Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 2
49
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Chaotic convection on a nanofluids with feedback control variations

Pages 216-229 | Received 19 Apr 2023, Accepted 20 Jun 2023, Published online: 06 Jul 2023

References

  • R. Bhardwaj and M. Chawla, “Convection dynamics of nanofluids for temperature and magnetic field variations,” in International Conference on Innovative Computing and Communications. Advances in Intelligent Systems and Computing, vol. 1165, D. Gupta, A. Khanna, S. Bhattacharyya, A.E. Hassanien, S. Anand and A. Jaiswal, Eds. Singapore: Springer. DOI: 10.1007/978-981-15-5113-0_20
  • C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Applied Mathematical Sciences, vol. 41. New York, NY: Springer Science and Business Media, 1982. DOI: 10.1007/978-1-4612-5767-7
  • E. Bänsch, S. Faghih-Naini and P. Morin, “Convective transport in nanofluids: the stationary problem,” J. Math. Anal. Appl., vol. 489, no. 1, pp. 124151, 2020. DOI: 10.1016/j.jmaa.2020.124151.
  • E. N. Lorenz, “Deterministic nonperiodic flow,” J. Atmos. Sci., vol. 20, no. 2, pp. 130–141, 1963. DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
  • C. Sparrow, “Preturbulence, strange attractors and geometric models,” in The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Applied Mathematical Sciences, vol. 41, New York, NY: Springer, 1982, pp. 26–50. DOI: 10.1007/978-1-4612-5767-7_3.
  • S. Kimura, G. Schubert and J. Straus, “Route to chaos in porous-medium thermal convection,” J. Fluid Mech., vol. 166, no. 1, pp. 305–324, 1986. DOI: 10.1017/S0022112086000162.
  • L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., vol. 64, no. 8, pp. 821–824, 1990. DOI: 10.1103/PhysRevLett.64.821.
  • D. Nield and C. T. Simmons, “A brief introduction to convection in porous media,” Transp. Porous Media, vol. 130, no. 1, pp. 237–250, 2019. DOI: 10.1007/s11242-018-1163-6.
  • P. Vadasz, “Subcritical transitions to chaos and hysteresis in a fluid layer heated from below,” Int. J. Heat Mass Transf., vol. 43, no. 5, pp. 705–724, 2000. DOI: 10.1016/S0017-9310(99)00173-8.
  • S. U. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Tech. rep., Argonne National Lab., IL (United States), 1995.
  • J. A. Eastman, S. Choi, S. Li, W. Yu and L. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,” Appl. Phys. Lett., vol. 78, no. 6, pp. 718–720, 2001. DOI: 10.1063/1.1341218.
  • J. Buongiorno, “Convective transport in nanofluids,” ASME,” J. Heat Transf., vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • S. Kim, I. C. Bang, J. Buongiorno and L. Hu, “Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids,” Appl. Phys. Lett., vol. 89, no. 15, pp. 153107, 2006. DOI: 10.1063/1.2360892.
  • J. Akram, N. S. Akbar, M. Alansari and D. Tripathi, “Electroosmotically modulated peristaltic propulsion of tio2/10w40 nanofluid in curved microchannel,” Int. Commun. Heat Mass Transf., vol. 136, pp. 106208, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106208.
  • E. Maraj, I. Zehra and N. SherAkbar, “Rotatory flow of mhd (mos2-sio2)/h2o hybrid nanofluid in a vertical channel owing to velocity slip and thermal periodic conditions,” Colloids Surfaces A Physicochem. Eng. Aspects, vol. 639, pp. 128383, 2022. DOI: 10.1016/j.colsurfa.2022.128383.
  • N. S. Akbar, E. Maraj, N. Noor and M. B. Habib, “Exact solutions of an unsteady thermal conductive pressure driven peristaltic transport with temperature-dependent nanofluid viscosity,” Case Stud. Therm. Eng., vol. 35, pp. 102124, 2022. DOI: 10.1016/j.csite.2022.102124.
  • D. Nield and A. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid,” Int. J. Heat Mass Transf., vol. 52, no. 25-26, pp. 5796–5801, 2009. DOI: 10.1016/j.ijheatmasstransfer.2009.07.023.
  • D. Nield and A. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid: a revised model,” Int. J. Heat Mass Transf., vol. 68, pp. 211–214, 2014. DOI: 10.1016/j.ijheatmasstransfer.2013.09.026.
  • D. Yadav, C. Kim, J. Lee and H. H. Cho, “Influence of magnetic field on the onset of nanofluid convection induced by purely internal heating,” Comput. Fluids, vol. 121, pp. 26–36, 2015. DOI: 10.1016/j.compfluid.2015.07.024.
  • H. Basha, G. Janardhana Reddy, N. Venkata Narayanan and M. A. Sheremet, “Analysis of supercritical free convection in newtonian and couple stress fluids through eos approach,” Int. J. Heat Mass Transf., vol. 152, pp. 119542, 2020. DOI: 10.1016/j.ijheatmasstransfer.2020.119542.
  • G. Janardhana Reddy, M. Kumar and H. Rani, “Study of entropy generation in transient hydromagnetic flow of couple stress fluid due to heat and mass transfer from a radiative vertical cylinder,” Pramana J. Phys., vol. 93, no. 6, pp. 103, 2019. DOI: 10.1007/s12043-019-1861-9.
  • R. K. V. Muhammed, H. Basha, G. Janardhana Reddy, U. Shankar and O. A. Beg, “Influence of variable thermal conductivity and dissipation on magnetic carreau fluid flow along a micro-cantilever sensor in a squeezing regime,” Waves Random Complex Media, pp. 1–30, 2022. DOI: 10.1080/17455030.2022.2139013.
  • S. N. Shoghl, J. Jamali and M. K. Moraveji, “Electrical conductivity, viscosity, and density of different nanofluids: an experimental study,” Exp. Therm. Fluid Sci., vol. 74, pp. 339–346, 2016. DOI: 10.1016/j.expthermflusci.2016.01.004.
  • S. E. Ahmed and Z. Raizah, “Natural convection flow of nanofluids in a composite system with variable-porosity media,” J. Thermophys. Heat Transf., vol. 32, no. 2, pp. 495–502, 2018. DOI: 10.2514/1.T5311.
  • V. Y. Rudyak and A. V. Minakov, “Thermophysical properties of nanofluids,” Eur. Phys. J. E., vol. 41, no. 1, pp. 1–12, 2018. DOI: 10.1140/epje/i2018-11616-9.
  • A. Shdaifat, M. Yacoub, R. Zulkifli, K. Sopian and A. A. Salih, “Thermal and hydraulic performance of cuo/water nanofluids: a review,” Micromachines, vol. 11, no. 4, pp. 416, 2020. DOI: 10.3390/mi11040416.
  • S. Hoseinzadeh, P. S. Heyns and H. Kariman, “Numerical investigation of heat transfer of laminar and turbulent pulsating al2o3/water nanofluid flow,” HFF, vol. 30, no. 3, pp. 1149–1166, 2020. DOI: 10.1108/HFF-06-2019-0485.
  • J. Tang and H. H. Bau, “Feedback control stabilization of the no-motion state of a fluid confined in a horizontal porous layer heated from below,” J. Fluid Mech., vol. 257, no. 1, pp. 485–505, 1993. DOI: 10.1017/S0022112093003179.
  • J. Tang and H. H. Bau, “Stabilization of the no-motion state in rayleigh-bénard convection through the use of feedback control,” Phys. Rev. Lett., vol. 70, no. 12, pp. 1795–1798, 1993. DOI: 10.1103/PhysRevLett.70.1795.
  • L. E. Howle, “Active control of rayleigh–bénard convection,” Phys. Fluids, vol. 9, no. 7, pp. 1861–1863, 1997. DOI: 10.1063/1.869335.
  • I. Hashim and Z. Siri, “Stabilization of steady and oscillatory marangoni instability in rotating fluid layer by feedback control strategy,” Num. Heat Transf. Part A Appl., vol. 54, no. 6, pp. 647–663, 2008. DOI: 10.1080/10407780802289384.
  • P. Vadasz and S. Olek, “Transitions and chaos for free convection in a rotating porous layer,” Int. J. Heat Mass Transf., vol. 41, no. 11, pp. 1417–1435, 1998. DOI: 10.1016/S0017-9310(97)00265-2.
  • P. Vadasz and S. Olek, “Weak turbulence and chaos for low prandtl number gravity driven convection in porous media,” Transp. Porous Media, vol. 37, no. 1, pp. 69–91, 1999. DOI: 10.1023/A:1006522018375.
  • R. Roslan, M. Mahmud and I. Hashim, “Effects of feedback control on chaotic convection in fluid-saturated porous media,” Int. J. Heat Mass Transf., vol. 54, no. 1-3, pp. 404–412, 2011. DOI: 10.1016/j.ijheatmasstransfer.2010.09.031.
  • I. K. Khalid, N. F. M. Mokhtar, I. Hashim, Z. B. Ibrahim and S. Gani, “Effect of internal heat source on the onset of double-diffusive convection in a rotating nanofluid layer with feedback control strategy,” Adv. Math. Phys., vol. 2017, pp. 1–12, 2017. DOI: 10.1155/2017/2789024.
  • A. Khanna, D. Gupta, S. Bhattacharyya, A. E. Hassanien, S. Anand and A. Jaiswal, “International conference on innovative computing and communications,” Proc. ICICC, vol. 1, pp. 271-289, 2021.
  • H. H. Bau, “Control of marangoni–bénard convection,” Int. J. Heat Mass Transf., vol. 42, no. 7, pp. 1327–1341, 1999. DOI: 10.1016/S0017-9310(98)00234-8.
  • J. Jawdat, I. Hashim and S. Momani, “Dynamical system analysis of thermal convection in a horizontal layer of nanofluids heated from below,” Math. Problems Eng., vol. 2012, pp. 1–13, 2012. DOI: 10.1155/2012/128943.
  • Z. Alloui, P. Vasseur and M. Reggio, “Natural convection of nanofluids in a shallow cavity heated from below,” Int. J. Therm. Sci., vol. 50, no. 3, pp. 385–393, 2011. DOI: 10.1016/j.ijthermalsci.2010.04.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.