Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
78
Views
1
CrossRef citations to date
0
Altmetric
Articles

Nanoparticle aggregation kinematics on the heat transfer in EG-Cu non-Newtonian nanofluid flow above a cylinder

&
Pages 363-384 | Received 15 Mar 2023, Accepted 04 Jul 2023, Published online: 19 Jul 2023

References

  • S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div. FED, vol. 231, pp. 99–105, 1995.
  • P. M. Patil, M. Kulkarni and P. S. Hiremath, “Nonlinear mixed convection flow of nanofluid past a moving vertical slender cylinder,” Arab J. Sci. Eng., vol. 45, no. 2, pp. 1219–1228, 2020. DOI: 10.1007/s13369-019-04286-8.
  • P. M. Patil, M. Kulkarni and J. R. Tonannavar, “Influence of applied magnetic field on nonlinear mixed convective nanoliquid flow past a permeable rough cone,” Indian J. Phys., vol. 96, no. 5, pp. 1453–1464, 2022. DOI: 10.1007/s12648-021-02073-6.
  • P. M. Patil and M. Kulkarni, “A numerical study on MHD double diffusive nonlinear mixed convective nanofluid flow around a vertical wedge with diffusion of liquid hydrogen,” J. Egypt Math. Soc., vol. 29, no. 1, pp. 1–18, 2021. DOI: 10.1186/s42787-021-00133-8.
  • P. M. Patil and M. Kulkarni, “Influence of activation energy and applied magnetic field on triple-diffusive quadratic mixed convective nanoliquid flow about a slender cylinder,” Eur. Phys. J. Plus., vol. 137, no. 4, pp. 1–14, 2022. DOI: 10.1140/epjp/s13360-022-02647-1.
  • A. J. Chamkha, A. S. Dogonchi and D. D. Ganji, “Magnetohydrodynamic nanofluid natural convection in a cavity under thermal radiation and shape factor of nanoparticles impacts : a numerical study using CVFEM,” Appl. Sci,, vol. 8, no. 12, pp. 2396, 2018. DOI: 10.3390/app8122396.
  • T. Tayebi, A. S. Dogonchi, N. Karimi, H. Ge-Jile, A. J. Chamkha and Y. Elmasry, “Thermo-economic and entropy generation analyses of magnetic natural convective flow in a nanofluid-filled annular enclosure fitted with fins,” Sustain. Energy Technol. Assess., vol. 46, no. May, pp. 101274, 2021. DOI: 10.1016/j.seta.2021.101274.
  • S. Mondal, A. S. Dogonchi, N. Tripathi, M. Waqas, S. M. Seyyedi and D. D. Ganji, “A theoretical nanofluid analysis exhibiting hydromagnetics characteristics employing CVFEM,” J. Brazilian Soc. Mech. Sci. Eng., vol. 2, pp. 1–12, 2020. DOI: 10.1007/s40430-019-2103-2.
  • L. T. Benos, E. G. Karvelas and I. E. Sarris, “Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection,” Therm. Sci. Eng. Prog., vol. 11, pp. 263–271, 2019. DOI: 10.1016/j.tsep.2019.04.007.
  • L. Bao, C. Zhong, P. Jie and Y. Hou, “The effect of nanoparticle size and nanoparticle aggregation on the flow characteristics of nanofluids by molecular dynamics simulation,” Adv. Mech. Eng., vol. 11, no. 11, pp. 168781401988948, 2019. DOI: 10.1177/1687814019889486.
  • B. Mahanthesh and K. Thriveni, “Effects of aggregation on TiO2–ethylene glycol nanoliquid over an inclined cylinder with exponential space-based heat source: sensitivity analysis,” J. Therm. Anal. Calorim., vol. 147, no. 2, pp. 1835–1848, 2022. DOI: 10.1007/s10973-020-10516-1.
  • Z. Shah, P. Kumam and W. Deebani, “Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020. DOI: 10.1038/s41598-020-61125-9.
  • I. S. Oyelakin, S. Mondal, P. Sibanda and D. Sibanda, “Bioconvection in Casson nanofluid flow with Gyrotactic microorganisms and variable surface heat flux,” Int. J. Biomath., vol. 12, no. 04, pp. 1950041, 2019. DOI: 10.1142/S1793524519500414.
  • S. Reza-e-Rabbi, S. M. Arifuzzaman, T. Sarkar, S. Khan and S. F. Ahmmed, “Explicit Finite Difference Analysis of an Unsteady MHD Flow of a Chemically Reacting Casson Fluid Past a Stretching Sheet with Brownian Motion and Thermophoresis Effects,” J. King Saud Univ. - Sci, vol. 32, no. 1, pp. 690–701, 2020. DOI: 10.1016/j.jksus.2018.10.017.
  • T. Hayat, M. Qasim and S. Mesloub, “MHD flow and heat transfer over permeable stretching sheet with slip conditions,” Int. J. Numer. Meth. Fluids, vol. 66, no. 8, pp. 963–975, 2011. DOI: 10.1002/fld.
  • B. Ramadevi, K. Anantha Kumar, V. Sugunamma, J. V. Ramana Reddy and N. Sandeep, “Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model,” J. Therm. Anal. Calorim., vol. 139, no. 2, pp. 1379–1393, 2020. DOI: 10.1007/s10973-019-08477-1.
  • D. Pal and H. Mondal, “Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable viscosity,” Int. Commun. Heat Mass Transf, vol. 39, no. 7, pp. 913–917, 2012. DOI: 10.1016/j.icheatmasstransfer.2012.05.012.
  • N. V. Ganesh, A. K. A. Hakeem and B. Ganga, “Darcy–Forchheimer flow of hydromagnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip, viscous and Ohmic dissipations effects,” Ain Shams Eng. J., vol. 9, no. 4, pp. 939–951, 2018. DOI: 10.1016/j.asej.2016.04.019.
  • S. Dabiri and M. F. Rahimi, “Introduction of Solar Collectors and Energy and Exergy Analysis of a Heliostat Plant,” 3rd Int. Conf. Exhib. Sol. Energy, pp. 1–7, 2016. https://www.researchgate.net/publication/318360867.
  • W. Jamshed, K. S. Nisar, R. W. Ibrahim, F. Shahzad and M. R. Eid, “Thermal expansion optimization in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar thermal application,” J. Mater. Res. Technol., vol. 14, pp. 985–1006, 2021. DOI: 10.1016/j.jmrt.2021.06.031.
  • N. S. Khan, T. Gul, S. Islam, I. Khan, A. M. Alqahtani and A. S. Alshomrani, “Magnetohydrodynamic nanoliquid thin film sprayed on a stretching cylinder with heat transfer,” Appl. Sci., vol. 7, no. 3, pp. 271, 2017. DOI: 10.3390/app7030271.
  • A. H. Usman, N. S. Khan, U. W. Humphries, P. Kumam and S. A. Rano, “Computational Investigations of Arrhenius Activation Energy and Entropy Generation in A Viscoelastic Nanofluid Flow Thin Film Sprayed on A Stretching Cylinder,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 86, no. 1, pp. 27–51, 2021. DOI: 10.37934/arfmts.86.1.2751.
  • M. Sheikholeslami, D. D. Ganji, M. Y. Javed and R. Ellahi, “Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of a two-phase model,” J. Magnetism Magnetic Mater., vol. 374, pp. 36–43, 2015. DOI: 10.1016/j.jmmm.2014.08.021.
  • F. Mabood, R. G. Abdel-Rahman and G. Lorenzini, “Effect of Melting Heat Transfer and Thermal Radiation on Casson Fluid Flow in Porous Medium over Moving Surface with Magnetohydrodynamics,” J. Eng. Thermophys., vol. 25, no. 4, pp. 536–547, 2016. DOI: 10.1134/S1810232816040111.
  • A. S. Dogonchi, et al., “Investigation of magnetohydrodynamic fl uid squeezed between two parallel disks by considering Joule heating, thermal radiation, and adding different nanoparticles,” HFF, vol. 30, no. 2, pp. 659–680, 2020. DOI: 10.1108/HFF-05-2019-0390.
  • M. G. Reddy and K. V. Reddy, “Influence of Joule Heating on MHD Peristaltic Flow of a Nanofluid with Compliant Walls,” Proc. Eng, vol. 127, pp. 1002–1009, 2015. DOI: 10.1016/j.proeng.2015.11.449.
  • N. Safwa, N. Arifin and I. Pop, “Magnetohydrodynamics (MHD) boundary layer flow of hybrid nanofluid over a moving plate with Joule heating,” Alexandria Eng. J., vol. 61, no. 3, pp. 1938–1945, 2022. no DOI: 10.1016/j.aej.2021.07.032.
  • A. Rasekh, D. D. Ganji and S. Tavakoli, “Numerical solutions for a nanofluid past over a stretching circular cylinder with a non-uniform heat source,” Frontier Heat M. Transfer, vol. 3, no. 4, pp. 1–6, 2013. DOI: 10.5098/hmt.v3.4.3003.
  • M. Ramzan, N. Shaheen, J. D. Chung, S. Kadry, Y.-M. Chu and F. Howari, “Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder,” Sci. Rep., vol. 11, no. 1, pp. 1–19, 2021. DOI: 10.1038/s41598-021-81747-x.
  • J. Kumar and N. Sandeep, “Numerical simulation of Sutterby hybrid nanoliquid flow between two concentric cylinders with thermal radiation,” Numer. Heat Transf. Part B Fund., vol. 84, no. 1, pp. 50–65, 2023. DOI: 10.1080/10407790.2023.2186549.
  • D. Pal, D. Chatterjee and K. Vajravelu, “Influence of magneto-thermo radiation on heat transfer of a thin nano fl uid fi lm with non-uniform heat source/sink,” Propulsion Power Res., ” vol. 9, no. 2, pp. 169–180, 2020. DOI: 10.1016/j.jppr.2020.03.003.
  • P. Sunthrayuth, et al., “Case studies in thermal engineering impact of nanoparticle aggregation on heat transfer phenomena of second grade nanofluid flow over melting surface subject to homogeneous-heterogeneous reactions Nomenclature,” Case Stud. Therm. Eng., vol. 32, pp. 101897, 2022. DOI: 10.1016/j.csite.2022.101897.
  • Z. Mahmood and U. Khan, “Nanoparticles aggregation effects on MHD Mixed convective stagnation point ow of water-based nano liquid past a permeable stretching sheet in presence of thermal stratification,” Res. Sq., 2022. DOI: 10.21203/rs.3.rs-1537021/v1.
  • T. Cebeci and P. Bradshaw, Physical and Computational Aspects of Convective Heat Transfer, Berlin Heidelberg: Springer-Verlag, 1984. DOI: 10.1007/978-3-662-02411-9.
  • F. Shahzad, W. Jamshed, S. U. D. Sathyanarayanan, A. Aissa, P. Madheshwaran and A. Mourad, “Thermal analysis on Darcy-Forchheimer swirling Casson hybrid nanofluid flow inside parallel plates in parabolic trough solar collector: An application to solar aircraft,” Int. J. Energy Res., vol. 45, no. 15, pp. 20812–20834, 2021. DOI: 10.1002/er.7140.
  • A. K. Mishra, P. K. Pattnaik, S. R. Mishra and N. Senapati, “Dissipative heat energy on Cu and Al2O3 ethylene–glycol-based nanofluid flow over a heated semi-infinite vertical plate,” J. Therm. Anal. Calorim., vol. 145, no. 1, pp. 129–137, 2021. DOI: 10.1007/s10973-020-09666-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.