Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
65
Views
2
CrossRef citations to date
0
Altmetric
Articles

Numerical investigation of non-linear radiative flow of hybrid nanofluid past a stretching cylinder with inclined magnetic field

ORCID Icon &
Pages 842-866 | Received 19 May 2023, Accepted 01 Sep 2023, Published online: 14 Sep 2023

References

  • Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” J. Heat Transf., vol. 125, no. 1, pp. 151–155, 2003. DOI: 10.1115/1.1532008.
  • M. Bahiraei and M. Hangi, “Flow and heat transfer characteristics of magnetic nanofluids: a review,” J. Magnet. Magnetic Mater., vol. 374, no. 1, pp. 125–138, 2015. DOI: 10.1016/j.jmmm.2014.08.004.
  • H. M. Ali, H. Ali, H. Liaquat, H. T. B. Maqsood, and M. A. Nadir, “Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids,” Energy, vol. 84, no. 5, pp. 317–324, 2015. DOI: 10.1016/j.energy.2015.02.103.
  • M. U. Sajid and H. M. Ali, “Recent advances in application of nanofluids in heat transfer devices: a critical review,” Renew. Sustain. Energy Rev., vol. 103, no. 4, pp. 556–592, 2019. DOI: 10.1016/j.rser.2018.12.057.
  • P. M. Patil and H. F. Shankar, “Heat transfer attributes of al2o3-fe3o4/h2o hybrid nanofluid flow over a yawed cylinder,” Propulsion Power Res., vol. 11, no. 3, pp. 416–429, 2022. DOI: 10.1016/j.jppr.2022.06.002.
  • M. R. Khan et al., “Energy and mass transport through hybrid nanofluid flow passing over an extended cylinder with the magnetic dipole using a computational approach,” Front. Energy Res., vol. 10, no. 10, pp.1-14, 2022. DOI: 10.3389/fenrg.2022.980042.
  • B. K. Sharma and R. Gandhi, “Combined effects of joule heating and non-uniform heat source/sink on unsteady MHD mixed convective flow over a vertical stretching surface embedded in a Darcy-Forchheimer porous medium,” Propulsion Power Res., vol. 11, no. 2, pp. 276–292, 2022. DOI: 10.1016/j.jppr.2022.06.001.
  • B. K. Sharma, A. Kumar, R. Gandhi, and M. M. Bhatti, “Exponential space and thermal-dependent heat source effects on electro-magneto-hydrodynamic Jeffrey fluid flow over a vertical stretching surface,” Int. J. Mod. Phys. B., vol. 36, no. 30, pp. 2250220, 2022. DOI: 10.1142/S0217979222502204.
  • S. U. S. Choi, J. A. Eastman, and J. A. Eastman, “BTI enhancing thermal conductivity of fluids with nanoparticles* enhancing thermal conductivity of fluids with nanoparticles,” JAM, vol. 1, pp. 1, 1995.
  • S. Salman, A. R. Talib, S. Saadon, and M. T. Sultan, “Hybrid nanofluid flow and heat transfer over backward and forward steps: a review,” Powder Technol., vol. 363, pp. 448–472, 2020. ” DOI: 10.1016/j.powtec.2019.12.038.
  • M. Subhani and S. Nadeem, “Numerical analysis of micropolar hybrid nanofluid,” Appl Nanosci., vol. 9, no. 4, pp. 447–459, 2019. DOI: 10.1007/s13204-018-0926-2.
  • Ç. Yıldız, M. Arıcı, and H. Karabay, “Comparison of a theoretical and experimental thermal conductivity model on the heat transfer performance of al2o3-sio2/water hybrid-nanofluid,” Int. J. Heat Mass Transf., vol. 140, no. 9, pp. 598–605, 2019. DOI: 10.1016/j.ijheatmasstransfer.2019.06.028.
  • S. Nadeem, N. Abbas, and M. Y. Malik, “Inspection of hybrid based nanofluid flow over a curved surface,” Comput. Methods Programs Biomed., vol. 189, no. 6, pp. 105193, 2020. DOI: 10.1016/j.cmpb.2019.105193.
  • S. K et al., “Impact of exponential form of internal heat generation on water-based ternary hybrid nanofluid flow by capitalizing non-Fourier heat flux model,” Case Stud. Therm. Eng., vol. 38, no. 10, pp. 102332, 2022. DOI: 10.1016/j.csite.2022.102332.
  • N. S. Khashi’ie, N. M. Arifin, I. Pop, and N. S. Wahid, “Flow and heat transfer of hybrid nanofluid over a permeable shrinking cylinder with joule heating: a comparative analysis,” Alex. Eng. J., vol. 59, no. 3, pp. 1787–1798, 2020. DOI: 10.1016/j.aej.2020.04.048.
  • B. Kumbhakar, S. Nandi, and A. J. Chamkha, “Unsteady hybrid nanofluid flow over a convectively heated cylinder with inclined magnetic field and viscous dissipation: a multiple regression analysis,” Chin. J. Phys., vol. 79, no. 10, pp. 38–56, 2022. DOI: 10.1016/j.cjph.2022.07.003.
  • M. K. Narayanaswamy, J. Kandasamy, and S. Sivanandam, “Impacts of Stefan blowing on hybrid nanofluid flow over a stretching cylinder with thermal radiation and dufour and soret effect,” MCA, vol. 27, no. 6, pp. 91, 2022. DOI: 10.3390/mca27060091.
  • S. M. Hussain, “Dynamics of radiative Williamson hybrid nanofluid with entropy generation: significance in solar aircraft,” Sci. Rep., vol. 12, no. 1, pp. 8916, 2022. DOI: 10.1038/s41598-022-13086-4.
  • S. Hussain, “Thermal-enhanced hybrid of copper–zirconium dioxide/ethylene glycol nanofluid flowing in the solar collector of water-pump application,” Waves Random Complex Media, pp. 1–28, 2022. DOI: 10.1080/17455030.2022.2066734.
  • C. Y. Wang, “Fluid flow due to a stretching cylinder,” Phys. Fluids, vol. 31, no. 3, pp. 466–468, 1988. DOI: 10.1063/1.866827.
  • M. M. Maskeen, A. Zeeshan, O. U. Mehmood, and M. Hassan, “Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder,” J. Therm. Anal. Calorim., vol. 138, no. 2, pp. 1127–1136, 2019. DOI: 10.1007/s10973-019-08304-7.
  • V. Vinita and V. Poply, “Impact of outer velocity MHD slip flow and heat transfer of nanofluid past a stretching cylinder,” Mater. Today: Proc., vol. 26, no. 1, pp. 3429–3435, 2020. DOI: 10.1016/j.matpr.2019.11.304.
  • M. Ismail and A. D. M. Gururaj, “Radiative MHD flow of hybrid nanofluid past a porous stretching cylinder for heat transfer enhancement,” Heat Trans., vol. 50, no. 4, pp. 4019–4038, 2021. DOI: 10.1002/htj.22062.
  • M. D. Alsulami, A. Abdulrahman, R. N. Kumar, R. J. P. Gowda, and B. C. Prasannakumara, “Three-dimensional swirling flow of nanofluid with nanoparticle aggregation kinematics using modified Krieger–Dougherty and Maxwell–Bruggeman models: a finite element solution,” Mathematics, vol. 11, no. 9, pp. 2081, 2023. DOI: 10.3390/math11092081.
  • J. K. Madhukesh, I. E. Sarris, B. C. Prasannakumara, and A. Abdulrahman, “Investigation of thermal performance of ternary hybrid nanofluid flow in a permeable inclined cylinder/plate,” Energies, vol. 16, no. 6, pp. 2630, 2023. DOI: 10.3390/en16062630.
  • S. M. Hussain, W. Jamshed, and M. R. Eid, “Solar-HVAC thermal investigation utilizing (cu-aa7075/c6h9nao7) MHD-driven hybrid nanofluid rotating flow via second-order convergent technique: a novel engineering study,” Arab. J. Sci. Eng., vol. 48, no. 3, pp. 3301–3322, 2023. DOI: 10.1007/s13369-022-07140-6.
  • J. Shanthasheela, A. D. M. Gururaj, M. Ismail, and S. Dhanasekar, “Review on magnetohydrodynamic flow of nanofluids past a vertical plate under the influence of thermal radiation,” IOP Conf. Series: Earth Environ. Sci., vol. 11, pp. 1-14, 2021.
  • S. M. Ismail, A. D. M. Gururaj, and V. Parthiban, “Radiative 3D-MHD flow of an aqueous ethylene glycol nanofluid past a two-way exponentially extending lamina,” IJNT, vol. 18, no. 5/6/7/8, pp. 679–696, 2021. DOI: 10.1504/IJNT.2021.116182.
  • M. Priyadharsini and A. D. M. Gururaj, “Mathematical modelling and analysis of thermoregulation effects on blood viscosity under magnetic effects and thermal radiation in a permeable stretching capillary,” J. Therm. Biol., vol. 111, pp. 103398–1, 2023. DOI: 10.1016/j.jtherbio.2022.103398.
  • N. Acharya, S. Maity, and P. K. Kundu, “Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization,” Appl. Nanosci., vol. 10, no. 2, pp. 633–647, 2020. DOI: 10.1007/s13204-019-01123-0.
  • B. Unyong, R. Vadivel, M. Govindaraju, R. Anbuvithya, and N. Gunasekaran, “Entropy analysis for ethylene glycol hybrid nanofluid flow with elastic deformation, radiation, non-uniform heat generation/absorption, and inclined Lorentz force effects,” Case Stud. Therm. Eng., vol. 30, no. 2, pp. 101639, 2022. DOI: 10.1016/j.csite.2021.101639.
  • N. Abbas, S. Nadeem, A. Saleem, M. Y. Malik, A. Issakhov, and F. M. Alharbi, “Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder,” Chin. J. Phys., vol. 69, no. 2, pp. 109–117, 2021. DOI: 10.1016/j.cjph.2020.11.019.
  • F. Mabood, I. Tlili, and A. Shafiq, “Features of inclined magnetohydrodynamics on a second-grade fluid impinging on vertical stretching cylinder with suction and Newtonian heating,” Math. Methods App. Sci., pp.1-13, 2020. DOI: 10.1002/mma.6489.
  • T. Hayat, A. Shafiq, A. Alsaedi, and S. Asghar, “Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity,” AIP Adv., vol. 5, no. 8, pp. 087108, 2015. DOI: 10.1063/1.4928321.
  • W. Jamshed et al., “Entropy production simulation of second-grade magnetic nanomaterials flowing across an expanding surface with viscidness dissipative flux,” Nanotech. Rev., vol. 11, no. 1, pp. 2814–2826, 2022. DOI: 10.1515/ntrev-2022-0463.
  • R. J. P. Gowda, I. E. Sarris, R. N. Kumar, R. Kumar, and B. C. Prasannakumara, “A three-dimensional non-Newtonian magnetic fluid flow induced due to stretching of the flat surface with chemical reaction,” J. Heat Transf., vol. 144, no. 11, pp. 113602, 2022. DOI: 10.1115/1.4055373.
  • N. Abbas, W. Shatanawi, and K. Abodayeh, “Computational analysis of MHD nonlinear radiation Casson hybrid nanofluid flow at vertical stretching sheet,” Symmetry, vol. 14, no. 7, pp. 1494, 2022. https://www.mdpi.com/2073-8994/14/7/1494/htmhttps://www.mdpi.com/2073-8994/14/7/1494. DOI: 10.3390/sym14071494.
  • U. Farooq, H. Waqas, T. Muhammad, M. Imran, and A. S. Alshomrani, “Computation of nonlinear thermal radiation in magnetized nanofluid flow with entropy generation,” Appl. Math. Comput., vol. 423, pp. 126900, 2022. DOI: 10.1016/j.amc.2021.126900.
  • F. Shahzad et al., “Thermal analysis characterisation of solar-powered ship using oldroyd hybrid nanofluids in parabolic trough solar collector: an optimal thermal application,” Nanotech. Rev., vol. 11, no. 1, pp. 2015–2037, 2022. DOI: 10.1515/ntrev-2022-0108.
  • S. M. Hussain, “Entropy generation and thermal performance of Williamson hybrid nanofluid flow used in solar aircraft application as the main coolant in parabolic trough solar collector,” Waves Random Complex Media, , pp. 1–34, 2023. DOI: 10.1080/17455030.2022.2110624.
  • M. Gholinia, M. Armin, A. A. Ranjbar, and D. D. Ganji, “Numerical thermal study on CNTS/c2h6o2-h2o hybrid base nanofluid upon a porous stretching cylinder under impact of magnetic source,” Case Stud. Therm. Eng., vol. 14, no. 9, pp. 100490, 2019. DOI: 10.1016/j.csite.2019.100490.
  • M. I. Khan, M. Tamoor, T. Hayat, and A. Alsaedi, “MHD boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation,” Res. Phy., vol. 7, no. 1, pp. 1207–1211, 2017. DOI: 10.1016/j.rinp.2017.03.009.
  • P. T. Manjunatha, B. J. Gireesha, and B. C. Prasannakumara, “Effect of radiation on flow and heat transfer of MHD dusty fluid over a stretching cylinder embedded in a porous medium in presence of heat source,” Int. J. Appl. Comput. Math., vol. 3, no. 1, pp. 293–310, 2017. DOI: 10.1007/s40819-015-0107-x.
  • K. M. Shirvan, M. Mamourian, S. Mirzakhanlari, and R. Ellahi, “Numerical investigation of heat exchanger effectiveness in a double pipe heat exchanger filled with nanofluid: a sensitivity analysis by response surface methodology,” Powder Technol., vol. 313, no. 5, pp. 99–111, 2017. DOI: 10.1016/j.powtec.2017.02.065.
  • A. Shafiq, T. N. Sindhu, and C. M. Khalique, “Numerical investigation and sensitivity analysis on bioconvective tangent hyperbolic nanofluid flow towards stretching surface by response surface methodology,” Alex. Eng. J., vol. 59, no. 6, pp. 4533–4548, 2020. DOI: 10.1016/j.aej.2020.08.007.
  • M. Saraswathy, D. Prakash, M. Muthtamilselvan, and Q. M. A. Mdallal, “Arrhenius energy on asymmetric flow and heat transfer of micropolar fluids with variable properties: a sensitivity approach,” Alex. Eng. J., vol. 61, no. 12, pp. 12329–12352, 2022. DOI: 10.1016/j.aej.2022.06.015.
  • S. Hussain, K. Rasheed, A. Ali, N. Vrinceanu, A. Alshehri, and Z. Shah, “A sensitivity analysis of MHD nanofluid flow across an exponentially stretched surface with non-uniform heat flux by response surface methodology,” Sci. Rep., vol. 12, no. 1, pp. 18523, 2022. DOI: 10.1038/s41598-022-22970-y.
  • D. Hussain, Z. Asghar, A. Zeeshan, and H. Alsulami, “Analysis of sensitivity of thermal conductivity and variable viscosity on wall heat flux in flow of viscous fluid over a porous wedge,” Int. Commun. Heat Mass Transf., vol. 135, pp. 106104, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106104.
  • A. Ishak, R. Nazar, and I. Pop, “Uniform suction/blowing effect on flow and heat transfer due to a stretching cylinder,” Appl. Math. Model., vol. 32, no. 10, pp. 2059–2066, 2008. DOI: 10.1016/j.apm.2007.06.036.
  • M. Ismail and D. M. Gururaj, “Numerical investigation on nonlinear radiative magneto hydrodynamics hybrid nanofluid flow past a stretching cylinder embedded in porous medium,” J. Nanofl., vol. 12, no. 3, pp. 809–818, 2023. DOI: 10.1166/jon.2023.1962.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.