Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 4
156
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimization analysis of multi-layered microchannel heat sink

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 412-425 | Received 10 Jan 2023, Accepted 10 Jul 2023, Published online: 17 Jul 2023

References

  • Z. Khattak and H. M. Ali, “Air cooled heat sink geometries subjected to forced flow: a critical review,” Int. J. Heat Mass Transfer, vol. 130, pp. 141–161, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.08.048.
  • J. S. Lee, et al., “Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics,” IEEE Trans. Adv. Packag., vol. 32, no. 2, pp. 453–460, 2009. DOI: 10.1109/TCAPT.2008.2005783.
  • D. B. Tuckerman and R. F. W. Pease, “High-performance heat sinking for VLSI,” IEEE Electron Device Lett, vol. 2, no. 5, pp. 126–129, 1981. DOI: 10.1109/EDL.1981.25367.
  • K. N. Ramesh, T. K. Sharma and G. A. P. Rao, “Latest advancements in heat transfer enhancement in the micro-channel heat sinks: a review,” Arch Computat Methods Eng, vol. 28, no. 4, pp. 3135–3165, 2021. DOI: 10.1007/s11831-020-09495-1.
  • N. H. Naqiuddin, L. H. Saw, M. C. Yew, F. Yusof, T. C. Ng and M. K. Yew, “Overview of micro-channel design for high heat flux application,” Renew. Sustain. Energy Rev., vol. 82, pp. 901–914, 2018. DOI: 10.1016/j.rser.2017.09.110.
  • H. Wang, Z. Chen and J. Gao, “Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks,” APPl. Thermal Engin., vol. 107, pp. 870–879, 2016. DOI: 10.1016/j.applthermaleng.2016.07.039.
  • Z. Li, W.-Q. Tao and Y.-L. He, “A numerical study of laminar convective heat transfer in microchannel with non-circular cross-section,” Int. J. Thermal Sci., vol. 45, no. 12, pp. 1140–1148, 2006. DOI: 10.1016/j.ijthermalsci.2006.01.011.
  • A. K. Tilak and R. S. Patil, “Study on effects of novel cross sections of microchannel heat sink on thermohydraulic performance,” J. Heat Transfer-Transactions Asme, vol. 142, no. 4, pp. 044506, 2020. DOI: 10.1115/1.4046342.
  • Y. P. Chen, C. B. Zhang, M. H. Shi and J. F. Wu, “Three-dimensional numerical simulation of heat and fluid flow in noncircular microchannel heat sinks,” Int. Commun. Heat Mass Transfer, vol. 36, no. 9, pp. 917–920, 2009. DOI: 10.1016/j.icheatmasstransfer.2009.06.004.
  • M. R. Thansekhar and C. Anbumeenakshi, “Experimental investigation of thermal performance of microchannel heat sink with nanofluids al2o3/water and sio2/water,” Exp. Tech., vol. 41, no. 4, pp. 399–406, 2017. DOI: 10.1007/s40799-017-0189-y.
  • T. G. Karayiannis and M. M. Mahmoud, “Flow boiling in microchannels: fundamentals and applications,” APPl. Thermal Engin., vol. 115, pp. 1372–1397, 2017. DOI: 10.1016/j.applthermaleng.2016.08.063.
  • J. Zhou, X. Cao, N. Zhang, Y. Yuan, X. Zhao and D. Hardy, “Micro-channel heat sink: a review,” J. Therm. Sci, vol. 29, no. 6, pp. 1431–1462, 2020. DOI: 10.1007/s11630-020-1334-y.
  • X. J. Shi, S. Li, Y. D. Wei and J. M. Gao, “Numerical investigation of laminar convective heat transfer and pressure drop of water-based al2o3 nanofluids in a microchannel,” Int. Commun. Heat Mass Transfer, vol. 90, pp. 111–120, 2018. DOI: 10.1016/j.icheatmasstransfer.2017.11.007.
  • A. Husain, M. Ariz, N. Z. H. Al-Rawahi and M. Z. Ansari, “Thermal performance analysis of a hybrid micro-channel, -pillar and -jet impingement heat sink,” APPl. thermal Engineering: design, Processes, Equipment, Economics, vol. 102, pp. 989–1000, 2016. DOI: 10.1016/j.applthermaleng.2016.03.048.
  • A. Bejan and M. R. Errera, “Deterministic tree networks for fluid flow: geometry for minimal flow resistance between a volume and one point,” Fractals, vol. 05, no. 04, pp. 685–695, 1997. DOI: 10.1142/S0218348X97000553.
  • Z. L. Chiam, P. S. Lee, P. K. Singh and N. Mou, “Investigation of fluid flow and heat transfer in wavy micro-channels with alternating secondary branches,” Int. J. Heat Mass Transfer, vol. 101, pp. 1316–1330, 2016. DOI: 10.1016/j.ijheatmasstransfer.2016.05.097.
  • M. K. D. Chakravarthii, D. Mutharasu and S. Shanmugan, “Experimental and numerical investigation of pressure drop and heat transfer coefficient in converging-diverging microchannel heat sink,” Heat Mass Transfer, vol. 53, no. 7, pp. 2265–2277, 2017. DOI: 10.1007/s00231-017-1978-7.
  • K. Vafai and L. Zhu, “Analysis of two-layered micro-channel heat sink concept in electronic cooling,” Int. J. Heat Mass Transfer, vol. 42, no. 12, pp. 2287–2297, 1999. DOI: 10.1016/s0017-9310(98)00017-9.
  • P. Skandakumaran, A. Ortega, T. Jamal-Eddine and R. Vaidyanathan, “Multi-layered sic microchannel heat sinks - modeling and experiment,” 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems,. ITherm 2004. Las Vegas, NV, USA, Jun. 2004 2004 vol. 1, pp. 352–360, DOI: 10.1109/itherm.2004.1319196.
  • X. J. Wei and Y. Joshi, "Optimization study of stacked micro-channel heat sinks for micro-electronic cooling,"IEEE Trans. Comp. Packag. Technol., vol. 26, no. 1, pp. 55–61, 2003, DOI: 10.1109/TCAPT.2003.811473.
  • R. J. Phillips, “Microchannel heat sinks,” The Lincoln Laboratory J., vol. 1, no. 1, pp. 31–48, 1988.
  • N. Lei, P. Skandakumaran and A. Ortega, “Experiments and modeling of multilayer copper minichannel heat sinks in single-phase flow,” Presented at 10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, ITherm, San Diego, CA, USA, Jan. 2006. DOI: 10.1109/ITHERM.2006.1645318.
  • A. M. Adham, N. Mohd-Ghazali and R. Ahmad, “Thermal and hydrodynamic analysis of microchannel heat sinks: a review,” Renew. Sustain. Energy Rev., vol. 21, pp. 614–622, 2013. DOI: 10.1016/j.rser.2013.01.022.
  • M. O. Qidwai, I. A. Badruddin, N. Z. Khan, M. A. Khan and S. Alshahrani, “Optimization of microjet location using surrogate model coupled with particle swarm optimization algorithm,” Mathematics, vol. 9, no. 17, pp. 2167, 2021. DOI: 10.3390/math9172167.
  • L. Lin, Y.-Y. Chen, X.-X. Zhang and X.-D. Wang, “Optimization of geometry and flow rate distribution for double-layer microchannel heat sink,” Int. J. Therm. Sci., vol. 78, pp. 158–168, 2014. DOI: 10.1016/j.ijthermalsci.2013.12.009.
  • S. H. Chong, K. T. Ooi and T. N. Wong, “Optimisation of single and double layer counter flow microchannel heat sinks,” APPl. Therm. Engin., vol. 22, no. 14, pp. 1569–1585, 2002. DOI: 10.1016/s1359-4311(02)00083-2.
  • G. Liu, B. Zhang, Y. Zhang and C. Guo, “Modeling of double-layer triangular microchannel heat sink based on thermal resistance network and multivariate structural optimization using firefly algorithm,” Numer. Heat Transfer Part B Fundam., vol. 77, no. 5, pp. 417–428, 2020. DOI: 10.1080/10407790.2020.1717834.
  • X. Wei and Y. Joshi, “Stacked microchannel heat sinks for liquid cooling of microelectronic components,” J. Electron. Packag., vol. 126, no. 1, pp. 60–66, 2004. DOI: 10.1115/1.1647124.
  • K. Jeevan, G. Quadir, K. Seetharamu, I. Azid and Z. Zainal, “Optimization of thermal resistance of stacked micro‐channel using genetic algorithms,” Int. J. Numer. Methods Heat Fluid Flow, vol. 15, no. 1, pp. 27–42, 2005. DOI: 10.1108/09615530510571930.
  • B. Shao, L. Wang, H. Cheng and J. Li, “Optimization and numerical simulation of multi-layer microchannel heat sink," International Conference on Advances in Computational Modeling and Simulation (ACMS), Kunming, CHN,” Procedia Engin., vol. 31, pp. 928–933, 2012. DOI: 10.1016/j.proeng.2012.01.1123.
  • Y. Yang, et al., “Optimizing the size of a printed circuit heat exchanger by multi-objective genetic algorithm,” APPl. Thermal Engineering, vol. 167, pp. 114811, 2020. DOI: 10.1016/j.applthermaleng.2019.114811.
  • K. Bennett and Y-t Chen, “Printed circuit heat exchanger performance analysis using non-uniform segmental design method,” APPl. Thermal Engineering, vol. 153, pp. 69–84, 2019. DOI: 10.1016/j.applthermaleng.2019.02.102.
  • J.-W. Seo, Y.-H. Kim, D. Kim, Y.-D. Choi and K.-J. Lee, “Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers,” Entropy, vol. 17, no. 5, pp. 3438–3457, 2015. DOI: 10.3390/e17053438.
  • C. B. Sobhan and S. V. Garimella, “A comparative analysis of studies on heat transfer and fluid flow in microchannels,” Microscale Thermophysical Engineering, vol. 5, no. 4, pp. 293–311, 2001. DOI: 10.1080/10893950152646759.
  • J. Lu, B. Zhou, Z. Xu, J. Jiang, Y. Guo and Y. Hao, “Flow characteristics in microchannel with different cross-section,” Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), vol. 41, no. 3, pp. 554–557, 2011. DOI: 10.3969/j.issn.1001-0505.2011.03.024.
  • Z. He, Y. Yan and Z. Zhang, “Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review,” Energy, vol. 216, pp. 119223, 2021. DOI: 10.1016/j.energy.2020.119223.
  • Z. Dai, Z. Zheng, D. Fletcher and B. Haynes, “Experimental study of transient behaviour of laminar flow in zigzag semi-circular microchannels,” Exper. Thermal Fluid Sci., vol. 68, pp. 644–651, 2015. DOI: 10.1016/j.expthermflusci.2015.07.001.
  • P. E. Geyer, D. F. Fletcher and B. S. Haynes, “Laminar flow and heat transfer in a periodic trapezoidal channel with semi-circular cross-section,” Int. J. Heat Mass Transfer, vol. 50, no. 17-18, pp. 3471–3480, 2007. DOI: 10.1016/j.ijheatmasstransfer.2007.01.050.
  • B. A. Jasperson, Y. Jeon, K. T. Turner, F. E. Pfefferkorn, and W. Qu, "Comparison of micro-pin-fin and microchannel heat sinks considering thermal-hydraulic performance and manufacturability,"IEEE Trans. Comp. Packag. Technol., vol. 33, no. 1, pp. 148–160, 2010, DOI: 10.1109/TCAPT.2009.2023980.
  • C. Huang, W. Cai, Y. Wang, Y. Liu, Q. Li and B. Li, “Review on the characteristics of flow and heat transfer in printed circuit heat exchangers,” APPl. Therm. Engin., vol. 153, pp. 190–205, 2019. review DOI: 10.1016/j.applthermaleng.2019.02.131.
  • A. J. Ghajar, C. C. Tang and W. L. Cook, “Experimental investigation of friction factor in the transition region for water flow in minitubes and microtubes,” Heat Transfer Engin., vol. 31, no. 8, pp. 646–657, 2010. DOI: 10.1080/01457630903466613.
  • X. F. Peng and G. P. Peterson, “Convective heat transfer and flow friction for water flow in microchannel structures,” Int. J. Heat Mass Transfer, vol. 39, no. 12, pp. 2599–2608, 1996. DOI: 10.1016/0017-9310(95)00327-4.
  • X. F. Peng, G. P. Peterson and B. X. Wang, “Heat transfer characteristics of water flowing through microchannels,” Exper. Heat Transfer, vol. 7, no. 4, pp. 265–283, 1994. DOI: 10.1080/08916159408946485.
  • K. V. Sharp and R. J. Adrian, “Transition from laminar to turbulent flow in liquid filled microtubes,” Exp Fluids, vol. 36, no. 5, pp. 741–747, 2004. DOI: 10.1007/s00348-003-0753-3.
  • S. W. Hong and A. E. Bergles, “Laminar-flow heat-transfer in entrance region of semicircular tubes with uniform heat-flux,” Int. J. Heat Mass Transfer, vol. 19, no. 1, pp. 123–124, 1976. DOI: 10.1016/0017-9310(76)90021-1.
  • R. M. Manglik and A. E. Bergles, “Laminar-flow heat-transfer in a semi-circular tube with uniform wall temperature,” Int. J. Heat Mass Transfer, vol. 31, no. 3, pp. 625–636, 1988. DOI: 10.1016/0017-9310(88)90044-0.
  • E. M. Sparrow and A. Haji-Sheikh, “Flow and heat transfer in ducts of arbitrary shape with arbitrary thermal boundary conditions,” J. Heat Transfer, vol. 88, no. 4, pp. 351–357, 1966. DOI: 10.1115/1.3691570.
  • Y. C. Li, L. N. Zhao and S. J. Zhou, “Review of genetic algorithm,” AMR, vol. 179–180, pp. 365–367, 2011. DOI: 10.4028/www.scientific.net/AMR.179-180.365.
  • L. Gosselin, M. Tye-Gingras and F. Mathieu-Potvin, “Review of utilization of genetic algorithms in heat transfer problems,” Int. J. Heat Mass Transfer, vol. 52, no. 9-10, pp. 2169–2188, 2009. DOI: 10.1016/j.ijheatmasstransfer.2008.11.015.
  • S. Katoch, S. S. Chauhan and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed Tools Appl, vol. 80, no. 5, pp. 8091–8126, 2021. DOI: 10.1007/s11042-020-10139-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.