Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
63
Views
0
CrossRef citations to date
0
Altmetric
Articles

Simulation of thermally radiative flow of a Maxwell’s fluid toward exponentially stretchable surface with heat generation/absorption

& ORCID Icon
Pages 906-921 | Received 21 Apr 2023, Accepted 06 Sep 2023, Published online: 21 Sep 2023

References

  • J. C. Tomio, M. M. Martins, M. Vaz Jr., and P. S. B. Zdanski, “A numerical methodology for simulation of non-Newtonian viscoelastic flows,” Numer. Heat Transf. B: Fundam., vol. 78, no. 6, pp. 439–453, 2020. DOI: 10.1080/10407790.2020.1787051.
  • H. Upreti, A. K. Pandey, Z. Uddin, and M. Kumar, “Thermophoresis and Brownian motion effects on 3D flow of Casson nanofluid consisting microorgnisms over a Riga plate using PSO: A numerical study,” Chin. J. Phys., vol. 78, pp. 234–270, 2022. DOI: 10.1016/j.cjph.2022.06.019.
  • P. Rajendar, L. Anand Babu, and T. Vijaya Laxmi, “MHD stagnation point flow and heat transfer due to nano fluid over exponential radiating stretching sheet,” Glob. J. Pure Appl. Math., vol. 13, no. 6, pp. 1593–610, 2017.
  • H. Hanif, “Cattaneo–Friedrich and Crank–Nicolson analysis of upper-convected Maxwell fluid along a vertical plate,” Chaos Solit. Fract., vol. 153, pp. 111463, 2021. DOI: 10.1016/j.chaos.2021.111463.
  • H. Hanif, “A computational approach for boundary layer flow and heat transfer of fractional Maxwell fluid,” Math. Comput. Simul., vol. 191, pp. 1–13, 2022. DOI: 10.1016/j.matcom.2021.07.024.
  • P. B. A. Reddy, “Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction,” Ain Shams Eng. J., vol. 7, no. 2, pp. 593–602, 2016. DOI: 10.1016/j.asej.2015.12.010.
  • H. Hanif, S. Shafie, R. Roslan, and A. Ali, “Collision of hybrid nanomaterials in an upper-convected Maxwell nanofluid: A theoretical approach,” J. King Saud Univ. Sci., vol. 35, no. 1, pp. 102389, 2023. DOI: 10.1016/j.jksus.2022.102389.
  • H. Hanif and S. Shafie, “Application of Cattaneo heat flux to Maxwell hybrid nanofluid model: A numerical approach,” Eur. Phys. J. Plus, vol. 137, no. 8, pp. 989, 2022. DOI: 10.1140/epjp/s13360-022-03209-1.
  • H. Hanif, “A finite difference method to analyze heat and mass transfer in kerosene based γ-oxide nanofluid for cooling applications,” Phys. Scr., vol. 96, no. 9, pp. 095215, 2021. DOI: 10.1088/1402-4896/ac098a.
  • H. Upreti, A. K. Pandey, and M. Kumar, “Unsteady squeezing flow of magnetic hybrid nanofluids within parallel plates and entropy generation,” Heat Transf., vol. 50, no. 1, pp. 105–125, 2021. DOI: 10.1002/htj.21994.
  • H. Hanif and S. Shafie, “Impact of Al2O3 in electrically conducting mineral oil-based Maxwell nanofluid: Application to the petroleum industry,” Fract. Fract., vol. 6, no. 4, pp. 180, 2022. DOI: 10.3390/fractalfract6040180.
  • H. Hanif and S. Shafie, “Interaction of multi-walled carbon nanotubes in mineral oil based Maxwell nanofluid,” Sci. Rep., vol. 12, no. 1, pp. 4712, 2022. DOI: 10.1038/s41598-022-07958-y.
  • A. Mishra, A. K. Pandey, and M. Kumar, “Ohmic-viscous dissipation and slip effects on nanofluid flow over a stretching cylinder with suction/injection,” Nanosci. Technol., vol. 9, no. 2, pp. 99-115, 2018.
  • N. Joshi, H. Upreti, A. K. Pandey, and M. Kumar, “Heat and mass transfer assessment of magnetic hybrid nanofluid flow via bidirectional porous surface with volumetric heat generation,” Int. J. Appl. Comput., vol. 7, no. 3, pp. 64, 2021.
  • S. A. Khan, T. Hayat, A. Alsaedi, and B. Ahmad, “Melting heat transportation in radiative flow of nanomaterials with irreversibility analysis,” Renew. Sust. Energ. Rev., vol. 140, pp. 110739, 2021. DOI: 10.1016/j.rser.2021.110739.
  • A. K. Pandey and M. Kumar, “Boundary layer flow and heat transfer analysis on Cu-water nanofluid flow over a stretching cylinder with slip,” Alex. Eng. J., vol. 56, no. 4, pp. 671–677, 2017. DOI: 10.1016/j.aej.2017.01.017.
  • K. Singh, A. K. Pandey, and M. Kumar, “Numerical solution of micropolar fluid flow via stretchable surface with chemical reaction and melting heat transfer using Keller-Box method,” Propuls. Power Res., vol. 10, no. 2, pp. 194–207, 2021. DOI: 10.1016/j.jppr.2020.11.006.
  • M. I. Khan, S. A. Khan, T. Hayat, M. Waqas, and A. Alsaedi, “Modeling and numerical simulation for flow of hybrid nanofluid (SiO2/C3H8O2) and (MoS2/C3H8O2) with entropy optimization and variable viscosity,” HFF., vol. 30, no. 8, pp. 3939–3955, 2019. DOI: 10.1108/HFF-10-2019-0756.
  • F. Mabood, W. A. Khan, and A. I. M. Ismail, “MHD flow over exponential radiating stretching sheet using homotopy analysis method,” J. King Saud Univ.-Eng. Sci., vol. 29, no. 1, pp. 68–74, 2017. DOI: 10.1016/j.jksues.2014.06.001.
  • S. A. Khan, T. Hayat, and A. Alsaedi, “Thermal conductivity performance for ternary hybrid nanomaterial subject to entropy generation,” Energy Rep., vol. 8, pp. 9997–10005, 2022. DOI: 10.1016/j.egyr.2022.07.149.
  • W. Ibrahim, “The effect of induced magnetic field and convective boundary condition on MHD stagnation point flow and heat transfer of upper-convected Maxwell fluid in the presence of nanoparticle past a stretching sheet,” Propuls. Power Res., vol. 5, no. 2, pp. 164–175, 2016. DOI: 10.1016/j.jppr.2016.05.003.
  • F. M. Ali, R. Nazar, N. M. Arifin, and I. Pop, “MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field,” Heat Mass Transf., vol. 47, no. 2, pp. 155–162, 2011. DOI: 10.1007/s00231-010-0693-4.
  • F. M. Ali, R. Nazar, N. M. Arifin, and I. Pop, “MHD stagnation-point flow and heat transfer towards stretching sheet with induced magnetic field,” Appl. Math. Mech.-Engl. Ed., vol. 32, no. 4, pp. 409–418, 2011. DOI: 10.1007/s10483-011-1426-6.
  • N. Joshi, A. K. Pandey, H. Upreti, and M. Kumar, “Mixed convection flow of magnetic hybrid nanofluid over a bidirectional porous surface with internal heat generation and a higher‐order chemical reaction,” Heat Transf., vol. 50, no. 4, pp. 3661–3682, 2021. DOI: 10.1002/htj.22046.
  • H. Upreti, A. K. Pandey, and M. Kumar, “Assessment of entropy generation and heat transfer in three-dimensional hybrid nanofluids flow due to convective surface and base fluids,” J. Porous Media, vol. 24, no. 3, pp. 59-78, 2021.
  • A. K. Pandey, H. Upreti, N. Joshi, and Z. Uddin, “Effect of natural convection on 3D MHD flow of MoS2–GO/H2O via porous surface due to multiple slip mechanisms,” J. Taibah Univ. Sci., vol. 16, no. 1, pp. 749–762, 2022. DOI: 10.1080/16583655.2022.2113729.
  • H. Upreti, A. K. Pandey, M. Kumar, and O. D. Makinde, “Darcy–Forchheimer flow of CNTs-H2O nanofluid over a porous stretchable surface with Xue model,” Int. J. Mod. Phys. B, vol. 37, no. 02, pp. 2350018, 2023.
  • T. Hayat, S. A. Khan, A. Alsaedi, and H. M. Fardoun, “Heat transportation in electro-magnetohydrodynamic flow of Darcy-Forchheimer viscous fluid with irreversibility analysis,” Phys. Scr., vol. 95, no. 10, pp. 105214, 2020. DOI: 10.1088/1402-4896/abb7aa.
  • A. K. Pandey and H. Upreti, “Mixed convective flow of Ag–H2O magnetic nanofluid over a curved surface with volumetric heat generation and temperature‐dependent viscosity,” Heat Transf., vol. 50, no. 7, pp. 7251–7270, 2021. DOI: 10.1002/htj.22227.
  • T. Gupta, A. K. Pandey, and M. Kumar, “Numerical study for temperature-dependent viscosity based unsteady flow of GP-MoS2/C2H6O2-H2O over a porous stretching sheet,” Numer. Heat Transf. A: Appl., pp. 1–22, 2023. DOI: 10.1080/10407782.2023.2195689.
  • A. K. Pandey and M. Kumar, “Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation,” Alex. Eng. J., vol. 56, no. 1, pp. 55–62, 2017. DOI: 10.1016/j.aej.2016.08.035.
  • N. Joshi, H. Upreti, and A. K. Pandey, “MHD Darcy-Forchheimer Cu-Ag/H2O-C2H6O2 hybrid nanofluid flow via a porous stretching sheet with suction/blowing and viscous dissipation,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 23, no. 6, pp. 527–535, 2022. DOI: 10.1080/15502287.2022.2030426.
  • H. Upreti, Z. Uddin, A. K. Pandey, and N. Joshi, “Particle swarm optimization based numerical study for pressure, flow, and heat transfer over a rotating disk with temperature dependent nanofluid properties,” Numer. Heat Transf. A: Appl., vol. 83, no. 8, pp. 815–844, 2023. DOI: 10.1080/10407782.2022.2156412.
  • S. A. Khan, T. Hayat, and A. Alsaedi, “Entropy optimization for nanofluid flow with radiation subject to a porous medium,” J. Pet. Sci. Eng., vol. 217, pp. 110864, 2022. DOI: 10.1016/j.petrol.2022.110864.
  • A. A. Avramenko, I. V. Shevchuk, M. M. Kovetskaya, and Y. Y. Kovetska, “Darcy–Brinkman–Forchheimer model for Film Boiling in porous media,” Transp. Porous Med., vol. 134, no. 3, pp. 503–536, 2020. DOI: 10.1007/s11242-020-01452-7.
  • H. Hanif, S. Shafie, and A. Chamkha, “Effect of Ohmic heating on magnetohydrodynamic flow with variable pressure gradient: A computational approach,” Waves Random and Complex Media, pp. 1–16, 2022. DOI: 10.1080/17455030.2022.2141916.
  • A. Mishra, A. K. Pandey, and M. Kumar, “Thermal performance of Ag–water nanofluid flow over a curved surface due to chemical reaction using Buongiorno’s model,” Heat Transf., vol. 50, no. 1, pp. 257–278, 2021. DOI: 10.1002/htj.21875.
  • C. S. K. Raju, N. Sandeep, C. Sulochana, and M. Jayachandra Babu, “Dual solutions of MHD boundary layer flow past an exponentially stretching sheet with non-uniform heat source/sink,” JAFM., vol. 9, no. 2, pp. 555–563, 2016. DOI: 10.18869/acadpub.jafm.68.225.24784.
  • J. R. Reddy, K. A. Kumar, V. Sugunamma, and N. Sandeep, “Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: A comparative study,” Alex. Eng. J., vol. 57, no. 3, pp. 1829–1838, 2018. DOI: 10.1016/j.aej.2017.03.008.
  • A. K. Pandey, H. Upreti, and Z. Uddin, “Magnetic SWCNT–Ag/H2O nanofluid flow over cone with volumetric heat generation,” Int. J. Mod. Phys., pp. 2350253, 2023.
  • H. Upreti, A. K. Pandey, N. Joshi, and O. D. Makinde, “Thermodynamics and heat transfer analysis of magnetized Casson hybrid nanofluid flow via a Riga plate with thermal radiation,” J. Comput. Biophys. Chem., vol. 22, no. 03, pp. 321–334, 2023. DOI: 10.1142/S2737416523400070.
  • S. A. Khan, T. Hayat, and A. Alsaedi, “Numerical study for entropy optimized radiative unsteady flow of Prandtl liquid,” Fuel, vol. 319, pp. 123601, 2022. DOI: 10.1016/j.fuel.2022.123601.
  • A. Khan, T. Hayat, and A. Alsaedi, “hSimultaneous features of Soret and Dufour in entropy optimized flow of Reiner-Rivlin fluid considering thermal radiation,” Int. Commun. Heat Mass Transf., vol. 137, pp. 106297, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106297.
  • M. Q. Brewster, Thermal Radiative Transfer and Properties. New York, NY, USA: Wiley, 1992.
  • A. A. Khan et al., “Influence of the induced magnetic field on second-grade nanofluid flow with multiple slip boundary conditions,” Waves Random Complex Media, pp. 1–16, 2021. DOI: 10.1080/17455030.2021.2011986.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.