Ellahi, S. M. Sait, and K. Vafai, “Dufour and Soret effects on Darcy–Forchheimer flow of second-grade fluid with the variable magnetic field and thermal conductivity,” HFF, vol. 30, no. 9, pp. 4331–4347, 2020. DOI: 10.1108/HFF-11-2019-0837.
  • MD. Shamshuddin et al., “MHD bioconvection microorganism nanofluid driven by a stretchable plate thorugh porous media with an induced heat source,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2126024.
  • MD. Shamshuddin et al., “Thermo-solutal stratification and chemical reaction effects on radiative magnetized nanofluid flow along an exponentially stretching sensor plate: Computational analysis,” J. Magn. Magn. Mat., vol. 565, pp. 170286, 2023. DOI: 10.1016/j.jmmm.2022.170286.
  • C. Zhang, L. Zheng, X. Zhang, and G. Chen, “MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction,” Appl. Math. Model., vol. 39, no. 1, pp. 165–181, 2015. DOI: 10.1016/j.apm.2014.05.023.
  • D. Pal and G. Mandal, “Hydromagnetic convective–radiative boundary layer flow of nanofluids induced by a non-linear vertical stretching/shrinking sheet with viscous–Ohmic dissipation,” Pow. Technol., vol. 279, pp. 61–74, 2015. DOI: 10.1016/j.powtec.2015.03.043.
  • S. Das and R. N. Jana, “Natural convective magneto-nanofluid flow and radiative heat transfer past a moving vertical plate,” Alex. Eng. J., vol. 54, no. 1, pp. 55–64, 2015. DOI: 10.1016/j.aej.2015.01.001.
  • T. Hayat, A. Shafiq, and A. Alsaedi, “Hydromagnetic boundary layer flow of Williamson fluid in the presence of thermal radiation and Ohmic dissipation,” Alex. Eng. J., vol. 55, no. 3, pp. 2229–2240, 2016. DOI: 10.1016/j.aej.2016.06.004.
  • T. Hayat, S. Qayyum, S. A. Shehzad, and A. Alsaedi, “Simultaneous effects of heat generation-absorption and thermal radiation in magnetohydrodynamics (MHD) flow of Maxwell nanofluid towards a stretched surface,” Res. Phys., vol. 7, pp. 562–573, 2017. DOI: 10.1016/j.rinp.2016.12.009.
  • N. S. Shashikumar, B. C. Prasannakumara, B. J. Gireesha, and O. D. Makinde, “Thermodynamics analysis of MHD Casson fluid slip flow in a porous microchannel with thermal radiation,” DF., vol. 16, pp. 120–139, 2018. DOI: 10.4028/www.scientific.net/DF.16.120.
  • B. K. Jha and G. Samaila, “Thermal radiation effect on boundary layer over a flat plate having convective surface boundary condition,” SN Appl. Sci., vol. 2, no. 3, pp. 1–8, 2020. DOI: 10.1007/s42452-020-2167-8.
  • K. Govindarajulu and A. S. Reddy, “Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects,” Phys. Fluids, vol. 34, no. 1, pp. 013105, 2022. DOI: 10.1063/5.0074894.
  • M. Ramzan, N. Shahmir, H. A. S. Ghazwani, and M. Y. Malik, “Comparative appraisal of nanofluid flows in a vertical channel with constant wall temperatures: An application to the rocket engine nozzle,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2102695.
  • M. Ramzan, N. Shahmir, and H. A. S. Ghazwani, “Hybrid nanofluid flow comprising spherical shaped particles with Hall current and irreversibility analysis: An application of solar radiation,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2123571.
  • M. Ramzan et al., “A numerical study of the nanofluid flow over an exponentially stretching surface with Navier slip condition following Corcione model,” Int. J. Mod. Phys. B, 2023. DOI: 10.1142/S0217979223502715.
  • Y. M. Chu, S. Bashir, M. Ramzan, and M. Y. Malik, “Model‐based comparative study of magnetohydrodynamics unsteady hybrid nanofluid flow between two infinite parallel plates with particle shape effects,” Math. Meth. Appl. Sci., vol. 46, no. 10, pp. 11568-11582, 2022. DOI: 10.1002/mma.8234.
  • F. Shahzad et al., “Thermal Amelioration in heat transfer rate using Oldroyd-B model hybrid nanofluid by CNTs-based kerosene oil flow in solar collector applications,” Waves Random Complex Media, 2022. DOI: 10.1080/17555030.2022.2157511.
  • W. Jamshed, M. R. Eid, F. Shahzad, R. Safdar, and MD. Shamshuddin, “Keller box analysis for thermal efficiency of magneto time-dependent nanofluid flowing in solar-powered tractor application applying nano-metal shaped factor,” Waves Random Complex Media, 2022. DOI: 10.1080/17455030.2022.2146779.
  • B. P. Geridonmez and H. Öztop, “MHD natural convection in a cavity in the presence of cross partial magnetic fields and Al2O3-water nanofluid,” Comput. Math. Appl., vol. 80, no. 12, pp. 2796–2810, 2020. DOI: 10.1016/j.camwa.2020.10.003.
  • X. Zhang and Y. Zhang, “Experimental study on enhanced heat transfer and flow performance of magnetic nanofluids under alternating magnetic field,” Int. J. Therm. Sci., vol. 164, pp. 106897, 2021. DOI: 10.1016/j.ijthermalsci.2021.106897.
  • X. Zhang and Y. Zhang, “Heat transfer and flow characteristics of Fe3O4-water nanofluids under magnetic excitation,” Int. J. Therm. Sci., vol. 163, pp. 106826, 2021. DOI: 10.1016/j.ijthermalsci.2020.106826.
  • M. Ramzan et al., “Thermophoretic particle deposition impact in the Oldroyd-B fluid flow influenced by a magnetic dipole with an exponential thermal heat source,” Int. J. Mod. Phys. B, vol. 37, no. 06, pp. 2350059, 2023. DOI: 10.1142/S0217979223500595.
  • B. J. Gireesha, M. Archana, B. Mahanthesh, and B. C. Prasannakumara, “Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source,” MMMS., vol. 15, no. 1, pp. 227–245, 2019. DOI: 10.1108/MMMS-03-2018-0051.
  • W. Al-Kouz, K. Swain, B. Mahanthesh, and W. Jamshed, “Significance of exponential space-based heat source and inclined magnetic field on heat transfer of hybrid nanoliquid with homogeneous-heterogeneous chemical reaction,” Heat Transf., vol. 50, no. 4, pp. 4086–4102, 2021. DOI: 10.1002/htj.22065.
  • K. Swain, M. Mishra, and P. K. Rout, “Magnetohydrodynamics flow of nanofluid past an elongating sheet with exponential space- based heat source and homogeneous-heterogeneous chemical reactions,” Int. J. Thermofluidic Sci. Technol., vol. 8, no. 3, pp. 080302, 2021. DOI: 10.36963/IJTST.2021080302.
  • P. P. Humane, V. S. Patil, A. B. Patil, MD. Shamshuddin, and G. R. Rajput, “Dynamics of multiple slip boundaries effect on MHD Casson-Williamson double-diffusive nanofluid flow past an inclined magnetic stretching sheet,” Proc. Inst. Mech. E: J. Process Mech. Eng., vol. 236, no. 5, pp. 1906–1926, 2022. DOI: 10.1177/09544089221078153.
  • M. A. A. Hamad, “Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field,” Int. Commun. Heat Mass Transf., vol. 38, no. 4, pp. 487–492, 2011. DOI: 10.1016/j.icheatmasstransfer.2010.12.042.
  • MD. Shamshuddin and M. R. Eid, “nth order reactive nanoliquid through convective elongated sheet under mixed convection flow with Joule heating effects,” J. Therm. Anal. Calorim., vol. 147, no. 5, pp. 3853–3867, 2022. DOI: 10.1007/s10973-021-10816-0.
  • R. E. Bellman and R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems. New York NY: Elsevier Publishing Company, 1965.
  • S. S. Motsa, “A New spectral local linearization method for nonlinear boundary layer flow problems,” J. Appl. Math., vol. 2013, pp. 1–15, 2013. DOI: 10.1155/2013/423628.
  • R. S. R. Gorla and I. Sidawi, “Free convection on a vertical stretching surface with suction and blowing,” Appl. Sci. Res., vol. 52, no. 3, pp. 247–257, 1994. DOI: 10.1007/BF00853952.
  • W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2477–2483, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.032.
  • N. A. Shah et al., “Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles,” Sci. Rep., vol. 11, no. 1, pp. 1–11, 2021. DOI: 10.1038/s41598-021-81417-y.
  • K. K. Asogwa, M. D. Alsulami, B. C. Prasannakumara, and T. Muhammad, “Double diffusive convection and cross diffusion effects on Casson fluid over a Lorentz force driven Riga plate in a porous medium with heat sink: An analytical approach,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105761, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105761.
  • K. K. Asogwa, F. Mebarek-Oudina, and I. L. Animasaun, “Comparitive investigation of water-based Al2O3 nanoparticles through water-based CuO nanoparticles over an exponentially accelerated radiative Riga plate surface via heat transport,” Arab. J. Sci. Eng., vol. 47, no. 7, pp. 8721–8738, 2022. DOI: 10.1007/s13369-021-06355-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.