Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 3
169
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Heat source and Joule heating effects on convective MHD stagnation point flow of Casson nanofluid through a porous medium with chemical reaction

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 286-304 | Received 26 Apr 2023, Accepted 01 Jul 2023, Published online: 16 Jul 2023

References

  • M. M. Nandeppanavar, K. Vajravelu and M. S. Abel, “Heat transfer in MHD viscoelastic boundary layer flow over a stretching sheet with thermal radiation and non-uniform heat source/sink,” Commun. Nonlinear Sci. Numer. Simulat., vol. 16, no. 9, pp. 3578–3590, 2011. DOI: 10.1016/j.cnsns.2010.12.033.
  • M. Hussain, S. Jahan, Q. A. Ranjha, J. Ahmad, M. K. Jamil and A. Ali, “Suction/blowing impact on magneto-hydrodynamic mixed convection flow of Williamson fluid through stretching porous wedge with viscous dissipation and internal heat generation/absorption,” Results Eng., vol. 16, pp. 100709, 2022. DOI: 10.1016/j.rineng.2022.100709.
  • Y. Bai, X. Liu, Y. Zhang and M. Zhang, “Stagnation-point heat and mass transfer of MHD Maxwell nanofluids over a stretching surface in the presence of thermophoresis,” J. Mol. Liq., vol. 224, pp. 1172–1180, 2016. DOI: 10.1016/j.molliq.2016.10.082.
  • S. Gupta, D. Kumar and J. Singh, “MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation,” Int. J. Heat Mass Transfer, vol. 118, pp. 378–387, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.11.007.
  • J. Raza, “Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet,” Propuls. Power Res., vol. 8, no. 2, pp. 138–146, 2019. DOI: 10.1016/j.jppr.2019.01.004.
  • R. U. Haq, S. Nadeem, Z. H. Khan and N. S. Akbar, “Thermal radiation and slip effects on MHD stagnation point flow of nanofluid over a stretching sheet,” Physica E, vol. 65, pp. 17–23, 2015. DOI: 10.1016/j.physe.2014.07.013.
  • T. Hayat, M. I. Khan, M. Tamoor, M. Waqas and A. Alsaedi, “Numerical simulation of heat transfer in MHD stagnation point flow of Cross fluid model towards a stretched surface,” Results Phys., vol. 7, pp. 1824–1827, 2017. DOI: 10.1016/j.rinp.2017.05.022.
  • T. Hayat, S. Asad, M. Mustafa and A. Alsaedi, “MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet,” Comput. Fluids, vol. 108, pp. 179–185, 2015. DOI: 10.1016/j.compfluid.2014.11.016.
  • F. Mabood, W. A. Khan and A. I. M. Ismail, “MHD stagnation point flow and heat transfer impinging on stretching sheet with chemical reaction and transpiration,” Chem. Eng. J., vol. 273, pp. 430–437, 2015. DOI: 10.1016/j.cej.2015.03.037.
  • M. Sajid, B. Ahmed and Z. Abbas, “Steady mixed convection stagnation point flow of MHD Oldroyd-B fluid over a stretching sheet,” J. Egypt. Math. Soc., vol. 23, no. 2, pp. 440–444, 2015. DOI: 10.1016/j.joems.2014.05.013.
  • M. Khan, H. Sardar and M. M. Gulzar, “On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface,” Results Phys., vol. 8, pp. 524–531, 2018. DOI: 10.1016/j.rinp.2017.12.046.
  • P. R. Sharma, S. Sinha, R. S. Yadav and A. N. Filippov, “MHD mixed convective stagnation point flow along a vertical stretching sheet with heat source/sink,” Int. J. Heat Mass Transfer, vol. 117, pp. 780–786, 2018. DOI: 10.1016/j.ijheatmasstransfer.2017.10.026.
  • T. M. Agbaje, S. Mondal, Z. G. Makukula, S. S. Motsa and P. Sibanda, “A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet,” Ain Shams Eng. J., vol. 9, no. 2, pp. 233–243, 2018. DOI: 10.1016/j.asej.2015.10.015.
  • Z. Uddin and M. Kumar, “Effect of temperature dependent properties on MHD free convection flow and heat transfer near the lower stagnation point of a porous isothermal cylinder,” Comput. Model. New Technol., vol. 13, no. 4, pp. 15–20, 2009.
  • Z. Uddin, R. Asthana, M. K. Awasthi and S. Gupta, “Steady MHD flow of nano-fluids over a rotating porous disk in the presence of heat generation/absorption: a numerical study using PSO,” JAFM, vol. 10, no. 3, pp. 871–879, 2017. DOI: 10.18869/acadpub.jafm.73.240.26650.
  • Z. Uddin, K. Sai Vishwak and S. Harmand, “Numerical duality of MHD stagnation point flow and heat transfer of nanofluid past a shrinking/stretching sheet: metaheuristic approach,” Chin. J. Phys., vol. 73, pp. 442–461, 2021. DOI: 10.1016/j.cjph.2021.07.018.
  • Z. Uddin, R. Asthana, M. K. Awasthi and H. Hassan, “A metaheuristic approach for the comparative study of MHD flow of nano liquids in a semi-porous channel,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 22, no. 3, pp. 244–251, 2021. DOI: 10.1080/15502287.2021.1916700.
  • E. O. Fatunmbi, H. A. Ogunseye and P. Sibanda, “Magnetohydrodynamic micropolar fluid flow in a porous medium with multiple slip conditions,” Int. Commun. Heat Mass Transfer, vol. 115, pp. 104577, 2020. DOI: 10.1016/j.icheatmasstransfer.2020.104577.
  • K. Suneetha, G. V. R. Reddy, S. M. Ibrahim and R. S. R. Gorla, “Heat and mass transfer analysis for the MHD forced convective flow of a nanofluid over a slendering stretching sheet with radiation in porous medium,” J. Adv. Thermal Sci. Res., vol. 6, pp. 31–42, 2019.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “Influence of thermal radiation and viscous dissipation on MHD flow of UCM fluid over a porous stretching sheet with higher order chemical reaction,” Special Topics Rev. Porous Media, vol. 12, no. 4, pp. 33–49, 2021.
  • N. Nagi Reddy, V. Srinivasa Rao and B. Ravindra Reddy, “Chemical reaction impact on MHD natural convection flow through porous medium past an exponentially stretching sheet in presence of heat source/sink and viscous dissipation,” Case Stud. Thermal Eng., vol. 25, pp. 100879, 2021. DOI: 10.1016/j.csite.2021.100879.
  • B. K. Swain, B. C. Parida, S. Kar and N. Senapati, “Viscous dissipation and joule heating effect on MHD flow and heat transfer past a stretching sheet embedded in a porous medium,” Heliyon, vol. 6, no. 10, pp. e05338, 2020. DOI: 10.1016/j.heliyon.2020.e05338.
  • D. Gopal, N. Kishan and C. S. K. Raju, “Viscous and Joule’s dissipation on Casson fluid over a chemically reacting stretching sheet with inclined magnetic field and multiple slips,” Inf. Med. Unlocked, vol. 9, pp. 154–160, 2017. DOI: 10.1016/j.imu.2017.08.003.
  • H. R. Patel and R. Singh, “Thermophoresis, Brownian motion and non-linear thermal radiation effects on mixed convection MHD micropolar fluid flow due to nonlinear stretched sheet in porous medium with viscous dissipation, joule heating and convective boundary condition,” Int. Commun. Heat Mass Transfer, vol. 107, pp. 68–92, 2019. DOI: 10.1016/j.icheatmasstransfer.2019.05.007.
  • M. R. Ramana, V. K. Raju and G. J. Kumar, “Multiple slips and heat source effects on MHD stagnation point flow of casson fluid over a stretching sheet in the presence of chemical reaction,” Mater. Today Proc., vol. 49, pp. 2306–2315, 2022.
  • J. Buongiorno, “Convective transport in nanofluids,” J. Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006. DOI: 10.1115/1.2150834.
  • S. Reza-E-Rabbi, S. M. Arifuzzaman, T. Sarkar, M. S. Khan and S. F. Ahmmed, “Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects,” J. King Saud Univ. Sci., vol. 32, no. 1, pp. 690–701, 2020. DOI: 10.1016/j.jksus.2018.10.017.
  • A. M. Sedki, “Effect of thermal radiation and chemical reaction on MHD mixed convective heat and mass transfer in nanofluid flow due to nonlinear stretching surface through porous medium,” Results Mater., vol. 16, pp. 100334, 2022. DOI: 10.1016/j.rinma.2022.100334.
  • R. Biswas, M. S. Hossain, R. Islam, S. F. Ahmmed, S. R. Mishra and M. Afikuzzaman, “Computational treatment of MHD Maxwell nanofluid flow across a stretching sheet considering higher-order chemical reaction and thermal radiation,” J. Comput. Math. Data Sci., vol. 4, pp. 100048, 2022. DOI: 10.1016/j.jcmds.2022.100048.
  • R. Meenakumari, P. Lakshminarayana and K. Vajravelu, “Unsteady MHD flow of a Williamson nanofluid on a permeable stretching surface with radiation and chemical reaction effects,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1355–1370, 2021. DOI: 10.1140/epjs/s11734-021-00039-7.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “Cross-diffusion and heat source effects on a three-dimensional MHD flow of Maxwell nanofluid over a stretching surface with chemical reaction,” Eur. Phys. J. Spec. Top., vol. 230, no. 5, pp. 1371–1379, 2021. DOI: 10.1140/epjs/s11734-021-00037-9.
  • S. E. Ghasemi and M. Hatami, “Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet,” Case Stud. Thermal Eng., vol. 25, pp. 100898, 2021. DOI: 10.1016/j.csite.2021.100898.
  • J. V. Tawade, C. N. Guled, S. Noeiaghdam, U. Fernandez-Gamiz, V. Govindan and S. Balamuralitharan, “Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet,” Results Eng., vol. 15, pp. 100448, 2022. DOI: 10.1016/j.rineng.2022.100448.
  • D. Gopal, S. Jagadha, P. Sreehari, N. Kishan and D. Mahendar, “A numerical study of viscous dissipation with first order chemical reaction and Ohmic effects on MHD nanofluid flow through an exponential stretching sheet,” Mater. Today Proc., vol. 59, pp. 1028–1033, 2022.
  • Vinodkumar Reddy, M Lakshminarayana, P. “Higher order chemical reaction and radiation effects on MHD flow of a Maxwell nanofluid with Cattaneo-Christov heat flux model over a stretching sheet in a porous medium,” J. Fluids Eng., vol. 144, no. 4, pp. 041204, 2022.
  • M. Vinodkumar Reddy and P. Lakshminarayana, “MHD radiative flow of Williamson nanofluid with Cattaneo-Christov model over a stretching sheet through a porous medium in the presence of chemical reaction and suction/injection,” J. Porous Media, vol. 25, no. 12, pp. 1–15, 2022. DOI: 10.1615/JPorMedia.2022041423.
  • A. K. Pandey, H. Upreti and Z. Uddin, “Magnetic SWCNT-Ag/H2O nanofluid flow over cone with volumetric heat generation,” Int. J. Mod. Phys. B, 2023. DOI: 10.1142/S0217979223502533.
  • A. K. Pandey, H. Upreti, N. Joshi and Z. Uddin, “Effect of natural convection on 3D MHD flow of MoS2–GO/H2O via porous surface due to multiple slip mechanisms,” J. Taibah Univ. Sci., vol. 16, no. 1, pp. 749–762, 2022. DOI: 10.1080/16583655.2022.2113729.
  • M. Vinodkumar Reddy, G. Sucharitha, K. Vajravelu and P. Lakshminarayana, “Convective flow of MHD non-Newtonian nanofluids on a chemically reacting porous sheet with Cattaneo-Christov double diffusion,” Waves Random Complex Media, pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2111478.
  • B. Narsimha Reddy and P. Maddileti, “Casson nanofluid and joule parameter effects on variable radiative flow of MHD stretching sheet,” Partial Diff. Equ. Appl. Math., vol. 7, pp. 100487, 2023. DOI: 10.1016/j.padiff.2022.100487.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.