Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 3
135
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Entropy generation on MHD flow of Williamson hybrid nanofluid over a permeable curved stretching/shrinking sheet with various radiations

& ORCID Icon
Pages 231-257 | Received 17 Mar 2023, Accepted 26 Jun 2023, Published online: 09 Jul 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. Fed., vol. 231, no. March, pp. 99–105, 1995.
  • F. Saba, N. Ahmed, U. Khan, and S. T. Mohyud-Din, “International Journal of Heat and Mass Transfer A novel coupling of ð CNT À Fe3O4 = H2O Þ hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls,” Int. J. Heat Mass Transf., vol. 136, pp. 186–195, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.02.097.
  • J. K. Madhukesh, et al., “Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: a non-Fourier heat flux model approach,” J. Mol. Liq., vol. 335, pp. 116103, 2021. DOI: 10.1016/j.molliq.2021.116103.
  • K. Ahmed, T. Akbar, T. Muhammad, and M. Alghamdi, “Heat transfer characteristics of MHD flow of Williamson nanofluid over an exponential permeable stretching curved surface with variable thermal conductivity,” Case Stud. Therm. Eng., vol. 28, no. September, pp. 101544, 2021. DOI: 10.1016/j.csite.2021.101544.
  • M. V. Krishna, N. A. Ahammad, and A. J. Chamkha, “Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface,” Case Stud. Therm. Eng., vol. 27, no. July, pp. 101229, 2021. DOI: 10.1016/j.csite.2021.101229.
  • M. Vijatha and P. B. A. Reddy, “Comparative analysis on magnetohydrodynamic flow of non-Newtonian hybrid nanofluid over a stretching cylinder: entropy generation,” Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng., vol. 236, pp. 095440892210932, 2022. DOI: 10.1177/09544089221093296.
  • A. Rauf, N. Ali Shah, A. Mushtaq, and T. Botmart, “Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet,” MATH, vol. 8, no. 1, pp. 164–193, 2023. DOI: 10.3934/math.2023008.
  • K. U. Rehman, Q. M. Al-Mdallal, and M. Y. Malik, “Symmetry analysis on thermally magnetized fluid flow regime with heat source/sink,” Case Stud. Therm. Eng., vol. 14, no. March, pp. 100452, 2019. DOI: 10.1016/j.csite.2019.100452.
  • M. Amjad, I. Zehra, S. Nadeem, N. Abbas, A. Saleem, and A. Issakhov, “Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region,” Surf. Interfaces, vol. 21, no. October, pp. 100766, 2020. DOI: 10.1016/j.surfin.2020.100766.
  • S. R. R. Reddy and P. B. Anki Reddy, “Thermal radiation effect on unsteady three-dimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution,” Propuls. Power Res., vol. 11, no. 1, pp. 129–142, 2022. DOI: 10.1016/j.jppr.2022.01.001.
  • N. Abbas, W. Shatanawi, and T. A. M. Shatnawi, “Thermodynamic study of radiative chemically reactive flow of induced MHD Sutterby nanofluid over a nonlinear stretching cylinder,” Alexandria Eng. J., vol. 70, pp. 179–189, 2023. DOI: 10.1016/j.aej.2023.02.038.
  • K. U. Rehman, M. Y. Malik, I. Zehra, and M. S. Alqarni, “Group theoretical analysis for MHD flow fields: a numerical result,” J Braz. Soc. Mech. Sci. Eng., vol. 41, no. 3, pp. 1–9, 2019. DOI: 10.1007/s40430-019-1662-6.
  • S. Reddy, R. Reddy, P. Bala, and A. Reddy, “Influence of Soret and Dufour effects on unsteady 3D MHD slip flow of Carreau nanofluid over a slendering stretchable sheet with chemical reaction,” Nonlinear Anal. Model. Control, vol. 24, no. 6, pp. 853–869, 2019.
  • G. K. Ramesh, J. K. Madhukesh, N. Ali Shah, and S. J. Yook, “Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition,” Alexandria Eng. J., vol. 64, pp. 969–979, 2023. DOI: 10.1016/j.aej.2022.09.026.
  • U. Farooq, et al., “Numerical framework of hybrid nanofluid over two horizontal parallel plates with non-linear thermal radiation,” Int. J. Thermofluids, vol. 18, no. April, pp. 100346, 2023. DOI: 10.1016/j.ijft.2023.100346.
  • S. Jakeer and B. Anki Reddy, “Competence of magnetic dipole and radiation on permeable surface using prescribed heat flux/prescribed surface temperature and homogeneousheterogeneous reactions,” Spec. Top. Rev. Porous Media, vol. 12, no. 6, pp. 91–107, 2021. DOI: 10.1615/SpecialTopicsRevPorousMedia.2021035431.
  • M. Ramzan, A. Rafiq, J. D. Chung, S. Kadry, and Y. M. Chu, “Nanofluid flow with autocatalytic chemical reaction over a curved surface with nonlinear thermal radiation and slip condition,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020. DOI: 10.1038/s41598-020-73142-9.
  • S. O. Salawu, A. M. Obalalu, and M. Shamshuddin, “Nonlinear solar thermal radiation efficiency and energy optimization for magnetized hybrid Prandtl–Eyring nanoliquid in aircraft,” Arab. J. Sci. Eng., vol. 48, no. 3, pp. 3061–3072, 2023. DOI: 10.1007/s13369-022-07080-1.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transf., vol. 101, no. 4, pp. 718–725, 1979. DOI: 10.1115/1.3451063.
  • T. Hayat, S. A. Khan, A. Alsaedi, and Q. M. Z. Zia, “Irreversibility analysis in Darcy-Forchheimer flow of CNTs with dissipation and Joule heating effects by a curved stretching sheet,” Appl. Nanosci., vol. 11, no. 1, pp. 187–198, 2021. DOI: 10.1007/s13204-020-01566-w.
  • K. U. Rehman, A. A. Malik, M. Y. Malik, M. Tahir, and I. Zehra, “On new scaling group of transformation for Prandtl-Eyring fluid model with both heat and mass transfer,” Results Phys., vol. 8, pp. 552–558, 2018. DOI: 10.1016/j.rinp.2017.12.071.
  • T. Hayat, W. Shinwari, S. A. Khan, and A. Alsaedi, “Entropy optimized dissipative flow of Newtonian nanoliquid by a curved stretching surface,” Case Stud. Therm. Eng., vol. 27, no. July, pp. 101263, 2021. DOI: 10.1016/j.csite.2021.101263.
  • G. Revathi, V. S. Sajja, M. J. Babu, C. S. K. Raju, S. A. Shehzad, and C. Bapanayya, “Entropy optimization in hybrid radiative nanofluid (CH3OH + SiO2 + Al2O3) flow by a curved stretching sheet with cross-diffusion effects,” Appl. Nanosci., vol. 13, no. 1, pp. 337–351, 2023. DOI: 10.1007/s13204-021-01679-w.
  • F. Mabood, T. A. Yusuf, and W. A. Khan, “Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation,” J. Therm. Anal. Calorim., vol. 143, no. 2, pp. 973–984, 2021. DOI: 10.1007/s10973-020-09720-w.
  • L. S. Sundar, S. Mesfin, and E. V. Ramana, “Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond + Fe3O4/60: 40% water-ethylene glycol hybrid nanofluid flow in a tube,” Therm. Sci. Eng. Prog., vol. 21, no. December, pp. 2021, 2020. DOI: 10.1016/j.tsep.2020.100799.
  • N. Saleem, S. Munawar, and D. Tripathi, “Entropy analysis in ciliary transport of radiated hybrid nanofluid in presence of electromagnetohydrodynamics and activation energy,” Case Stud. Therm. Eng., vol. 28, no. October, pp. 101665, 2021. DOI: 10.1016/j.csite.2021.101665.
  • P. Bala Anki Reddy, S. Jakeer, H. Thameem Basha, S. R. Reddisekhar Reddy, and T. Mahesh Kumar, “Multi-layer artificial neural network modeling of entropy generation on MHD stagnation point flow of cross-nanofluid,” Waves Random Complex Media, pp. 1–28, 2022. DOI: 10.1080/17455030.2022.2067375.
  • T. Hayat, S. A. Khan, A. Alsaedi, and Q. M. Z. Zai, “Computational analysis of heat transfer in mixed convective flow of CNTs with entropy optimization by a curved stretching sheet,” Int. Commun. Heat Mass Transf., vol. 118, no. September, pp. 104881, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104881.
  • T. Hayat, S. Qayyum, A. Alsaedi, and B. Ahmad, “Entropy generation minimization: Darcy-Forchheimer nanofluid flow due to curved stretching sheet with partial slip,” Int. Commun. Heat Mass Transf., vol. 111, pp. 104445, 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104445.
  • S. Jakeer and P. Bala Anki Reddy, “Entropy generation on EMHD stagnation point flow of hybrid nanofluid over a stretching sheet: homotopy perturbation solution,” Phys. Scr., vol. 95, no. 12, pp. 125203, 2020. DOI: 10.1088/1402-4896/abc03c.
  • S. Das, T. K. Pal, and R. N. Jana, “Electromagnetic hybrid nano-blood pumping via peristalsis through an endoscope having blood clotting in presence of hall and ion slip currents,” BioNanoScience, vol. 11, no. 3, pp. 848–870, 2021. DOI: 10.1007/s12668-021-00853-2.
  • D. Lu, M. Ramzan, S. Ahmad, A. Shafee, and M. Suleman, “Impact of nonlinear thermal radiation and entropy optimization coatings with hybrid nanoliquid flow past a curved stretched surface,” Coatings, vol. 8, no. 12, pp. 430, 2018. DOI: 10.3390/coatings8120430.
  • N. F. Okechi, M. Jalil, and S. Asghar, “Flow of viscous fluid along an exponentially stretching curved surface,” Results Phys., vol. 7, pp. 2851–2854, 2017. DOI: 10.1016/j.rinp.2017.07.059.
  • K. Ahmed, W. A. Khan, T. Akbar, G. Rasool, S. O. Alharbi, and I. Khan, “Numerical investigation of mixed convective Williamson fluid flow over an exponentially stretching permeable curved surface,” Fluids, vol. 6, no. 7, pp. 260, 2021. DOI: 10.3390/fluids6070260.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.