Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 85, 2024 - Issue 7
70
Views
0
CrossRef citations to date
0
Altmetric
Articles

Electrically conducting water-based hybrid nanofluid flow between two stretchable rotating disks: A numerical analysis

, , , &
Pages 805-827 | Received 01 May 2023, Accepted 02 Nov 2023, Published online: 22 Nov 2023

References

  • S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” Am. Soc. Mech. Eng. Fluids Eng. Div., vol. 231, no. January, pp. 99–105, 1995.
  • M. T. H. Bhuiyan, M. N. Chowdhury and M. S. Parvin, “Potential nanomaterials and their applications in modern medicine: an overview,” ARC J. Cancer Sci., vol. 2, no. 2, pp. 25–33, 2016.
  • M. R. Ghazanfari, M. Kashefi, S. F. Shams and M. R. Jaafari, “Perspective of Fe3O4 nanoparticles role in biomedical applications,” Biochem. Res. Int., vol. 2016, pp. 7840161, 2016. DOI: 10.1155/2016/7840161.
  • K. McNamara and S. A. M. Tofail, “Nanoparticles in biomedical applications,” Adv. Phys. X, vol. 2, no. 1, pp. 54–88, 2017. DOI: 10.1080/23746149.2016.1254570.
  • M. Mortimer, K. Kasemets and A. Kahru, “Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila,” Toxicology, vol. 269, no. 2–3, pp. 182–189, 2010. DOI: 10.1016/j.tox.2009.07.007.
  • M. Sahooli, S. Sabbaghi and R. Saboori, “Synthesis and characterization of mono sized CuO nanoparticles,” Mater. Lett., vol. 81, pp. 169–172, 2012. DOI: 10.1016/j.matlet.2012.04.148.
  • K. S. Khashan, G. M. Sulaiman and F. A. Abdulameer, “Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid,” Arab. J. Sci. Eng., vol. 41, no. 1, pp. 301–310, 2016. DOI: 10.1007/s13369-015-1733-7.
  • M. Ahamed, M. A. Siddiqui, M. J. Akhtar, I. Ahmad, A. B. Pant and H. A. Alhadlaq, “Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells,” Biochem. Biophys. Res. Commun., vol. 396, no. 2, pp. 578–583, 2010. DOI: 10.1016/j.bbrc.2010.04.156.
  • R. Katwal, H. Kaur, G. Sharma, M. Naushad and D. Pathania, “Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity,” J. Ind. Eng. Chem., vol. 31, pp. 173–184, 2015. DOI: 10.1016/j.jiec.2015.06.021.
  • S. Nations, M. Long, M. Wages, J. D. Maul, C. W. Theodorakis and G. P. Cobb, “Subchronic and chronic developmental effects of copper oxide (CuO) nanoparticles on Xenopus laevis,” Chemosphere, vol. 135, pp. 166–174, 2015. DOI: 10.1016/j.chemosphere.2015.03.078.
  • F. Perreault, et al., “Genotoxic effects of copper oxide nanoparticles in Neuro 2A cell cultures,” Sci. Total Environ., vol. 441, pp. 117–124, 2012. DOI: 10.1016/j.scitotenv.2012.09.065.
  • S. Dagher, Y. Haik, A. I. Ayesh and N. Tit, “Synthesis and optical properties of colloidal CuO nanoparticles,” J. Lumin., vol. 151, pp. 149–154, 2014. DOI: 10.1016/j.jlumin.2014.02.015.
  • A. B. Devi, D. S. Moirangthem, N. C. Talukdar, M. D. Devi, N. R. Singh and M. N. Luwang, “Novel synthesis and characterization of CuO nanomaterials: biological applications,” Chin. Chem. Lett., vol. 25, no. 12, pp. 1615–1619, 2014. DOI: 10.1016/j.cclet.2014.07.014.
  • Q. Zhang, et al., “CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications,” Prog. Mater. Sci., vol. 60, pp. 208–337, 2014. DOI: 10.1016/j.pmatsci.2013.09.003.
  • G. Narsinga Rao, Y. D. Yao and J. W. Chen, “Evolution of size, morphology, and magnetic properties of CuO nanoparticles by thermal annealing,” J. Appl. Phys., vol. 105, no. 9, pp. 93901, 2009.
  • Y. Ji, Y.-H. Zhang, F.-N. Shi and L.-N. Zhang, “UV-derived double crosslinked PEO-based solid polymer electrolyte for room temperature,” J. Colloid Interface Sci., vol. 629, no. Pt B, pp. 492–500, 2023. DOI: 10.1016/j.jcis.2022.09.089.
  • M. Gan, X. Chong, W. Yu, B. Xiao and J. Feng, “Understanding the ultralow lattice thermal conductivity of monoclinic RETaO4 from acoustic‐optical phonon anti‐crossing property and a comparison with ZrO2,” J. Am. Ceram. Soc., vol. 106, no. 5, pp. 3103–3115, 2023. DOI: 10.1111/jace.18988.
  • L. Lai, et al., “New class of high‐entropy rare‐earth niobates with high thermal expansion and oxygen insulation,” J. Am. Ceram. Soc., vol. 106, no. 7, pp. 4343–4357, 2023. DOI: 10.1111/jace.19077.
  • W. Qian, M. Zuo, P. Niu, X.-Y. Hu and L. Wang, “The construction of aggregation-induced charge transfer emission systems in aqueous solution directed by supramolecular strategy,” Chin. Chem. Lett, vol. 33, no. 4, pp. 1975–1978, 2022. DOI: 10.1016/j.cclet.2021.09.070.
  • M. Xi, et al., “Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents,” Chin. Chem. Lett., vol. 33, no. 5, pp. 2595–2599, 2022. DOI: 10.1016/j.cclet.2021.12.041.
  • Y. Yu, et al., “Ionic/electronic conductivity regulation of n-type polyoxadiazole lithium sulfonate conductive polymer binders for high-performance silicon microparticle anodes,” Chin. Chem. Lett., vol. 32, no. 1, pp. 203–209, 2021. DOI: 10.1016/j.cclet.2020.10.010.
  • X. Xie and Y. Sun, “A piecewise probabilistic harmonic power flow approach in unbalanced residential distribution systems,” Int. J. Electr. Power Energy Syst., vol. 141, pp. 108114, 2022. DOI: 10.1016/j.ijepes.2022.108114.
  • N. S. Khashi’ie, N. M. Arifin, R. Nazar, E. H. Hafidzuddin, N. Wahi and I. Pop, “Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating,” Chin. J. Phys., vol. 64, pp. 251–263, Apr. 2020. DOI: 10.1016/j.cjph.2019.11.008.
  • I. Wole-Osho, E. C. Okonkwo, D. Kavaz and S. Abbasoglu, “An experimental investigation into the effect of particle mixture ratio on specific heat capacity and dynamic viscosity of Al2O3-ZnO hybrid nanofluids,” Powder Technol., vol. 363, pp. 699–716, 2020. DOI: 10.1016/j.powtec.2020.01.015.
  • E. H. Aly and I. Pop, “MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid,” Powder Technol., vol. 367, pp. 192–205, 2020. DOI: 10.1016/j.powtec.2020.03.030.
  • G. Huminic and A. Huminic, 2020, “Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review,” J. Mol. Liq. vol. 367, pp. 112533.
  • Z. Alhajaj, A. M. Bayomy, M. Z. Saghir and M. M. Rahman, “Flow of nanofluid and hybrid fluid in porous channels: experimental and numerical approach,” Int. J. Thermofluids., vol. 1–2, pp. 100016, 2020. DOI: 10.1016/j.ijft.2020.100016.
  • E. M. Elsaid and M. S. Abdel-Wahed, “Mixed convection hybrid-nanofluid in a vertical channel under the effect of thermal radiative flux,” Case Stud. Therm. Eng., vol. 25, pp. 100913, 2021. DOI: 10.1016/j.csite.2021.100913.
  • L. Verma, R. Meher, Z. Hammouch and H. M. Baskonus, “Effect of heat transfer on hybrid nanofluid flow in converging/diverging channel using fuzzy volume fraction,” Sci. Rep., vol. 12, no. 1, pp. 20845, 2022. DOI: 10.1038/s41598-022-24259-6.
  • X. You, “Nanoparticle sphericity investigation of Cu-Al2O3-H2O hybrid nanofluid flows between inclined channels filled with a porous medium,” Nanomaterials, vol. 12, no. 15, pp. 2552, 2022. DOI: 10.3390/nano12152552.
  • R. Vinoth and B. Sachuthananthan, “Flow and heat transfer behavior of hybrid nanofluid through microchannel with two different channels,” Int. Commun. Heat Mass Transf., vol. 123, pp. 105194, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105194.
  • M. Ramzan, N. Shahmir and H. A. S. Ghazwani, “Hybrid nanofluid flow comprising spherical shaped particles with Hall current and irreversibility analysis: An application of solar radiation,” Waves Random Complex Media, pp. 1–23, 2022. DOI: 10.1080/17455030.2022.2123571.
  • S. E. Ahmed, “Natural convection of dusty hybrid nanofluids in diverging–converging cavities including volumetric heat sources,” J. Therm. Sci. Eng. Appl., vol. 13, no. 1, pp. 011018, 2021.
  • N. Acharya, “On the flow patterns and thermal control of radiative natural convective hybrid nanofluid flow inside a square enclosure having various shaped multiple heated obstacles,” Eur. Phys. J. Plus., vol. 136, no. 8, pp. 1–29, 2021. DOI: 10.1140/epjp/s13360-021-01892-0.
  • A. I. Alsabery, T. Tayebi, H. T. Kadhim, M. Ghalambaz, I. Hashim and A. J. Chamkha, “Impact of two-phase hybrid nanofluid approach on mixed convection inside wavy lid-driven cavity having localized solid block,” J. Adv. Res., vol. 30, pp. 63–74, 2021. DOI: 10.1016/j.jare.2020.09.008.
  • M. Jamshidmofid and M. Bahiraei, “Hydrothermal performance of single and hybrid nanofluids in Left-Right and Up-Down wavy microchannels using two-phase mixture approach,” Int. Commun. Heat Mass Transf., vol. 129, pp. 105752, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105752.
  • T. Armaghani, et al., “MHD mixed convection of localized heat source/sink in an Al2O3-Cu/water hybrid nanofluid in L-shaped cavity,” Alexandria Eng. J., vol. 60, no. 3, pp. 2947–2962, 2021. DOI: 10.1016/j.aej.2021.01.031.
  • M. Jamshidmofid and M. Bahiraei, “Thermohydraulic assessment of a novel hybrid nanofluid containing cobalt oxide-decorated reduced graphene oxide nanocomposite in a microchannel heat sink with sinusoidal cavities and rectangular ribs,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105769, 2022. DOI: 10.1016/j.icheatmasstransfer.2021.105769.
  • S. R and S. Banerjee, “Transport phenomena of nanofluids in cavities: current trends and applications,” Eur. Phys. J. Spec. Top., vol. 231, no. 13–14, pp. 2487–2490, 2022. DOI: 10.1140/epjs/s11734-022-00635-1.
  • Z. H. Khan, W. A. Khan, M. Qasim, S. O. Alharbi, M. Hamid and M. Du, “Hybrid nanofluid flow around a triangular-shaped obstacle inside a split lid-driven trapezoidal cavity,” Eur. Phys. J. Spec. Top., vol. 231, no. 13–14, pp. 2749–2759, 2022. DOI: 10.1140/epjs/s11734-022-00607-5.
  • N. Acharya, “On the hydrothermal behavior and entropy analysis of buoyancy driven magnetohydrodynamic hybrid nanofluid flow within an octagonal enclosure fitted with fins: Application to thermal energy storage,” J. Energy Storage, vol. 53, pp. 105198, Sep. 2022. DOI: 10.1016/j.est.2022.105198.
  • L. Ahmad and M. Khan, “Importance of activation energy in development of chemical covalent bonding in flow of Sisko magneto-nanofluids over a porous moving curved surface,” Int. J. Hydrogen Energy., vol. 44, no. 21, pp. 10197–10206, 2019. DOI: 10.1016/j.ijhydene.2019.02.162.
  • L. Ahmad, A. Munir and M. Khan, “Locally non-similar and thermally radiative Sisko fluid flow with magnetic and Joule heating effects,” J. Magn. Magn. Mater., vol. 487, pp. 165284, 2019. DOI: 10.1016/j.jmmm.2019.165284.
  • L. Ahmad and M. Khan, “Numerical simulation for MHD flow of Sisko nanofluid over a moving curved surface: A revised model,” Microsyst. Technol., vol. 25, no. 6, pp. 2411–2428, 2019. DOI: 10.1007/s00542-018-4128-3.
  • L. Ahmad, et al., “Influential study of novel microorganism and nanoparticles during heat and mass transport in Homann flow of visco-elastic materials,” Int. Commun. Heat Mass Transf., vol. 131, pp. 105871, 2022. Feb. DOI: 10.1016/j.icheatmasstransfer.2021.105871.
  • S. A. M. Alsallami, et al., “Non-similar mathematical and dynamical analysis of Cross nano-materials over a gravitationally effected surface,” Ain Shams Eng. J., vol. 14, no. 8, pp. 102035, 2023. DOI: 10.1016/j.asej.2022.102035.
  • J. Ahmed, M. Khan and L. Ahmad, “Effectiveness of homogeneous–heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3185–3195, 2020. DOI: 10.1007/s10973-019-08712-9.
  • J. Ahmed, M. Khan and L. Ahmad, “MHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity,” Chin. J. Phys., vol. 60, pp. 22–34, 2019. DOI: 10.1016/j.cjph.2019.02.010.
  • J. Ahmed, M. Khan and L. Ahmad, “Swirling flow of Maxwell nanofluid between two coaxially rotating disks with variable thermal conductivity,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, pp. 1–15, 2019.
  • M. Khan, A. Hafeez and J. Ahmed, “Von Karman swirling flow of an Oldroyd‐B nanofluid with the influence of activation energy,” Math. Methods App. Sci., vol. 45, no. 8, pp. 4202–4209, 2022. DOI: 10.1002/mma.8032.
  • S. Shaiq, A. Shahzad, J. Ahmed, M. Nadeem and M. Ayub, “Dissipative induced magnetic field on axisymmetric stagnation point flow of Propylene Glycol (PG) infused with multiple shape Tin (Sn), and Tungsten W (nanometer) particles,” Waves Random Complex Media., pp. 1–20, 2022. DOI: 10.1080/17455030.2022.2092914.
  • A. Dawar, H. Khan, S. Islam and W. Khan, “The improved residual power series method for a system of differential equations: a new semi-numerical method,” Int. J. Model. Simul., pp. 1–14, 2023. DOI: 10.1080/02286203.2023.2270884.
  • T. J. Schmidt, H. A. Gasteiger, G. D. Stäb, P. M. Urban, D. M. Kolb and R. J. Behm, “Characterization of high‐surface‐area electrocatalysts using a rotating disk electrode configuration,” J. Electrochem. Soc., vol. 145, no. 7, pp. 2354–2358, 1998. DOI: 10.1149/1.1838642.
  • K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz and N. M. Markovic, “Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts,” Electrochim. Acta., vol. 53, no. 7, pp. 3181–3188, 2008. DOI: 10.1016/j.electacta.2007.11.057.
  • P.-S. Cheung, K. Krauth and M. Roth, “Investigation to replace the conventional sedimentation tank by a microstrainer in the rotating disc system,” Water Res., vol. 14, no. 1, pp. 67–75, 1980. DOI: 10.1016/0043-1354(80)90043-3.
  • C. S. K. Raju, S. U. Mamatha, P. Rajadurai and I. Khan, “Nonlinear mixed thermal convective flow over a rotating disk in suspension of magnesium oxide nanoparticles with water and EG,” Eur. Phys. J. Plus., vol. 134, no. 5, pp. 196, 2019. DOI: 10.1140/epjp/i2019-12552-y.
  • P. Ram, V. K. Joshi, V. Kumar and S. Sharma, “Rheological effects due to oscillating field on time dependent boundary layer flow of magnetic nanofluid over a rotating disk,” Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., vol. 89, no. 2, pp. 367–375, 2019. DOI: 10.1007/s40010-017-0468-0.
  • S. Riasat, M. Ramzan, Y.-L. Sun, M. Y. Malik and R. Chinram, “Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics,” Case Stud. Therm. Eng., vol. 26, pp. 101039, 2021. DOI: 10.1016/j.csite.2021.101039.
  • M. Ramzan, T. Mehmood, H. Alotaibi, H. A. S. Ghazwani and T. Muhammad, “Comparative study of hybrid and nanofluid flows amidst two rotating disks with thermal stratification: statistical and numerical approaches,” Case Stud. Therm. Eng., vol. 28, pp. 101596, 2021. DOI: 10.1016/j.csite.2021.101596.
  • A. Mahesh, S. V. K. Varma, C. S. K. Raju, M. J. Babu, K. Vajravelu and W. Al-Kouz, “Significance of non-Fourier heat flux and radiation on PEG–water based hybrid nanofluid flow among revolving disks with chemical reaction and entropy generation optimization,” Int. Commun. Heat Mass Transf., vol. 127, pp. 105572, 2021. DOI: 10.1016/j.icheatmasstransfer.2021.105572.
  • K. Hosseinzadeh, A. Asadi, A. R. Mogharrebi, J. Khalesi, S. Mousavisani and D. D. Ganji, “Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation,” Case Stud. Therm. Eng., vol. 14, pp. 100482, 2019. DOI: 10.1016/j.csite.2019.100482.
  • T. Hayat, H. Nazar, M. Imtiaz and A. Alsaedi, “Darcy-Forchheimer flows of copper and silver water nanofluids between two rotating stretchable disks,” Appl. Math. Mech -Engl. Ed., vol. 38, no. 12, pp. 1663–1678, 2017. DOI: 10.1007/s10483-017-2289-8.
  • A. Wakif, et al., “Importance of exponentially falling variability in heat generation on chemically reactive von kármán nanofluid flows subjected to a radial magnetic field and controlled locally by zero mass flux and convective heating conditions: A differential quadrature analysis,” Front. Phys, vol. 10, Oct. 2022. DOI: 10.3389/FPHY.2022.988275/FULL.
  • H. C. Brinkman, “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys., vol. 20, no. 4, pp. 571–571, 1952. DOI: 10.1063/1.1700493.
  • B. C. Pak and Y. I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles,” Exp. Heat Transf. Int. J., vol. 11, no. 2, pp. 151–170, 1998. DOI: 10.1080/08916159808946559.
  • N. A. Shah, I. L. Animasaun, J. D. Chung, A. Wakif, F. I. Alao and C. S. K. Raju, “Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of Water conveying copper nanoparticles,” Sci. Rep., vol. 11, no. 1, pp. 1882, Jan. 2021. DOI: 10.1038/s41598-021-81417-y.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1. Oxford: Clarendon Press, 1873.
  • R. C. D. Cruz, J. Reinshagen, R. Oberacker, A. M. Segadães and M. J. Hoffmann, “Electrical conductivity and stability of concentrated aqueous alumina suspensions,” J. Colloid Interface Sci., vol. 286, no. 2, pp. 579–588, 2005. DOI: 10.1016/j.jcis.2005.02.025.
  • A. Dawar, N. M. Said, S. Islam, Z. Shah, S. R. Mahmuod and A. Wakif, “A semi-analytical passive strategy to examine a magnetized heterogeneous mixture having sodium alginate liquid with alumina and copper nanomaterials near a convectively heated surface of a stretching curved geometry,” Int. Commun. Heat Mass Transf., vol. 139, pp. 106452, 2022. DOI: 10.1016/j.icheatmasstransfer.2022.106452.
  • Y. Lin, L. Zheng and X. Zhang, “Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity,” Int. J. Heat Mass Transf., vol. 77, pp. 708–716, 2014. DOI: 10.1016/j.ijheatmasstransfer.2014.06.028.
  • A. Javadpour, M. Najafi and K. Javaherdeh, “Effect of magnetic field on forced convection heat transfer of a non-Newtonian nanofluid through an annulus: an experimental study,” Heat Mass Transf., vol. 54, no. 11, pp. 3307–3316, 2018. DOI: 10.1007/s00231-018-2361-z.
  • E. Abu-Nada, “Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step,” Int. J. Heat Fluid Flow., vol. 29, no. 1, pp. 242–249, 2008. DOI: 10.1016/j.ijheatfluidflow.2007.07.001.
  • A. Dawar, E. Bonyah, S. Islam, A. Alshehri and Z. Shah, “Theoretical analysis of Cu-H2O, Al2O3-H2O, and TiO2-H2O nanofluid flow past a rotating disk with velocity slip and convective conditions,” J. Nanomater., vol. 2021, pp. 1–10, vol. 2021. DOI: 10.1155/2021/5471813.
  • X. Si, H. Li, L. Zheng, Y. Shen and X. Zhang, “A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate,” Int. J. Heat Mass Transf., vol. 105, pp. 350–358, 2017. DOI: 10.1016/j.ijheatmasstransfer.2016.09.106.
  • K. Hosseinzadeh, A. R. Mogharrebi, A. Asadi, M. Sheikhshahrokhdehkordi, S. Mousavisani and D. D. Ganji, “Entropy generation analysis of mixture nanofluid (H2O/c2H6O2)–Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation,” Int. J. Ambient Energy., vol. 43, no. 1, pp. 1045–1057, 2022. DOI: 10.1080/01430750.2019.1681294.
  • T. Hayat, S. A. Khan, M. I. Khan and A. Alsaedi, “Theoretical investigation of Ree–Eyring nanofluid flow with entropy optimization and Arrhenius activation energy between two rotating disks,” Comput. Methods Programs Biomed., vol. 177, pp. 57–68, 2019. DOI: 10.1016/j.cmpb.2019.05.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.