Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 6
115
Views
1
CrossRef citations to date
0
Altmetric
Articles

A numerical study of two-phase nanofluid MHD boundary layer flow with heat absorption or generation and chemical reaction over an exponentially stretching sheet by Haar wavelet method

&
Pages 706-735 | Received 28 Apr 2023, Accepted 22 Aug 2023, Published online: 05 Sep 2023

References

  • L. J. Crane, “Flow past a stretching plate,” J. Appl. Math. Phys. (ZAMP), vol. 21, no. 4, pp. 645–647, 1970. DOI: 10.1007/BF01587695.
  • B. Bidin and R. Nazar, “Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation,” Eur. J. Sci. Res., vol. 33, no. 4, pp. 710–717, 2009.
  • I. L. Animasaun, E. A. Adebile, and A. I. Fagbade, “Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method,” J. Nigerian Math. Soc., vol. 35, no. 1, pp. 1–17, 2016. DOI: 10.1016/j.jnnms.2015.02.001.
  • N. N. Reddy, V. S. Rao, and B. R. Reddy, “Chemical reaction impact on MHD natural convection flow through porous medium past an exponentially stretching sheet in presence of heat source/sink and viscous dissipation,” Case Stud. Therm. Eng., vol. 25, pp. 100879, 2021. DOI: 10.1016/j.csite.2021.100879.
  • T. Hayat, M. I. Khan, M. Waqas, A. Alsaedi, and T. Yasmeen, “Diffusion of chemically reactive species in third grade fluid flow over an exponentially stretching sheet considering magnetic field effects,” Chin. J. Chem. Eng., vol. 25, no. 3, pp. 257–263, 2017. DOI: 10.1016/j.cjche.2016.06.008.
  • S. Naramgari and C. Sulochana, “Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption,” Appl. Nanosci., vol. 6, no. 1, pp. 131–139, 2016. DOI: 10.1007/s13204-015-0420-z.
  • D. Srinivasacharya and P. Jagadeeshwar, “Effect of Joule heating on the flow over an exponentially stretching sheet with convective thermal condition,” Math. Sci., vol. 13, no. 3, pp. 201–211, 2019. DOI: 10.1007/s40096-019-0290-8.
  • M. R. Krishnamurthy, B. C. Prasannakumara, B. J. Gireesha, and R. S. Gorla, “Effect of viscous dissipation on hydromagnetic fluid flow and heat transfer of nanofluid over an exponentially stretching sheet with fluid-particle suspension,” Cogent. Math., vol. 2, no. 1, pp. 1050973, 2015. DOI: 10.1080/23311835.2015.1050973.
  • M. Sajid and T. Hayat, “Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet,” Int. Commun. Heat Mass Transf., vol. 35, no. 3, pp. 347–356, 2008. DOI: 10.1016/j.icheatmasstransfer.2007.08.006.
  • A. Ishak, “MHD boundary layer flow due to an exponentially stretching sheet with radiation effect,” Sains Malays., vol. 40, no. 4, pp. 391–395, 2011.
  • M. Ferdows, M. S. Khan, M. M. Alam, and S. Shuyu, “MHD mixed convective boundary layer flow of a nanofluid through a porous medium due to an exponentially stretching sheet,” Math. Probl. Eng., vol. 2012, pp. 1–21, 2012. DOI: 10.1155/2012/408528.
  • K. Ahmad, Z. Hanouf, and A. Ishak, “Mixed convection Jeffrey fluid flow over an exponentially stretching sheet with magnetohydrodynamic effect,” AIP Adv., vol. 6, pp. 035024, 2016.
  • E. Sanjayanand and S. K. Khan, “On heat and mass transfer in a viscoelastic boundary layer flow over an exponentially stretching sheet,” Int. J. Therm. Sci., vol. 45, no. 8, pp. 819–828, 2006. DOI: 10.1016/j.ijthermalsci.2005.11.002.
  • M. Mustafa, A. Mushtaq, T. Hayat, and A. Alsaedi, “Radiation effects in three-dimensional flow over a bi-directional exponentially stretching sheet,” J. Taiwan Inst. Chem. Eng., vol. 47, pp. 43–49, 2015. DOI: 10.1016/j.jtice.2014.10.011.
  • S. Mukhopadhyay, “Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation,” Ain Shams Eng. J., vol. 4, no. 3, pp. 485–491, 2013. DOI: 10.1016/j.asej.2012.10.007.
  • M. R. Eid, “Chemical reaction effect on MHD boundary-layer flow of two-phase nanofluid model over an exponentially stretching sheet with a heat generation,” J. Mol. Liq., vol. 220, pp. 718–725, 2016. DOI: 10.1016/j.molliq.2016.05.005.
  • T. Hayat, A. Shafiq, A. Alsaedi, and S. Shahzad, “Unsteady MHD flow over exponentially stretching sheet with slip conditions,” Appl. Math. Mech.-Engl. Ed., vol. 37, no. 2, pp. 193–208, 2016. DOI: 10.1007/s10483-016-2024-8.
  • A. Ur Rehman and Z. Abbas, “Stability analysis of heat transfer in nanomaterial flow of boundary layer towards a shrinking surface: hybrid nanofluid versus nanofluid,” Alex. Eng. J., vol. 61, no. 12, pp. 10757–10768, 2022. DOI: 10.1016/j.aej.2022.04.020.
  • A. Ur Rehman, Z. Abbas, and J. Hasnain, “Prediction of heat and mass transfer in radiative hybrid nanofluid with chemical reaction using the least square method: a stability analysis of dual solution,” Numer. Heat Transf. A: Appl., vol. 83, no. 9, pp. 958–975, 2023. DOI: 10.1080/10407782.2022.2156410.
  • A. Rehman, Z. Abbas, A. Ali, A. K. Alzahrani, and M. Asma, “Intensification of heat and mass transfer in nanomaterial flow over a rotating channel with chemical reaction: a comparative study,” Z. Angew. Math. Mech., 2023. DOI: 10.1002/zamm.202100249.
  • Z. Abbas, A. Ur Rehman, S. Khaliq, and M. Y. Rafiq, “Flow dynamics of MHD hybrid nanofluid past a moving thin needle with a temporal stability test: a Galerkin method approach,” Numer. Heat Transf. B: Fundam., vol. 84, no. 3, pp. 329–347, 2023. DOI: 10.1080/10407790.2023.2202882.
  • K. Sharma, N. Vijay, and S. Kumar, “Significance of geothermal viscosity and heat generation/absorption on magnetic nanofluid flow and heat transfer,” Numer. Heat Transf. A: Appl., vol. 82, no. 3, pp. 70–81, 2022. DOI: 10.1080/10407782.2022.2066921.
  • K. Sharma, N. Vijay, S. Kumar, and R. Mehta, “Heat and mass transfer study of hydrocarbon based magnetic nanofluid (C1-20B) with geothermal viscosity,” Proc. Inst. Mech. Eng. E: J. Process Mech. Eng., pp. 095440892210799, 2022. DOI: 10.1177/09544089221079949.
  • K. Sharma, N. Vijay, D. Bhardwaj, and R. Jindal, “Flow of water conveying Fe3O4 and Mn–ZnFe2O4 nanoparticles over a rotating disk: significance of thermophoresis and Brownian motion,” J. Magn. Magn. Mater., vol. 574, pp. 170710, 2023. DOI: 10.1016/j.jmmm.2023.170710.
  • N. Vijay and K. Sharma, “Dynamics of stagnation point flow of Maxwell nanofluid with combined heat and mass transfer effects: a numerical investigation,” Int. Commun. Heat Mass Transf., vol. 141, pp. 106545, 2023. DOI: 10.1016/j.icheatmasstransfer.2022.106545.
  • K. Sharma, S. Kumar, and N. Vijay, “Insight into the motion of water-copper nanoparticles over a rotating disk moving upward/downward with viscous dissipation,” Int. J. Mod. Phys. B, vol. 36, no. 29, pp. 2250210, 2022. DOI: 10.1142/S0217979222502101.
  • V. Mishra, “Haar wavelet approach to fluid flow between parallel plates,” Int. J. Fluids Eng., vol. 3, no. 4, pp. 403–410, 2011.
  • V. B. Awati, N. Mahesh Kumar, and A. Wakif, “Haar wavelet scrutinization of heat and mass transfer features during the convective boundary layer flow of a nanofluid moving over a nonlinearly stretching sheet,” Part. Differential Equations Appl. Math., vol. 4, pp. 100192, 2021. DOI: 10.1016/j.padiff.2021.100192.
  • S. Kumbinarasaiah and K. R. Raghunatha, “The applications of Hermite wavelet method to nonlinear differential equations arising in heat transfer,” Int. J. Thermofluids, vol. 9, pp. 100066, 2021. DOI: 10.1016/j.ijft.2021.100066.
  • H. Karkera, N. N. Katagi, and R. B. Kudenatti, “Analysis of general unified MHD boundary-layer flow of a viscous fluid - a novel numerical approach through wavelets,” Math. Comput. Simul., vol. 168, pp. 135–154, 2020. DOI: 10.1016/j.matcom.2019.08.004.
  • N. A. Khan, F. Sultan, A. Shaikh, A. Ara, and Q. Rubbab, “Haar wavelet solution of the MHD Jeffery Hamel flow and heat transfer in Eyring Powell fluid,” AIP Adv., vol. 6, pp. 115102, 2016.
  • S. Kumbinarasaiah and M. P. Preetham, “Applications of the Bernoulli wavelet collocation method in the analysis of MHD boundary layer flow of a viscous fluid,” J. Umm Al-Qura Univ. Appl. Sci., vol. 9, no. 1, pp. 1–14, 2023. DOI: 10.1007/s43994-022-00013-6.
  • S. M. Aznam, N. A. C. Ghani, and M. S. H. Chowdhury, “A numerical solution for nonlinear heat transfer of fin problems using the Haar wavelet quasilinearization method,” Results Phys., vol. 14, pp. 102393, 2019. DOI: 10.1016/j.rinp.2019.102393.
  • S. Ul Islam, B. Sarler, I. Aziz, and F. i-Haq, “Haar wavelet collocation method for the numerical solution of boundary layer fluid flow problems,” Int. J. Therm. Sci., vol. 50, no. 5, pp. 686–697, 2011. DOI: 10.1016/j.ijthermalsci.2010.11.017.
  • H. Kaur, V. Mishra, and R. C. Mittal, “Numerical solution of a laminar viscous flow boundary layer equation using uniform Haar wavelet quasi-linearization method,” World Acad. Sci. Eng. Technol., vol. 79, pp. 1410–1417, 2013.
  • S. Kumbinarasaiah, K. R. Raghunatha, and M. P. Preetham, “Applications of Bernoulli wavelet collocation method in the analysis of Jeffery–Hamel flow and heat transfer in Eyring–Powell fluid,” J. Therm. Anal. Calorim., vol. 148, no. 3, pp. 1173–1189, 2023. DOI: 10.1007/s10973-022-11706-9.
  • V. B. Awati and N. Mahesh Kumar, “Analysis of forced convection boundary layer flow and heat transfer past a semi-infinite static and moving flat plate using nanofluids-by Haar wavelets,” j Nanofluids, vol. 10, no. 1, pp. 106–117, 2021. DOI: 10.1166/jon.2021.1771.
  • Z. Siri, N. A. C. Ghani, and R. M. Kasmani, “Heat transfer over a steady stretching surface in the presence of suction,” Bound. Value Probl., vol. 2018, pp. 1-16, 2018. DOI: 10.1186/s13661-018-1019-6.
  • M. Usman, T. Zubair, M. Hamid, R. U. Haq, and Z. H. Khan, “Unsteady flow and heat transfer of tangent-hyperbolic fluid: Legendre wavelet-based analysis,” Heat Transf., vol. 50, no. 4, pp. 3079–3093, 2021. DOI: 10.1002/htj.22019.
  • G. Hariharan, K. Kannan, and K. R. Sharma, “Haar wavelet method for solving Fisher’s equation,” Appl. Math. Comput., vol. 211, no. 2, pp. 284–292, 2009. DOI: 10.1016/j.amc.2008.12.089.
  • R. Singh, J. Shahni, H. Garg, and A. Garg, “Haar wavelet collocation approach for Lane-Emden equations arising in mathematical physics and astrophysics,” Eur. Phys. J. Plus, vol. 134, no. 11, pp. 548, 2019. DOI: 10.1140/epjp/i2019-12889-1.
  • S. C. Shiralashetti and A. B. Deshi, “An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations,” Nonlinear Dyn., vol. 83, no. 1–2, pp. 293–303, 2016. DOI: 10.1007/s11071-015-2326-4.
  • G. Hariharan and K. Kannan, “Haar wavelet method for solving Cahn-Allen equation,” Appl. Math. Sci., vol. 3, pp. 2523– 2533, 2009.
  • R. Singh, V. Guleria, and M. Singh, “Haar wavelet quasilinearization method for numerical solution of Emden–Fowler type equations,” Math. Comput. Simul., vol. 174, pp. 123–133, 2020. DOI: 10.1016/j.matcom.2020.02.004.
  • R. Amin et al., “Haar wavelet method for solution of variable order linear fractional integro-differential equations,” AIIMS Math., vol. 7, no. 4, pp. 5431–5443, 2022. DOI: 10.3934/math.2022301.
  • A. Raza and A. Khan, “Haar wavelet series solution for solving neutral delay differential equations,” J. King Saud Univ. Sci., vol. 31, no. 4, pp. 1070–1076, 2019. DOI: 10.1016/j.jksus.2018.09.013.
  • Ü. Lepik, “Numerical solution of evolution equations by the Haar wavelet method,” Appl. Math. Comput., vol. 185, no. 1, pp. 695–704, 2007. DOI: 10.1016/j.amc.2006.07.077.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.