Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 3
52
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Entropy generation for the MHD flow of a blood-based hybrid nanofluid by thermal radiation over converging and diverging channels

ORCID Icon, ORCID Icon & ORCID Icon
Pages 258-285 | Received 28 Mar 2023, Accepted 28 Jun 2023, Published online: 18 Jul 2023

References

  • G. B. Jeffery, “L. The two-dimensional steady motion of a viscous fluid,” Lond. Edinburgh, Dublin Philos. Mag. J. Sci., vol. 29, no. 172, pp. 455–465, Apr. 1915. DOI: 10.1080/14786440408635327.
  • S. S. Motsa, P. Sibanda and G. T. Marewo, “On a new analytical method for flow between two inclined walls,” Numer Algor., vol. 61, no. 3, pp. 499–514, Feb. 2012. DOI: 10.1007/s11075-012-9545-2.
  • M. J. Allmen and P. M. Eagles, “Stability of divergent channel flows: a numerical approach,” Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., vol. 392, no. 1803, pp. 359–372, Apr. 1984. DOI: 10.1098/rspa.1984.0036.
  • M. Sheikholeslami, D. D. Ganji, H. R. Ashorynejad and H. B. Rokni, “Analytical investigation of Jeffery-Hamel flow with high magnetic field and nanoparticle by Adomian decomposition method,” Appl. Math. Mech.-Engl. Ed., vol. 33, no. 1, pp. 25–36, Dec. 2012. DOI: 10.1007/s10483-012-1531-7.
  • M. Qadeer, U. Khan, S. Ahmad, B. Ullah, M. Mousa and I. Khan, “Irreversibility analysis for flow of nanofluids with aggregation in converging and diverging channel,” Sci. Rep., vol. 12, no. 1, pp. 1–23, Jun. 2022. DOI: 10.1038/s41598-022-14529-8.
  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. Fed., vol. 231, pp. 99–105, Mar. 1995.
  • T. Hayat, K. Muhammad, T. Muhammad and A. Alsaedi, “Melting heat in radiative flow of carbon nanotubes with homogeneous-heterogeneous reactions,” Commun. Theor. Phys., vol. 69, no. 4, pp. 441–448, Apr. 2018. DOI: 10.1088/0253-6102/69/4/441.
  • K. B. Anoop, S. Kabelac, T. Sundararajan and S. K. Das, “Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration,” J. Appl. Phys., vol. 106, no. 3, pp. 034909, Sep. 2009. DOI: 10.1063/1.3182807.
  • C. T. Nguyen et al., “Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon,” Int. J. Heat Fluid Flow, vol. 28, no. 6, pp. 1492–1506, Dec. 2007. DOI: 10.1016/j.ijheatfluidflow.2007.02.004.
  • Z. Shah, N. Vrinceanu, M. Rooman, W. Deebani, M. Shutaywi, “Mathematical modelling of Ree-Eyring nanofluid using Koo-kleinstreuer and Cattaneo-Christov models on chemically reactive AA 7072-AA 7075 alloys over a magnetic dipole stretching surface”. Coatings, vol. 12, no. 3, pp. 391, Mar. 2022. DOI: 10.3390/coatings12030391.
  • A. S. Alsagri et al., “MHD thin film flow and thermal analysis of blood with CNTs nanofluid,” Coatings, vol. 9, no. 3, pp. 175, Mar. 2019. DOI: 10.3390/coatings9030175.
  • M. Shah, V. D. Badwaik and R. Dakshinamurthy, “Biological applications of gold nanoparticles,” J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 344–362, Jan. 2014. DOI: 10.1166/jnn.2014.8900.
  • S. H. D. P. Lacerda et al., “Interaction of gold nanoparticles with common human blood proteins,” ACS Nano, vol. 4, no. 1, pp. 365–379, Dec. 2010. DOI: 10.1021/nn9011187.
  • F. Shahzad et al., “MHD pulsatile flow of blood-based silver and gold nanoparticles between two concentric cylinders,” Symmetry (Basel), vol. 14, no. 11, pp. 2254, Oct. 2022. DOI: 10.3390/sym14112254.
  • S. S. Ghadikolaei and M. Gholinia, “3D mixed convection MHD flow of GO-MoS2 hybrid nanoparticles in H2O–(CH2OH)2 hybrid base fluid under the effect of H2 bond,” Int. Commun. Heat Mass Transf., vol. 110, pp. 104371, Dec. 2020. DOI: 10.1016/j.icheatmasstransfer.2019.104371.
  • M. Z. Ullah, D. Abuzaid, M. Asma and A. Bariq, “Couple stress hybrid nanofluid flow through a converging-diverging channel,” J. Nanomater., vol. 2021, pp. 1–13, Nov. 2021. DOI: 10.1155/2021/2355258.
  • U. Khan et al., “Features of hybridized AA7072 and AA7075 alloys nanomaterials with melting heat transfer past a movable cylinder with Thompson and Troian slip effect,” Arab. J. Chem., vol. 16, no. 2, pp. 104503, Feb. 2023. DOI: 10.1016/j.arabjc.2022.104503.
  • D. Toghraie, V. A. Chaharsoghi and M. Afrand, “Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid: effects of temperature and nanoparticles concentration,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 527–535, Apr. 2016. DOI: 10.1007/s10973-016-5436-4.
  • U. Khan, A. Zaib, S. Abu Bakar and A. Ishak, “Stagnation-point flow of a hybrid nanoliquid over a non-isothermal stretching/shrinking sheet with characteristics of inertial and microstructure,” Case Stud. Therm. Eng., vol. 26, pp. 101150, Jun. 2021. DOI: 10.1016/j.csite.2021.101150.
  • S. S. Ghadikolaei, K. Hosseinzadeh and D. D. Ganji, “Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4-Ag) dependent on shape factor,” J. Mol. Liq., vol. 262, pp. 376–388, Jul. 2018. DOI: 10.1016/j.molliq.2018.04.094.
  • K. Hosseinzadeh, S. Salehi, M. R. Mardani, F. Y. Mahmoudi, M. Waqas and D. D. Ganji, “Investigation of nano-Bioconvective fluid motile microorganism and nanoparticle flow by considering MHD and thermal radiation,” Informatics Med. Unlocked, vol. 21, pp. 100462, Jan. 2020. DOI: 10.1016/j.imu.2020.100462.
  • M. Turkyilmazoglu, “Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk,” Int. J. Eng. Sci., vol. 51, pp. 233–240, Feb. 2012. DOI: 10.1016/j.ijengsci.2011.09.011.
  • M. Mustafa, “MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model,” Int. J. Heat Mass Transf., vol. 108, pp. 1910–1916, May 2017. DOI: 10.1016/j.ijheatmasstransfer.2017.01.064.
  • T. Hayat, S. Asad, M. Mustafa and A. Alsaedi, “MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet,” Comput. Fluids, vol. 108, pp. 179–185, Feb. 2015. DOI: 10.1016/j.compfluid.2014.11.016.
  • R. Naz, S. Tariq, M. Sohail and Z. Shah, “Investigation of entropy generation in stratified MHD Carreau nanofluid with gyrotactic microorganisms under Von Neumann similarity transformations,” Eur. Phys. J. Plus, vol. 135, no. 2, pp. 1–22, Feb. 2020. DOI: 10.1140/epjp/s13360-019-00069-0.
  • U. Khan, A. Zaib and A. Ishak, “Magnetic field effect on sisko fluid flow containing gold nanoparticles through a porous curved surface in the presence of radiation and partial slip,” Mathematics, vol. 9, no. 9, pp. 921, Apr. 2021. DOI: 10.3390/math9090921.
  • L. Zheng, Y. Liu and X. Zhang, “Exact solutions for MHD flow of generalized Oldroyd-B fluid due to an infinite accelerating plate,” Math. Comput. Model, vol. 54, no. 1–2, pp. 780–788, Jul. 2011. DOI: 10.1016/j.mcm.2011.03.025.
  • G. K. Ramesh, J. K. Madhukesh, N. Ali Shah and S. J. Yook, “Flow of hybrid CNTs past a rotating sphere subjected to thermal radiation and thermophoretic particle deposition,” Alexandria Eng. J., vol. 64, pp. 969–979, Feb. 2023. DOI: 10.1016/j.aej.2022.09.026.
  • U. Farooq et al., “Numerical framework of hybrid nanofluid over two horizontal parallel plates with non-linear thermal radiation,” Int. J. Thermofluids, vol. 18, no. pp. 100346, Apr. 2023. DOI: 10.1016/j.ijft.2023.100346.
  • S. Jakeer and B. Anki Reddy, “Competence of magnetic dipole and radiation on permeable surface using prescribed heat flux/prescribed surface temperature and homogeneousheterogeneous reactions,” Special Top. Rev. Porous Media, vol. 12, no. 6, pp. 91–107, Jan. 2021. DOI: 10.1615/SpecialTopicsRevPorousMedia.2021035431.
  • A. S. Khan, Y. Nie, Z. Shah, A. Dawar, W. Khan and S. Islam, “Three-dimensional nanofluid flow with heat and mass transfer analysis over a linear stretching surface with convective boundary conditions,” Appl. Sci., vol. 8, no. 11, pp. 2244, Nov. 2018. DOI: 10.3390/app8112244.
  • U. Khan et al., “Stagnation point flow of a water-based graphene-oxide over a stretching/shrinking sheet under an induced magnetic field with homogeneous-heterogeneous chemical reaction,” J. Magn. Magn. Mater., vol. 565, no. 2022, pp. 170287, Sep. 2023. DOI: 10.1016/j.jmmm.2022.170287.
  • M. Ramzan, A. Rafiq, J. D. Chung, S. Kadry and Y. M. Chu, “Nanofluid flow with autocatalytic chemical reaction over a curved surface with nonlinear thermal radiation and slip condition,” Sci. Rep., vol. 10, no. 1, pp. 1–13, Oct. 2020. DOI: 10.1038/s41598-020-73142-9.
  • P. B. A. Reddy, “Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction,” Ain Shams Eng. J., vol. 7, no. 2, pp. 593–602, Jun. 2016. DOI: 10.1016/j.asej.2015.12.010.
  • M. Vijatha and P. B. A. Reddy, “Comparative analysis on magnetohydrodynamic flow of non-Newtonian hybrid nanofluid over a stretching cylinder: entropy generation,” Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 236, no. 6, pp. 095440892210932, Apr. 2022. DOI: 10.1177/09544089221093296.
  • A. Divya and P. B. A. Reddy, “Electromagnetohydrodynamic unsteady flow with entropy generation and hall current of hybrid nanofluid over a rotating disk: an application in hyperthermia therapeutic aspects,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 236, no. 13, pp. 7511–7528, May 2022. DOI: 10.1177/09544062221076294.
  • S. R. R. Reddy and P. B. Anki Reddy, “Thermal radiation effect on unsteady three-dimensional MHD flow of micropolar fluid over a horizontal surface of a parabola of revolution,” Propuls. Power Res., vol. 11, no. 1, pp. 129–142, Mar. 2022. DOI: 10.1016/j.jppr.2022.01.001.
  • A. Bejan, “A study of entropy generation in fundamental convective heat transfer,” J. Heat Transfer., vol. 101, no. 4, pp. 718–725, Nov. 1979. DOI: 10.1115/1.3451063.
  • Y. X. Li et al., “Dynamics of aluminum oxide and copper hybrid nanofluid in nonlinear mixed Marangoni convective flow with entropy generation: applications to renewable energy,” “,” Chinese J. Phys, vol. 73, pp. 275–287, Jun. 2021. DOI: 10.1016/j.cjph.2021.06.004.
  • T. Hayat, S. A. Khan, A. Alsaedi and Q. M. Z. Zia, “Irreversibility analysis in Darcy-Forchheimer flow of CNTs with dissipation and Joule heating effects by a curved stretching sheet,” Appl. Nanosci., vol. 11, no. 1, pp. 187–198, Oct. 2021. DOI: 10.1007/s13204-020-01566-w.
  • T. Hayat, W. Shinwari, S. A. Khan and A. Alsaedi, “Entropy optimized dissipative flow of Newtonian nanoliquid by a curved stretching surface,” Case Stud. Therm. Eng., vol. 27, pp. 101263, Jul. 2021. DOI: 10.1016/j.csite.2021.101263.
  • G. Revathi, V. S. Sajja, M. J. Babu, C. S. K. Raju, S. A. Shehzad and C. Bapanayya, “Entropy optimization in hybrid radiative nanofluid (CH3OH + SiO2 + Al2O3) flow by a curved stretching sheet with cross-diffusion effects,” Appl. Nanosci., vol. 13, no. 1, pp. 337–351, Feb. 2023. DOI: 10.1007/s13204-021-01679-w.
  • F. Mabood, T. A. Yusuf and W. A. Khan, “Cu–Al2O3–H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation,” J. Therm. Anal. Calorim, vol. 143, no. 2, pp. 973–984, Apr. 2021. DOI: 10.1007/s10973-020-09720-w.
  • L. S. Sundar, S. Mesfin and E. V. Ramana, “Experimental investigation of thermo-physical properties, heat transfer, pumping power, entropy generation, and exergy efficiency of nanodiamond + Fe 3 O 4/60 : 40% water-ethylene glycol hybrid nanofluid flow in a tube,” Therm. Sci. Eng. Prog., vol. 21, pp. 100799, Dec. 2021. DOI: 10.1016/j.tsep.2020.100799.
  • N. Saleem, S. Munawar and D. Tripathi, “Entropy analysis in ciliary transport of radiated hybrid nanofluid in presence of electromagnetohydrodynamics and activation energy,” Case Stud. Therm. Eng., vol. 28, no. pp. 101665, Oct. 2021. DOI: 10.1016/j.csite.2021.101665.
  • P. Bala Anki Reddy, S. Jakeer, H. Thameem Basha, S. R. Reddisekhar Reddy and T. Mahesh Kumar, “Multi-layer artificial neural network modeling of entropy generation on MHD stagnation point flow of Cross-nanofluid,” Waves Random Complex Media, pp. 1–28, Apr. 2022. DOI: 10.1080/17455030.2022.2067375.
  • G. K. Ramesh, S. A. Shehzad and I. Tlili, “Hybrid nanomaterial flow and heat transport in a stretchable convergent/divergent channel: a Darcy-Forchheimer model,” Appl. Math. Mech.-Engl. Ed., vol. 41, no. 5, pp. 699–710, Mar. 2020. DOI: 10.1007/s10483-020-2605-7.
  • M. Hamid, M. Usman, R. Ul Haq and Z. Tian, “A Galerkin approach to analyze MHD flow of nanofluid along converging/diverging channels,” Arch. Appl. Mech., vol. 91, no. 5, pp. 1907–1924, May 2021. DOI: 10.1007/s00419-020-01861-6.
  • S. Jakeer and B. A. R. Polu, “Homotopy perturbation method solution of magneto-polymer nanofluid containing gyrotactic microorganisms over the permeable sheet with Cattaneo–Christov heat and mass flux model,” Proc. Inst. Mech. Eng. Part E. J. Process Mech. Eng., vol. 236, no. 2, pp. 525–534, Nov. 2022. DOI: 10.1177/09544089211048993.
  • D. Lu, M. Ramzan, S. Ahmad, A. Shafee and M. Suleman, “Impact of nonlinear thermal radiation and entropy optimization coatings with hybrid nanoliquid flow past a curved stretched surface,” Coatings, vol. 8, no. 12, pp. 430, Nov. 2018. DOI: 10.3390/coatings8120430.
  • S. Das, T. K. Pal and R. N. Jana, “Electromagnetic hybrid nano-blood pumping via peristalsis through an endoscope having blood clotting in presence of hall and ion slip currents,” BioNanoSci, vol. 11, no. 3, pp. 848–870, Sep. 2021. DOI: 10.1007/s12668-021-00853-2.
  • M. Hafeez and R. Sajjad, “Heat transfer attributes of MoS 2 =Al 2 O 3 hybrid nanomaterial flow through converging/diverging channels with shape factor effect,” Res. Artic. Adv. Mech. Eng., vol. 13, no. 5, pp. 1–13, May 2021. DOI: 10.1177/16878140211021289.
  • M. Turkyilmazoglu, “Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels,” Comput. Fluids, vol. 100, pp. 196–203, Sep. 2014. DOI: 10.1016/j.compfluid.2014.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.