883
Views
25
CrossRef citations to date
0
Altmetric
Article

DNA‐templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry

, &
Pages 354-370 | Published online: 15 May 2014

REFERENCES

  • Acuna, G. P.; Bucher, M.; Stein, I. H.; Steinhauer, C.; Kuzyk, A.; Holzmeister, P.; Schreiber, R.; Moroz, A.; Stefani, F. D.; Liedl, T.; Simmel, F. C.; Tinnefeld, P. Distance Dependence of Single‐Fluorophore Quenching by Gold Nanoparticles Studied on DNA Origami. ACS Nano 2012a, 6(4), 3189–3195.
  • Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Fluorescence Enhancement at Docking Sites of DNA‐Directed Self‐Assembled Nanoantennas. Science 2012b, 338(6106), 506–510.
  • Aherne, D.; Satti, A.; Fitzmaurice, D. Diameter‐Dependent Evolution of Failure Current Density of Highly Conducting DNA‐Templated Gold Nanowires. Nanotechnology 2007, 18 (12). 125205.
  • Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F. Assembling Materials with DNA as the Guide. Science 2008, 321(5897), 1795–1799.
  • Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Lind‐Thomsen, A.; Mamdouh, W.; Gothelf, K. V.; Besenbacher, F.; Kjems, J. DNA Origami Design of Dolphin‐Shaped Structures with Flexible Tails. ACS Nano 2008, 2(6), 1213–1218.
  • Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J. Self‐Assembly of a Nanoscale DNA Box with a Controllable Lid. Nature 2009, 459(7243), 73–77.
  • Barish, R. D.; Schulman, R.; Rothemund, P. W. K.; Winfree, E. An Information‐Bearing Seed for Nucleating Algorithmic Self‐Assembly. Proc. Natl. Acad. Sci. USA 2009, 106(15), 6054–6059.
  • Bath, J.; Turberfield, A. J. DNA Nanomachines. Nat. Nanotechnol. 2007, 2(5), 275–284.
  • Becerril, H. A.; Woolley, A. T. DNA‐Templated Nanofabrication. Chem. Soc. Rev. 2009, 38(2), 329–337.
  • Becerril, H. A.; Stoltenberg, R. M.; Monson, C. F.; Woolley, A. T. Ionic Surface Masking for Low Background in Single‐ and Double‐Stranded DNA‐Templated Silver and Copper Nanorods. J. Mater. Chem. 2004, 14(4), 611–616.
  • Becerril, H. A.; Ludtke, P.; Willardson, B. M.; Woolley, A. T. DNA‐Templated Nickel Nanostructures and Protein Assemblies. Langmuir 2006, 22(24), 10140–10144.
  • Birac, J. J.; Sherman, W. B.; Kopatsch, J.; Constantinou, P. E.; Seeman, N. C. Architecture with GIDEON, a Program for Design in Structural DNA Nanotechnology. J. Mol. Graph. Model. 2006, 25(4), 470–480.
  • Braun, E.; Eichen, Y.; Sivan, U.; Ben‐Yoseph, G. DNA‐Templated Assembly and Electrode Attachment of a Conducting Silver Wire. Nature 1998, 391(6669), 775–778.
  • Castro, C. E.; Kilchherr, F.; Kim, D.‐N.; Shiao, E. L.; Wauer, T.; Wortmann, P.; Bathe, M.; Dietz, H. A Primer to Scaffolded DNA Origami. Nat. Methods 2011, 8, 221–229.
  • Chen, J. H.; Seeman, N. C. Synthesis from DNA of a Molecule with the Connectivity of a Cube. Nature 1991, 350(6319), 631–633.
  • Cheng, J. Y.; Ross, C. A.; Smith, H. I.; Thomas, E. L. Templated Self‐Assembly of Block Copolymers: Top‐Down Helps Bottom‐Up. Adv. Mater. 2006, 18(19), 2505–2521.
  • Chhabra, R.; Sharma, J.; Ke, Y. G.; Liu, Y.; Rinker, S.; Lindsay, S.; Yan, H. Spatially Addressable Multiprotein Nanoarrays Templated by Aptamer‐Tagged DNA Nanoarchitectures. J. Am. Chem. Soc. 2007, 129(34), 10304–10305.
  • Deng, Z. X.; Mao, C. D. DNA‐Templated Fabrication of 1D Parallel and 2D Crossed Metallic Nanowire Arrays. Nano Lett. 2003, 3(11), 1545–1548.
  • Dietz, H.; Douglas, S. M.; Shih, W. M. Folding DNA into Twisted and Curved Nanoscale Shapes. Science 2009, 325(5941), 725–730.
  • Ding, B. Q.; Sha, R. J.; Seeman, N. C. Pseudohexagonal 2D DNA Crystals from Double Crossover Cohesion. J. Am. Chem. Soc. 2004, 126(33), 10230–10231.
  • Ding, B. Q.; Deng, Z. T.; Yan, H.; Cabrini, S.; Zuckermann, R. N.; Bokor, J. Gold Nanoparticle Self‐Similar Chain Structure Organized by DNA Origami. J. Am. Chem. Soc. 2010, 132(10), 3248–3249.
  • Douglas, S. M.; Chou, J. J.; Shih, W. M. DNA‐Nanotube‐Induced Alignment of Membrane Proteins for NMR Structure Determination. Proc. Natl. Acad. Sci. USA 2007, 104(16), 6644–6648.
  • Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M. Self‐Assembly of DNA into Nanoscale Three‐Dimensional Shapes. Nature 2009a, 459(7245), 414–418.
  • Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid Prototyping of 3D DNA‐Origami Shapes with CaDNAno. Nucleic Acids Res. 2009b, 37(15), 5001–5006.
  • Douglas, S. M.; Bachelet, I.; Church, G. M. A Logic‐Gated Nanorobot for Targeted Transport of Molecular Payloads. Science 2012, 335(6070), 831–834.
  • Endo, M.; Hidaka, K.; Kato, T.; Namba, K.; Sugiyama, H. DNA Prism Structures Constructed by Folding of Multiple Rectangular Arms. J. Am. Chem. Soc. 2009, 131(43), 15570–15571.
  • Endo, M.; Sugita, T.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Programmed‐Assembly System Using DNA Jigsaw Pieces. Chemistry 2010, 16(18), 5362–5368.
  • Eskelinen, A. P.; Kuzyk, A.; Kaltiaisenaho, T. K.; Timmermans, M. Y.; Nasibulin, A. G.; Kauppinen, E. I.; Torma, P. Assembly of Single‐Walled Carbon Nanotubes on DNA‐Origami Templates through Streptavidin‐Biotin Interaction. Small 2011, 7(6), 746–750.
  • Ford, W. E.; Harnack, O.; Yasuda, A.; Wessels, J. M. Platinated DNA as Precursors to Templated Chains of Metal Nanoparticles. Adv. Mater. 2001, 13(23), 1793–1797.
  • Fujibayashi, K.; Hariadi, R.; Park, S. H.; Winfree, E.; Murata, S. Toward Reliable Algorithmic Self‐Assembly of DNA Tiles: A Fixed‐Width Cellular Automaton Pattern. Nano Lett. 2008, 8(7), 1791–1797.
  • Geng, Y. L.; Liu, J. F.; Pound, E.; Gyawali, S.; Harb, J. N.; Woolley, A. T. Rapid Metallization of Lambda DNA and DNA Origami Using a Pd Seeding Method. J. Mater. Chem. 2011, 21(32), 12126–12131.
  • Geng, Y. L.; Pearson, A. C.; Gates, E. P.; Uprety, B.; Davis, R. C.; Harb, J. N.; Woolley, A. T. Electrically Conductive Gold‐ and Copper‐Metallized DNA Origami Nanostructures. Langmuir 2013, 29(10), 3482–3490.
  • Goodman, R. P.; Berry, R. M.; Turberfield, A. J. The Single‐Step Synthesis of a DNA Tetrahedron. Chem. Commun. 2004, (12), 1372–1373.
  • Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science 2005, 310(5754), 1661–1665.
  • Goodman, R. P.; Heilemann, M.; Doose, S.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J. Reconfigurable, Braced, Three‐Dimensional DNA Nanostructures. Nat. Nanotechnol. 2008, 3(2), 93–96.
  • Gu, Q.; Haynie, D. T. Palladium Nanoparticle‐Controlled Growth of Magnetic Cobalt Nanowires on DNA Templates. Mater. Lett. 2008, 62(17–18), 3047–3050.
  • Gu, Q.; Cheng, C. D.; Gonela, R.; Suryanarayanan, S.; Anabathula, S.; Dai, K.; Haynie, D. T. DNA Nanowire Fabrication. Nanotechnology 2006a, 17(1), R14–R25.
  • Gu, Q.; Cheng, C. D.; Suryanarayanan, S.; Dai, K.; Haynie, D. T. DNA‐Templated Fabrication of Nickel Nanocluster Chains. Physica E 2006b, 33(1), 92–98.
  • Gu, H. Z.; Chao, J.; Xiao, S. J.; Seeman, N. C. A Proximity‐Based Programmable DNA Nanoscale Assembly Line. Nature 2010, 465(7295), 202–205.
  • Han, D. R.; Pal, S.; Liu, Y.; Yan, H. Folding and Cutting DNA into Reconfigurable Topological Nanostructures. Nat. Nanotechnol. 2010, 5(10), 712–717.
  • Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H. DNA Origami with Complex Curvatures in Three‐Dimensional Space. Science 2011, 332(6027), 342–346.
  • Han, D. R.; Pal, S.; Yang, Y.; Jiang, S. X.; Nangreave, J.; Liu, Y.; Yan, H. DNA Gridiron Nanostructures Based on Four‐Arm Junctions. Science 2013, 339(6126), 1412–1415.
  • Harnack, O.; Ford, W. E.; Yasuda, A.; Wessels, J. M. Tris(hydroxymethyl)Phosphine‐Capped Gold Particles Templated by DNA as Nanowire Precursors. Nano Lett. 2002, 2(9), 919–923.
  • He, Y.; Chen, Y.; Liu, H. P.; Ribbe, A. E.; Mao, C. D. Self‐Assembly of Hexagonal DNA Two‐Dimensional (2D) Arrays. J. Am. Chem. Soc. 2005a, 127(35), 12202–12203.
  • He, Y.; Tian, Y.; Chen, Y.; Deng, Z. X.; Ribbe, A. E.; Mao, C. D. Sequence Symmetry as a Tool for Designing DNA Nanostructures. Angew. Chem. Int. Ed. 2005b, 44(41), 6694–6696.
  • He, Y.; Tian, Y.; Ribbe, A. E.; Mao, C. D. Highly Connected Two‐Dimensional Crystals of DNA Six‐Point‐Stars. J. Am. Chem. Soc. 2006, 128(50), 15978–15979.
  • Hogberg, B.; Liedl, T.; Shih, W. M. Folding DNA Origami from a Double‐Stranded Source of Scaffold. J .Am. Chem. Soc. 2009, 131(26), 9154–9155.
  • Hughes, W. L.; Bui, H.; Onodera, C.; Kidwell, C.; Tan, Y.; Graugnard, E.; Kuang, W.; Lee, J.; Knowlton, W. B.; Yurke, B. Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes. Nano Lett. 2010, 10(9), 3367–3372.
  • Hung, A. M.; Micheel, C. M.; Bozano, L. D.; Osterbur, L. W.; Wallraff, G. M.; Cha, J. N. Large‐Area Spatially Ordered Arrays of Gold Nanoparticles Directed by Lithographically Confined DNA Origami. Nat. Nanotechnol. 2010, 5(2), 121–126.
  • ITRS. 2012. International Technology Roadmap for Semiconductors; 2012 Update Overview. http://www.itrs.net/
  • Jungmann, R.; Liedl, T.; Sobey, T. L.; Shih, W.; Simmel, F. C. Isothermal Assembly of DNA Origami Structures Using Denaturing Agents. J. Am. Chem. Soc. 2008, 130(31), 10062–10063.
  • Ke, Y. G.; Lindsay, S.; Chang, Y.; Liu, Y.; Yan, H. Self‐Assembled Water‐Soluble Nucleic Acid Probe Tiles for Label‐Free RNA Hybridization Assays. Science 2008a, 319(5860), 180–183.
  • Ke, Y. G.; Nangreave, J.; Yan, H.; Lindsay, S.; Liu, Y. Developing DNA Tiles for Oligonucleotide Hybridization Assay with Higher Accuracy and Efficiency. Chem. Commun. 2008b, (43), 5622–5624.
  • Ke, Y.; Douglas, S. M.; Liu, M.; Sharma, J.; Cheng, A.; Leung, A.; Liu, Y.; Shih, W. M.; Yan, H. Multilayer DNA Origami Packed on a Square Lattice. J. Am. Chem. Soc. 2009a, 131(43), 15903–15908.
  • Ke, Y.; Sharma, J.; Liu, M.; Jahn, K.; Liu, Y.; Yan, H. Scaffolded DNA Origami of a DNA Tetrahedron Molecular Container. Nano Lett. 2009b, 9(6), 2445–2447.
  • Ke, Y. G.; Bellot, G.; Voigt, N. V.; Fradkov, E.; Shih, W. M. Two Design Strategies for Enhancement of Multilayer‐DNA‐Origami Folding: Underwinding for Specific Intercalator Rescue and Staple‐Break Positioning. Chem. Sci. 2012a, 3(8), 2587–2597.
  • Ke, Y. G.; Ong, L. L.; Shih, W. M.; Yin, P. Three‐Dimensional Structures Self‐Assembled from DNA Bricks. Science 2012b, 338(6111), 1177–1183.
  • Ke, Y. G.; Voigt, N. V.; Gothelf, K. V.; Shih, W. M. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices. J. Am. Chem. Soc. 2012c, 134(3), 1770–1774.
  • Keren, K.; Krueger, M.; Gilad, R.; Ben‐Yoseph, G.; Sivan, U.; Braun, E. Sequence‐Specific Molecular Lithography on Single DNA Molecules. Science 2002, 297(5578), 72–75.
  • Keren, K.; Berman, R. S.; Buchstab, E.; Sivan, U.; Braun, E. DNA‐Templated Carbon Nanotube Field‐Effect Transistor. Science 2003, 302(5649), 1380–1382.
  • Keren, K.; Berman, R. S.; Braun, E. Patterned DNA Metallization by Sequence‐Specific Localization of a Reducing Agent. Nano Lett. 2004, 4(2), 323–326.
  • Kumar, A.; Pattarkine, M.; Bhadbhade, M.; Mandale, A. B.; Ganesh, K. N.; Datar, S. S.; Dharmadhikari, C. V.; Sastry, M. Linear Superclusters of Colloidal Gold Particles by Electrostatic Assembly on DNA Templates. Adv. Mater. 2001, 13(5), 341–344.
  • Kuzuya, A.; Komiyama, M. Design and Construction of a Box‐Shaped 3D‐DNA Origami. Chem. Commun. 2009, (28), 4182–4184.
  • Kuzuya, A.; Komiyama, M. DNA Origami: Fold, Stick, and Beyond. Nanoscale 2010, 2(3), 310–322.
  • Kuzuya, A.; Numajiri, K.; Komiyama, M. Accommodation of a Single Protein Guest in Nanometer‐Scale Wells Embedded in a “DNA Nanotape.” Angew. Chem. Int. Ed. 2008, 47(18), 3400–3402.
  • Kuzuya, A.; Kimura, M.; Numajiri, K.; Koshi, N.; Ohnishi, T.; Okada, F.; Komiyama, M. Precisely Programmed and Robust 2D Streptavidin Nanoarrays by Using Periodical Nanometer‐Scale Wells Embedded in DNA Origami Assembly. Chembiochem 2009, 10(11), 1811–1815.
  • Kuzyk, A.; Laitinen, K. T.; Törmä, P. DNA Origami as a Nanoscale Template for Protein Assembly. Nanotechnology 2009, 20(23), 235305.
  • Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Hogele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA‐Based Self‐Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483(7389), 311–314.
  • LaBean, T. H.; Yan, H.; Kopatsch, J.; Liu, F. R.; Winfree, E.; Reif, J. H.; Seeman, N. C. Construction, Analysis, Ligation, and Self‐Assembly of DNA Triple Crossover Complexes. J. Am. Chem. Soc. 2000, 122(9), 1848–1860.
  • Li, X. J.; Yang, X. P.; Qi, J.; Seeman, N. C. Antiparallel DNA Double Crossover Molecules as Components for Nanoconstruction. J. Am. Chem. Soc. 1996, 118(26), 6131–6140.
  • Li, Z.; Liu, M. H.; Wang, L.; Nangreave, J.; Yan, H; Liu, Y. Molecular Behavior of DNA Origami in Higher‐Order Self‐Assembly. J. Am. Chem. Soc. 2010, 132(38), 13545–13552.
  • Li, Z.; Wang, L.; Yan, H.; Liu, Y. Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles. Langmuir 2012, 28(4), 1959–1965.
  • Liddle, J. A.; Gallatin, G. M. Lithography, Metrology and Nanomanufacturing. Nanoscale 2011, 3(7), 2679–2688.
  • Liedl, T.; Hogberg, B.; Tytell, J.; Ingber, D. E.; Shih, W. M. Self‐Assembly of Three‐Dimensional Prestressed Tensegrity Structures from DNA. Nat. Nanotechnol. 2010, 5(7), 520–524.
  • Lin, C. X.; Liu, Y.; Rinker, S.; Yan, H. DNA Tile Based Self‐Assembly: Building Complex Nanoarchitectures. Chemphyschem 2006, 7(8), 1641–1647.
  • Liu, H.; Liu, D. S. DNA Nanomachines and Their Functional Evolution. Chem Commun 2009, (19), 2625–2636.
  • Liu, Y.; Yan, H. Designer Curvature. Science 2009, 325(5941), 685–686.
  • Liu, D.; Park, S. H.; Reif, J. H.; LaBean, T. H. DNA Nanotubes Self‐Assembled from Triple‐Crossover Tiles as Templates for Conductive Nanowires. Proc. Natl. Acad. Sci. USA 2004, 101(3), 717–722.
  • Liu, H. P.; Chen, Y.; He, Y.; Ribbe, A. E.; Mao, C. D. Approaching the Limit: Can One DNA Oligonucleotide Assemble into Large Nanostructures? Angew. Chem. Int. Ed. 2006, 45(12), 1942–1945.
  • Liu, J. F.; Geng, Y. L.; Pound, E.; Gyawali, S.; Ashton, J. R.; Hickey, J.; Woolley, A. T.; Harb, J. N. Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication. ACS Nano 2011a, 5(3), 2240–2247.
  • Liu, W. Y.; Zhong, H.; Wang, R. S.; Seeman, N. C. Crystalline Two‐Dimensional DNA‐Origami Arrays. Angew. Chem. Int. Ed. 2011b, 50(1), 264–267.
  • Liu, J.; Uprety, B.; Gyawali, S.; Woolley, A. T.; Myung, N. V.; Harb, J. N. Fabrication of DNA‐Templated Te and Bi2Te3 Nanowires by Galvanic Displacement. Langmuir 2013, 29(35), 11176–11184.
  • Lu, W.; Lieber, C. M. Nanoelectronics from the Bottom Up. Nat. Mater. 2007, 6(11), 841–850.
  • Lund, K.; Manzo, A. J.; Dabby, N.; Michelotti, N.; Johnson‐Buck, A.; Nangreave, J.; Taylor, S.; Pei, R. J.; Stojanovic, M. N.; Walter, N. G.; Winfree, E.; Yan, H. Molecular Robots Guided by Prescriptive Landscapes. Nature 2010, 465(7295), 206–210.
  • Madou, M. J. Fundamentals of Microfabrication, 2nd ed.; CRC Press: Boca Raton, Fla., 2002.
  • Mao, C. D.; Sun, W. Q.; Seeman, N. C. Designed Two‐Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. J. Am. Chem. Soc. 1999, 121(23), 5437–5443.
  • Mathieu, F.; Liao, S. P.; Kopatscht, J.; Wang, T.; Mao, C. D.; Seeman, N. C. Six‐Helix Bundles Designed from DNA. Nano Lett. 2005, 5(4), 661–665.
  • Maubach, G.; Fritzsche, W. Precise Positioning of Individual DNA Structures in Electrode Gaps by Self‐Organization onto Guiding Microstructures. Nano Lett. 2004, 4(4), 607–611.
  • Maune, H. T.; Han, S. P.; Barish, R. D.; Bockrath, M.; Goddard, W. A.; Rothemund, P. W. K.; Winfree, E. Self‐Assembly of Carbon Nanotubes into Two‐Dimensional Geometries Using DNA Origami Templates. Nat. Nanotechnol. 2010, 5(1), 61–66.
  • Mertig, M.; Ciacchi, L. C.; Seidel, R.; Pompe, W.; De Vita, A. DNA as a Selective Metallization Template. Nano Lett. 2002, 2(8), 841–844.
  • Monson, C. F.; Woolley, A. T. DNA‐Templated Construction of Copper Nanowires. Nano Lett. 2003, 3(3), 359–363.
  • Moore, G. E. Cramming More Components onto Integrated Circuits. Electronics 1965, 38(8), 82–85.
  • Moore, G. E. Progress in Digital Integrated Electronics. In 1975 International Electron Devices Meeting; IEEE: New York, 1975; pp 11–13.
  • Nangreave, J.; Han, D. R.; Liu, Y.; Yan, H. DNA Origami: A History and Current Perspective. Curr. Opin. Chem. Biol. 2010, 14(5), 608–615.
  • Nguyen, K.; Monteverde, M.; Filoramo, A.; Goux‐Capes, L.; Lyonnais, S.; Jegou, P.; Viel, P.; Goffman, M.; Bourgoin, J. P. Synthesis of Thin and Highly Conductive DNA‐Based Palladium Nanowires. Adv. Mater. 2008, 20(6), 1099–1104.
  • Omabegho, T.; Sha, R.; Seeman, N. C. A Bipedal DNA Brownian Motor with Coordinated Legs. Science 2009, 324(5923), 67–71.
  • Ongaro, A.; Griffin, F.; Beeeher, P.; Nagle, L.; Iacopino, D.; Quinn, A.; Redmond, G.; Fitzmaurice, D. DNA‐Templated Assembly of Conducting Gold Nanowires between Gold Electrodes on a Silicon Oxide Substrate. Chem. Mater. 2005, 17(8), 1959–1964.
  • Ozbay, E. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions. Science 2006, 311(5758), 189–193.
  • Pal, S.; Deng, Z. T.; Ding, B. Q.; Yan, H.; Liu, Y. DNA‐Origami‐Directed Self‐Assembly of Discrete Silver‐Nanoparticle Architectures. Angew. Chem. Int. Ed. 2010, 49(15), 2700–2704.
  • Park, S. H.; Barish, R.; Li, H. Y.; Reif, J. H.; Finkelstein, G.; Yan, H.; LaBean, T. H. Three‐Helix Bundle DNA Tiles Self‐Assemble into 2D Lattice or 1D Templates for Silver Nanowires. Nano Lett. 2005, 5(4), 693–696.
  • Park, S. H.; Prior, M. W.; LaBean, T. H.; Finkelstein, G. Optimized Fabrication and Electrical Analysis of Silver Nanowires Templated on DNA Molecules. Appl. Phys. Lett. 2006, 89(3), 033901.
  • Patolsky, F.; Weizmann, Y.; Lioubashevski, O.; Willner, I. Au‐Nanoparticle Nanowires Based on DNA and Polylysine Templates. Angew. Chem. Int. Ed. 2002, 41(13), 2323–2327.
  • Pearson, A. C.; Pound, E.; Woolley, A. T.; Linford, M. R.; Harb, J. N.; Davis, R. C. Chemical Alignment of DNA Origami to Block Copolymer Patterned Arrays of 5 nm Gold Nanoparticles. Nano Lett. 2011, 11(5), 1981–1987.
  • Pearson, A. C.; Liu, J.; Pound, E.; Uprety, B.; Woolley, A. T.; Davis, R. C.; Harb, J. N. DNA Origami Metallized Site Specifically to Form Electrically Conductive Nanowires. J. Phys. Chem. B 2012, 116(35), 10551–10560.
  • Pearson, A. C.; Linford, M. R.; Harb, J. N.; Davis, R. C. Dual Patterning of a Poly(Acrylic Acid) Layer by Electron‐Beam and Block Copolymer Lithographies. Langmuir 2013, 29(24), 7433–7438.
  • Pilo‐Pais, M.; Goldberg, S.; Samano, E.; LaBean, T. H.; Finkelstein, G. Connecting the Nanodots: Programmable Nanofabrication of Fused Metal Shapes on DNA Templates. Nano Lett. 2011, 11(8), 3489–3492.
  • Pound, E.; Ashton, J. R.; Becerril, H. A.; Woolley, A. T. Polymerase Chain Reaction Based Scaffold Preparation for the Production of Thin, Branched DNA Origami Nanostructures of Arbitrary Sizes. Nano Lett. 2009, 9(12), 4302–4305.
  • Qian, L.; Wang, Y.; Zhang, Z.; Zhao, J.; Pan, D.; Zhang, Y.; Liu, Q.; Fan, C. H.; Hu, J.; He, L. Analogic China Map Constructed by DNA. Chin. Sci. Bull. 2006, 51(24), 2973–2976.
  • Rajendran, A.; Endo, M.; Katsuda, Y.; Hidaka, K.; Sugiyama, H. Programmed Two‐Dimensional Self‐Assembly of Multiple DNA Origami Jigsaw Pieces. ACS Nano 2011, 5(1), 665–671.
  • Rajendran, A.; Endo, M.; Sugiyama, H. Single‐Molecule Analysis Using DNA Origami. Angew. Chem. Int. Ed. 2012, 51(4), 874–890.
  • Richter, J. Metallization of DNA. Physica E 2003, 16(2), 157–173.
  • Richter, J.; Seidel, R.; Kirsch, R.; Mertig, M.; Pompe, W.; Plaschke, J.; Schackert, H. K. Nanoscale Palladium Metallization of DNA. Adv. Mater. 2000, 12(7), 507–510.
  • Richter, J.; Mertig, M.; Pompe, W.; Monch, I.; Schackert, H. K. Construction of Highly Conductive Nanowires on a DNA Template. Appl. Phys. Lett. 2001, 78(4), 536–538.
  • Richter, J.; Mertig, M.; Pompe, W.; Vinzelberg, H. Low‐Temperature Resistance of DNA‐Templated Nanowires. Appl. Phys. A: Mater. Sci. Process. 2002, 74(6), 725–728.
  • Rinker, S.; Ke, Y. G.; Liu, Y.; Chhabra, R.; Yan, H. Self‐Assembled DNA Nanostructures for Distance‐Dependent Multivalent Ligand‐Protein Binding. Nat. Nanotechnol. 2008, 3(7), 418–422.
  • Rothemund, P. W. K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440(7082), 297–302.
  • Rothemund, P. W. K.; Ekani‐Nkodo, A.; Papadakis, N.; Kumar, A.; Fygenson, D. K.; Winfree, E. Design and Characterization of Programmable DNA Nanotubes. J. Am. Chem. Soc. 2004, 126(50), 16344–16352.
  • Sacca, B.; Niemeyer, C. M. Functionalization of DNA Nanostructures with Proteins. Chem. Soc. Rev. 2011, 40(12), 5910–5921.
  • Sacca, B.; Niemeyer, C. M. DNA Origami: The Art of Folding DNA. Angew. Chem. Int. Ed. 2012, 51(1), 58–66.
  • Sacca, B.; Meyer, R.; Erkelenz, M.; Kiko, K.; Arndt, A.; Schroeder, H.; Rabe, K. S.; Niemeyer, C. M. Orthogonal Protein Decoration of DNA Origami. Angew. Chem. Int. Ed. 2010, 49(49), 9378–9383.
  • Sastry, M.; Kumar, A.; Datar, S.; Dharmadhikari, C. V.; Ganesh, K. N. DNA‐Mediated Electrostatic Assembly of Gold Nanoparticles into Linear Arrays by a Simple Drop‐Coating Procedure. Appl. Phys. Lett. 2001, 78(19), 2943–2945.
  • Schreiber, R.; Kempter, S.; Holler, S.; Schuller, V.; Schiffels, D.; Simmel, S. S.; Nickels, P. C.; Liedl, T. DNA Origami‐Templated Growth of Arbitrarily Shaped Metal Nanoparticles. Small 2011, 7(13), 1795–1799.
  • Seeman, N. C. Nucleic‐Acid Junctions and Lattices. J. Theor. Biol. 1982, 99(2), 237–247.
  • Seeman, N. C. De Novo Design of Sequences for Nucleic Acid Structural Engineering. J. Biomol. Struct. Dyn. 1990, 8(3), 573–581.
  • Seeman, N. C. Nucleic Acid Nanostructures and Topology. Angew. Chem. Int. Ed. 1998, 37(23), 3220–3238.
  • Seeman, N. C. DNA in a Material World. Nature 2003, 421(6921), 427–431.
  • Seeman, N. C. DNA Enables Nanoscale Control of the Structure of Matter. Q. Rev. Biophys. 2005, 38(4), 363–371.
  • Seeman, N. C. Nanomaterials Based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87.
  • Seeman, N. C.; Belcher, A. M. Emulating Biology: Building Nanostructures from the Bottom Up. Proc. Natl. Acad. Sci. USA 2002, 99, 6451–6455.
  • Seeman, N. C.; Lukeman, P. S. Nucleic Acid Nanostructures: Bottom‐up Control of Geometry on the Nanoscale. Rep. Prog. Phys. 2005, 68(1), 237–270.
  • Seidel, R.; Mertig, M.; Pompe, W. Scanning Force Microscopy of DNA Metallization. Surf. Interface Anal. 2002, 33(2), 151–154.
  • Seidel, R.; Ciacchi, L. C.; Weigel, M.; Pompe, W.; Mertig, M. Synthesis of Platinum Cluster Chains on DNA Templates: Conditions for a Template‐Controlled Cluster Growth. J. Phys. Chem. B 2004, 108(30), 10801–10811.
  • Shapir, E.; Brancolini, G.; Molotsky, T.; Kotlyar, A. B.; Di Felice, R.; Porath, D. Energy Gap Reduction in DNA by Complexation with Metal Ions. Adv. Mater. 2011, 23(37), 4290–4294.
  • Sharma, J.; Ke, Y. G.; Lin, C. X.; Chhabra, R.; Wang, Q. B.; Nangreave, J.; Liu, Y.; Yan, H. DNA‐Tile‐Directed Self‐Assembly of Quantum Dots into Two‐Dimensional Nanopatterns. Angew. Chem. Int. Ed. 2008, 47(28), 5157–5159.
  • Sharma, J.; Chhabra, R.; Cheng, A.; Brownell, J.; Liu, Y.; Yan, H. Control of Self‐Assembly of DNA Tubules through Integration of Gold Nanoparticles. Science 2009, 323(5910), 112–116.
  • Shen, X. B.; Song, C.; Wang, J. Y.; Shi, D. W.; Wang, Z. A.; Liu, N.; Ding, B. Q. Rolling up Gold Nanoparticle‐Dressed DNA Origami into Three‐Dimensional Plasmonic Chiral Nanostructures. J. Am. Chem. Soc. 2012, 134(1), 146–149.
  • Shih, W. M.; Lin, C. X. Knitting Complex Weaves with DNA Origami. Curr. Opin. Struct. Biol. 2010, 20(3), 276–282.
  • Shih, W. M.; Quispe, J. D.; Joyce, G. F. A 1.7‐Kilobase Single‐Stranded DNA That Folds into a Nanoscale Octahedron. Nature 2004, 427(6975), 618–621.
  • Sobczak, J. P. J.; Martin, T. G.; Gerling, T.; Dietz, H. Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature. Science 2012, 338(6113), 1458–1461.
  • Stearns, L. A.; Chhabra, R.; Sharma, J.; Liu, Y.; Petuskey, W. T.; Yan, H.; Chaput, J. C. Template‐Directed Nucleation and Growth of Inorganic Nanoparticles on DNA Scaffolds. Angew. Chem. Int. Ed. 2009, 48(45), 8494–8496.
  • Subramani, R.; Juul, S.; Rotaru, A.; Andersen, F. F.; Gothelf, K. V.; Mamdouh, W.; Besenbacher, F.; Dong, M. D.; Knudsen, B. R. A Novel Secondary DNA Binding Site in Human Topoisomerase I Unravelled by Using a 2D DNA Origami Platform. ACS Nano 2010, 4(10), 5969–5977.
  • Subramanian, H. K. K.; Chakraborty, B.; Sha, R.; Seeman, N. C. The Label‐Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami. Nano Lett. 2011, 11(2), 910–913.
  • Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building Plasmonic Nanostructures with DNA. Nat. Nanotechnol. 2011, 6(5), 268–276.
  • Torring, T.; Voigt, N. V.; Nangreave, J.; Yan, H.; Gothelf, K. V. DNA Origami: A Quantum Leap for Self‐Assembly of Complex Structures. Chem. Soc. Rev. 2011, 40(12), 5636–5646.
  • Uprety, B.; Gates, E. P.; Geng, Y.; Woolley, A. T.; Harb, J. N. Site‐Specific Metallization of Multiple Metals on a Single DNA Origami Template. Langmuir 2014, 30, 1134–1141.
  • Voigt, N. V.; Torring, T.; Rotaru, A.; Jacobsen, M. F.; Ravnsbaek, J. B.; Subramani, R.; Mamdouh, W.; Kjems, J.; Mokhir, A.; Besenbacher, F.; Gothelf, K. V. Single‐Molecule Chemical Reactions on DNA Origami. Nat. Nanotechnol. 2010, 5(3), 200–203.
  • Wickham, S. F. J.; Endo, M.; Katsuda, Y.; Hidaka, K.; Bath, J.; Sugiyama, H.; Turberfield, A. J. Direct Observation of Stepwise Movement of a Synthetic Molecular Transporter. Nat. Nanotechnol. 2011, 6(3), 166–169.
  • Williams, S.; Lund, K.; Lin, C.; Wonka, P.; Lindsay, S.; Yan, H. Tiamat: A Three‐Dimensional Editing Tool for Complex DNA Structures. In 14th International Meeting on DNA Computing, DNA14, Prague, Czech Republic; Goel, A.; Simmel, F. C.; Sosík, P., Eds.; Springer: Prague, Czech Republic, 2008; pp 90–101.
  • Winfree, E.; Liu, F. R.; Wenzler, L. A.; Seeman, N. C. Design and Self‐Assembly of Two‐Dimensional DNA Crystals. Nature 1998, 394(6693), 539–544.
  • Yan, H.; LaBean, T. H.; Feng, L. P.; Reif, J. H. Directed Nucleation Assembly of DNA Tile Complexes for Barcode‐Patterned Lattices. Proc. Natl. Acad. Sci. USA 2003a, 100(14), 8103–8108.
  • Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA‐Templated Self‐Assembly of Protein Arrays and Highly Conductive Nanowires. Science 2003b, 301(5641), 1882–1884.
  • Yan, H.; Sharma, J.; Chhabra, R.; Andersen, C. S.; Gothelf, K. V.; Liu, Y. Toward Reliable Gold Nanoparticle Patterning on Self‐Assembled DNA Nanoscaffold. J. Am. Chem. Soc. 2008, 130(25), 7820–7821.
  • Yang, Y.; Han, D. R.; Nangreave, J.; Liu, Y.; Yan, H. DNA Origami with Double‐Stranded DNA as a Unified Scaffold. ACS Nano 2012, 6(9), 8209–8215.
  • Yu, H. B.; Ding, B. Q.; Wu, H.; Xu, W.; Zhao, Z. A.; Liu, Y.; Yan, H. Interconnecting Gold Islands with DNA Origami Nanotubes. Nano Lett. 2010, 10(12), 5065–5069.
  • Zadeh, J. N.; Steenberg, C. D.; Bois, J. S.; Wolfe, B. R.; Pierce, M. B.; Khan, A. R.; Dirks, R. M.; Pierce, N. A. Nupack: Analysis and Design of Nucleic Acid Systems. J. Comput. Chem. 2011, 32(1), 170–173.
  • Zhang, Y. W.; Seeman, N. C. Construction of a DNA‐Truncated Octahedron. J. Am. Chem. Soc. 1994, 116(5), 1661–1669.
  • Zhao, Z.; Yan, H.; Liu, Y. A Route to Scale up DNA Origami Using DNA Tiles as Folding Staples. Angew. Chem. Int. Ed. 2010, 49(8), 1414–1417.
  • Zhao, Z.; Jacovetty, E. L.; Liu, Y.; Yan, H. Encapsulation of Gold Nanoparticles in a DNA Origami Cage. Angew. Chem. Int. Ed. 2011a, 50(9), 2041–2044.
  • Zhao, Z.; Liu, Y.; Yan, H. Organizing DNA Origami Tiles into Larger Structures Using Preformed Scaffold Frames. Nano Lett. 2011b, 11(7), 2997–3002.
  • Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA‐Assisted Dispersion and Separation of Carbon Nanotubes. Nat. Mater. 2003, 2(5), 338–342.
  • Zhu, J.; Wei, B.; Yuan, Y.; Mi, Y. UNIQUIMER 3D, a Software System for Structural DNA Nanotechnology Design, Analysis and Evaluation. Nucleic Acids Res. 2009, 37(7), 2164–2175.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.