296
Views
14
CrossRef citations to date
0
Altmetric
Review Article

“Why Not Stoichiometry” Versus “Stoichiometry—Why Not?” Part II: GATES in Context with Redox Systems

, , &
Pages 241-269 | Published online: 07 Apr 2015

References

  • Acker, J.; Rietig, A.; Steinert, M.; Hoffmann, V. Mass and Electron Balance for the Oxidation of Silicon during the Wet Etching in HF/HNO3 Mixtures. J. Phys. Chem. C 2012, 116(38), 20380–20388.
  • Allnutt, M. I. The Use of Conjugate Charts in Transfer Reactions: A Unified Approach. J. Chem. Educ. 2007, 84(10), 1659–1662.
  • Anfalt, T.; Jagner, D. Interpretation of Titration Curves by Means of the Computer Program HALTAFALL. Anal. Chim. Acta 1969, 47, 57–69.
  • Anfalt, T.; Jagner, D. The Precision and Accuracy of Some Current Methods for Potentiometric End-Point Determination with Reference to a Computer-Calculated Titration Curve. Anal. Chim. Acta 1971, 57, 165–176.
  • Angus, J. C.; Angus, C. T. Computation of Pourbaix Diagrams Using Virtual Species: Implementation on Personal Computers. J. Electrochem. Soc. 1985, 132(5), 1014–1019.
  • Angus, J. C.; Lu, B.; Zappia, M. J. Potential-pH Diagrams for Complex Systems. J. Appl. Electrochem. 1987, 17, 1–21.
  • Anonymous. Marcel Pourbaix (1904-1998) – Obituary. Electrochim. Acta 1999, 44(17), 2827–2828.
  • Apax, R.; Gorinstein, S.; Böhm, V.; Schaich, K. M.; Özyürek, M.; Güglü, K. M. Methods of Measurement and Evaluation of Natural Antioxidant Capacity/Activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85(5), 957–998.
  • Armstrong, J. S.; Whiteman, M. Measurement of Reactive Oxygen Species in Cells and Mitochondria, In Mitochondria, 2nd ed.; Pon, L. A.; Schon, E. A., Eds.; Methods in Cell Biology, Vol. 80; Elsevier: Amsterdam, 2007; Ch. 18; pp. 355–377.
  • Asakai, T.; Hioki, A. Investigation of Iodine Liberation Process in Redox Titration of Potassium Iodate with Sodium Thiosulfate. Anal. Chim. Acta 2011, 689, 34–38.
  • Asakai, T.; Kakihara, Y.; Kozuka, Y.; Hossaka, S.; Murayama, M.; Tanaka, K. Evaluation of Certified Reference Materials for Oxidation Reduction Titrations by Precise Coulometric Titration and Volumetric Analysis. Anal. Chim. Acta 2006, 567, 269–276.
  • Asplund, J. Examples of the Application of Titration Techniques in the Process Industry. Anal. Chim. Acta 1988, 206, 137–152.
  • Asuero, A. G.; Michałowski, T. Comprehensive Formulation of Titration Curves for Complex Acid-Base Systems and Its Analytical Implications. Crit. Rev. Anal. Chem. 2011, 41(2), 151–187.
  • Atkins, P.; Overton, T.; Rourke, J.; Weller, M.; Armstrong, F.; Hagerman, M. Inorganic Chemistry, 5th ed.; Freeman: New York, 2010.
  • Bailey, I.; Ritchie, I. M. The Construction of Potential-pH Diagrams in Organic Oxidation-Reduction Reactions. J. Chem. Soc. Perkin Trans. II 1983, 645–652.
  • Bale, C. W.; Bélisle, E.; Chartrand, P.; Decterov, S. A.; Eriksson, G.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; Pelton, A. D.; Robelin, C.; Petersen, S. FactSage Thermochemical Software and Databases – Recent Developments. Calphad 2009, 33(2), 295–311.
  • Bale, C. N.; Chartrand, P.; Degterov, S. A.; Erikson, G.; Hack, K.; Mahfoud, R. B.; Melancon, J.; Pelton, A. D.; Petersen, S. FactSage Thermochemical Software and Databases. Calphad 2002, 26(2), 189–228.
  • Bard, A. J.; Simonsen, S. H. The General Equation for the Equivalence Point Potential in Oxidation-Reduction Titrations. J. Chem. Educ. 1960, 37(7), 364–366.
  • Bard, A. J.; Inzelt, G.; Scholz, F. (Eds.) Electrochemical Dictionary; Springer-Verlag: Berlin, 2008.
  • Barek, J.; Berka, A.; Steyermark, A. Redox Titrants in Nonaqueous Media. Crit. Rev. Anal. Chem. 1984, 15(2), 163–221.
  • Barnum, D. W. Potential-pH Diagrams. J. Chem. Educ. 1982, 59(10), 809–812.
  • Barry, J. William Mansfield Clark. In Notable Contributions to Medical Research by Public Health Service Scientists; A Bibliography to 1940; National Library of Medicine, Publication Health Service No. 752; U.S. Department of Health, Education, and Welfare: Washington, DC, 1960; pp. 8–10.
  • Barry, T. I. The Computation of Pourbaix Diagrams. In Thermodynamics of Aqueous Systems with Industrial Applications; ACS Symposium Series Vol. 133; ACS: Washington DC, 1980; Ch. 35; pp. 681–699.
  • Bassett, R. L.; Melchior, D. C. Chemical Modeling of Aqueous Systems: An Overview. In Chemical Modeling of Aqueous Systems II; Melchior, D.; Bassett, R. L., Eds.; ACS Symposium Series Vol. 416; American Chemical Society: Washington, DC, 1990; Ch. 1; pp. 1–14.
  • Bawden, D. Classification of Chemical Reactions: Potential, Possibilities and Continuing Relevance. J. Chem. Inf. Comput. Sci. 1991, 31(2), 212–216.
  • Bazhko, O. Application of Redox Titration Techniques for Analysis of Hydrometallurgical Solutions. In Hydrometallurgy Conference 2009; Southern African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2009; pp. 457–463.
  • Beck II, C. M. Towards a Revival of Classical Analysis. Metrologia 1997, 34(1), 19–30.
  • Berry, B. W.; Martinez-Rivera, M. C.; Tommos, C. Reversible Voltagrams and a Pourbaix Diagram for a Protein Tyrosine Radical. Proc. Natl. Acad. Sci. USA 2012, 109(25), 9739–9743.
  • Bethke, C. M.; Yeakel, S. The Geochemist's Workbench, Release 9.0. GWB Essentials Guide; Aqueous Solutions LLC: Campaign, IL, 2013.
  • Beverskog, B.; Puigdomenech, I. Revised Pourbaix Diagrams for Chromium at 25-300°C. Corros. Sci. 1997a, 39(1), 43–57.
  • Beverskog, B.; Puigdomenech, I. Revised Pourbaix Diagrams for Zinc at 25-300°C. Corros. Sci. 1997b, 39(1), 107–114.
  • Bichsel, Y.; von Gunten, U. Hipododous Acid: Kinetics of the Buffer Catalyzed Disproportionation. Water Res. 2000, 34(12), 3197–3203.
  • Bichsel, Y.; von Gunten, U. Oxidation of Iodide and Hypoiodous Acid in the Disinfection of Natural Waters. Environ. Sci. Technol. 1999, 33(22), 4040–4045.
  • Bishop, E. Indicators. Pergamon Press: Oxford, 1972; pp. 537–542.
  • Bishop, E. Observations on the Theory of Action of Visual Indicators. Analyst 1971, 96, 537–549.
  • Bishop, E. Some Theoretical Considerations in Analytical Chemistry: The Influence of Absolute Concentration on the Parameters of Redox Titrimetry. Anal. Chim. Acta, 1962a, 27, 253–261.
  • Bishop, E. Some Theoretical Considerations in Analytical Chemistry. Part VI. The Precise Calculation of Data for Redox Titration Curves. Anal. Chim. Acta 1962b, 26, 397–405.
  • Bishop, E. The Mathematical Treatment of Redox Reactions in Volumetric Analysis. Anal. Chim. Acta 1952, 7, 15–19.
  • Bjerrum, N. Die Theorie der alkalimetrischen und azidimetrischen Titrierungen; Samlung chemischer und chemisch-technischer Vorträge Band XXI, 1–128; Verlag von Ferdinand Enke: Stuttgart, 1914; pp. 91, 94, 97, 103.
  • Bockris, J. O'M. The Founding of the International Society of Electrochemistry. Electrochim. Acta, 2000, 45(15–16), XXI–XXIV; reprinted from Electrochim. Acta 1991, 36(1), 1–4.
  • Bohn, H. L. Redox Potential. Soil Sci. 1971, 112(1), 39–45.
  • Bouroushian, M. Electrochemistry of the Chalcogens. In Electrochemistry of Metal Chalcogenides; Springer-Verlag: Berlin, 2010; Ch. 2; pp. 57–75.
  • Brezonik, P. L.; Arnold, W. A. Water Chemistry: Fifty Years of Change and Progress. Environ. Sci. Technol. 2012, 46(11), 5650–5657.
  • Brinkman, U. A. Th. Mathematical Treatment of Redox Reactions. Chem. Weekbl. 1963, 59, 9–12.
  • Brinkman, U. A. Th. Systematic Titration Errors in Redox Titrations. Anal. Chim. Acta 1969, 45, 411–416.
  • Brisset, J. L; Addou, A.; Draoui, M.; Moussa, D.; Abdelmaleke, F. Chimie Analytique en Solution. Principes et Applications; Lavoisier: Paris, 2005.
  • Budevski, O. Foundations of Chemical Analysis; Ellis Horwood: Chichester, UK, 1979.
  • Budevski, O. Graphical Method for Construction of Titration Curves. In Analytical ChemistryEssays in Memory of Anders Ringbom; Wanninen, E., Ed.; Pergamon Press: Oxford, 1977; pp. 169–174.
  • Bueno, J. M.; Ramos-Escudero, F.; Sáez Plaza, P.; Muñoz, A. M.; Navas, M. J. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part I. General Considerations Concerning Polyphenols and Flavonoids. Crit. Rev. Anal. Chem. 2012a, 42(2), 102–125.
  • Bueno, J. M.; Sáez-Plaza, P.; Ramos-Escudero, F.; Jimenez, A. M.; Fett, R. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. Crit. Rev. Anal. Chem. 2012b, 42(2), 126–151.
  • Burgot, J. L. Ionic Equilibria in Analytical Chemistry; Springer: New York, 2012.
  • Butler, J. N. Ionic Equilibrium: Solubility and pH Calculations: Wiley: New York, 1998.
  • Castelli, I. E.; Thygesen, K. I.; Jacobsen, K. W. Calculated Pourbaix Diagrams of Cubic Perovskites for Water Splitting: Stability against Corrosion. Topics Catal. 2014, 57, 265–272.
  • Cavanagh, B. A General (Exact) Equation to the Potentiometric-Titration Curve. J. Chem. Soc. 1930, 1425–1447.
  • Cavanagh, B. Differential Potentiometric Titration. Part I. Simple Method (Method I). J. Chem. Soc. 1928a, 843–855.
  • Cavanagh, B. Differential Potentiometric Titration. Part II. Refined Methods (Methods II and III). J. Chem. Soc. 1928b, 855—872.
  • Charlot, G. Les Réactions Chimiques en Solution Aqueuse et Caractérisation des Ions, 7th ed.; Masson: Paris, 1983.
  • Charlot, G. Sur les Phénomènes d’Oxido-Reduction en Chimie Analytique. Anal. Chim. Acta 1948, 2, 150–165.
  • Charlot, G. Théorie et Méthode Nouvelle d’Analyse Qualitative, 3rd ed.; Masson, Paris, 1949.
  • Charlot, M. Les Réactions Chimiques en Solution Aqueuse; Elsevier-Masson, Paris, 1997.
  • Charlot, G.; Gauguin, R. Les Méthodes d’Analyse des Réactions en Solution; Masson, Paris, 1951.
  • Charlot, G.; Wolff, J. P.; Lacroix, S. Une Géneralisation de la Théorie de Brönsted en Chimie Analytique. Anal. Chim. Acta 1947, 1, 73–89.
  • Chaston, S. H. H. Double Scales for Equilibria. J. Chem. Educ. 1979, 56(1), 24–26.
  • Choi, Q. W. A Theoretical Study of Oxidation-Titration Curves. J. Korean Chem. Soc. 1970, 14(4), 287–296.
  • Choi, Q. W.; Kim, K. R. Errors in Potentiometry End-Point of Redox Titrations Determined by the Zero Second Derivative Method. J. Korean Chem. Soc. 1978, 22(3), 128–132.
  • Clark, W. M. Oxidation-Reduction Potentials of Organic Systems; William and Wilkins: Baltimore, MD, 1960.
  • Clark, W. M. Recent Studies on Reversible Oxidation-Reduction in Organic Systems. Chem. Rev. 1925, 2(1), 127–175.
  • Clark, W. M. Studies on Oxidation-Reduction. I. Introduction. U.S. Public Health Rep. 1923, 38, 443–455.
  • Cogley, D. R. Automated Computation Methods. In Ionic Equilibrium, Solubility and pH Calculations; Wiley: New York, 1998; Ch. 12; pp. 485–541.
  • Cohen, B.; Gibbs, H. D.; Clark, W. M. Studies on Oxidation-Reduction. VI. A Preliminary Study of Indophenols: (A) Dibromo Substitution Products of Phenol Indophenol; (B) Substituted Indophenols of the Ortho Type, (C) Miscellaneous. Public Health Rep. 1924, 39, 804–823.
  • Connors, K. A. Concentration Scales and Their Uses. In Binding Constants: The Measurement of Molecular Complex Stability; Wiley: New York, 1987; Sect. 2.2., pp. 31–42.
  • Dahl, P. F. Flash of the Cathode Rays: A History of J.J. Thomson's Electron; IOP Publishing: Philadelphia, PA, 1997.
  • de Ilarduya, J. M. M.; Villafañe, F. A Warning for Frost Diagrams Users. J. Chem. Educ. 1994, 71(6), 480–482.
  • de Levie, R. A Simple Expression for the Redox Titration Curve. J. Electroanal. Chem. 1992, 323(1–2), 347–355.
  • de Levie, R. Advanced Excel for Scientific Data Analysis, 3rd ed.; Oxford University Press: New York, 2012.
  • de Levie, R. Explicit Expressions of the General Form of the Titration Curve in Terms of Concentration. Writing a Single-Closed Form Expression for the Titration Curve for a Variety of Titrations without Using Approximations or Segmentation. J. Chem. Educ. 1993, 70(3), 209–217.
  • de Levie, R. General Expressions for Acid-Base Titrations of Arbitrary Mixtures. Anal. Chem. 1996, 68(4), 585–590.
  • de Levie, R. How to Use Excel in Analytical Chemistry and in General Scientific Data Analysis; Cambridge University Press: Cambridge, 2001.
  • de Levie, R. Principles of Quantitative Chemical Analysis; McGraw-Hill: New York, 1997.
  • de Levie, R. Redox Buffer Strength. J. Chem. Educ. 1999, 76(4), 574–577.
  • de Levie, R. Spreadsheet Workbook for Quantitative Chemical Analysis, McGraw-Hill: New York, 1992.
  • de Levie, R. The pH in Graph. Crit. Rev. Anal. Chem. 1997, 27(1), 51–76.
  • de Moura, D. R. On How to Simulate Potentiometric Titration Curve without Making Any Approximation. J. Chem. Educ. 1990, 67(3), 226–227.
  • Delahay, P. The Precursor of the International Society of Electrochemistry. Electrochim. Acta 2000, 45(15), xxv–xxvi.
  • Delahay, P.; Pourbaix, M.; Van Rysselberche, P. Potential-pH Diagrams. J. Chem. Educ. 1950, 27(12), 683–688.
  • Desbarres, J.; Bauer, D. Simulation des Courbes de Dosage Potentiomètriques par Emploi d’Une Equation Universelle. Dosage par Echange d’Une Seule Particule. Talanta 1975, 22(10–11), 877–879.
  • Deschacht, W. Calculated Equivalence Volume in the Iron(II), Cerium(IV) Titration. Analyst 1978, 103, 994–998.
  • Drewes, D. R. Computer Code for Producing Eh-pH Plots of Equilibrium Chemical Systems. J. Chem. Inf. Comput. Sci. 1985, 25, 73–77.
  • Durliat, J.; Comtat, M. Critical Evaluation of Potentiometric Redox Titration in Enology. Anal. Chim. Acta 2005, 545(2), 173–181.
  • Dyrssen, D.; Jagner, D.; Wengelin, F. Computer Calculation of Ionic Equilibria and Titration Procedures; Almqvist and Wiksell: Stockholm, 1968.
  • Ebsworth, E. A. V. Energies of Oxidation-Reduction Systems. Educ. Chem. 1964, 1, 233.
  • Edens, G. J. Redox Titration of Antioxidant Mixtures with N-Bromosuccinimide as Titrant: Analysis by Non-linear Least-Squares with Novel Weighting Function. Anal. Sci. 2005, 21(11), 1349–1354.
  • Elema, B. Oxidation-Reduction Potentials of Chlororaphine. Recl. Trav. Chim. Pays-Bas 1933, 52, 569–583.
  • Elema, B. Some Remarks Concerning the Theory of Semiquinone Formation and Its Application. Recl. Trav. Chim. Pays-Bas 1935, 54, 76–78.
  • Elema, B. Studies on the Oxidation-Reduction of Pyocyanine. II. Redox Potentials of Pyocyanine. Recl. Trav. Chim. Pays-Bas 1931, 50, 807–826, 1004.
  • Electric Power Research Institute. Computer-Calculated Potential pH Diagrams to 300 ºC. Volume 3. User's Guide to Computer Program POT-pH-TEMP; EPRI NP-3137, Project 1167-2; Babcock-Wilcox Company: Alliance, OH, 1983.
  • Elenkova, N. G. General Treatment of Conjugated Acid-Base, Redox and Complexation Equilibria. Talanta 1980, 27(9), 699–704.
  • Erdey, L.; Polos, L. Contribution to Theory of Redox Titrations. Magyar Kemikusok Lapja 1971, 26(2), 60–67.
  • Erdey, L.; Svehla, G. The Calculation of Indicator Error in Oxidation-Reduction Titrations. Anal. Chim. Acta 1968, 40, 473–478.
  • Exner, K. S.; Anton, J.; Jacob, T.; Over, H. Chlorine Evolution Reaction on RuO2 (110): Ab Initio Atomistic Thermodynamics Study - Pourbaix Diagrams. Electrochim. Acta 2014, 120, 460–466.
  • Federov, A. A.; Shmata, T. S. Computer-Assisted Calculation and Graphical Presentation of Titration Curves. J. Anal. Chem. 2004, 59(5), 402–406.
  • Fishtik. I. Thermodynamic Stability of Chemical Species in Multiple Reaction Systems. J. Phys. Chem. B 2005, 109(9), 3851–3859.
  • Fishtik. I. Thermodynamic Stability Relations in Redox Potentials. Environ. Sci. Technol. 2006, 40(6), 1902–1910.
  • Florence, T. M.; Batley, G. E. Chemical Speciation in Natural Waters. Crit. Rev. Anal. Chem. 1980, 9(3), 219–296.
  • Freiser, H. Enhanced Latimer Potential Diagrams via Spreadsheets. J. Chem. Educ. 1994, 71(9), 786–788.
  • Friedel, A.; Murray, R. Using Oxidation State Diagrams to Teach Thermodynamics and Inorganic Chemistry. J. Chem. Educ. 1977, 54(8), 485–487.
  • Frost, A. Oxidation Potential-Free Energy Diagrams. J. Am. Chem. Soc. 1951, 73(6), 2680–2682.
  • Frutton, C. F.; Maron, S. H. The Kinetics of Hypobromite Decomposition. J. Am. Chem. Soc. 1937, 57(9), 1652–1655.
  • Gaeke, A. New Forms of Electrode Equations for the Analysis of Redox Titration Curves. Trans. Faraday Soc. 1938, 34, 1395–1409.
  • Garrells, R. M. Some Free Energy Values from Geological Relations. Am. Mineral. 1957, 42, 780–791.
  • Garrells, R. M.; Christ, C. L. Solutions, Minerals, and Equilibria; Harper & Row: New York, 1965.
  • Garric, M. Chimie Générale, Vol. 1; Dunod: Paris, 1970.
  • Gauguin, R. Le Phénomène de Dismutation en Chimie Analytique. Utilisation de la Théorie de Brönsted Généralisée. Anal. Chim. Acta 1948, 2, 177–204.
  • Goldman, J. A. A General Equation for the Description of Redox Titration Curves, J. Electroanal. Chem. 1966a, 11(4), 255–261.
  • Goldman, J. A. Further Considerations on Redox Titration Equations. J. Electroanal. Chem. 1966b, 11(6), 416–424.
  • Goldman, J. A. Oxidation Reduction Equilibria and Titration Curves. In Treatise on Analytical Chemistry, Part 1, Theory and Practice, Volume 3, Section D, Solution Equilibria and Chemistry (Continued); Kolthoff, I. M.; Elving, P. J., Eds.; Wiley: New York, 1983; Ch. 24; pp –79.
  • Goldman, J. A. Redox Equilibria IV. Titration Curve Equations for Homogeneous and Symmetrical Redox Reactions. J. Electroanal. Chem. 1968a, 16(1), 47–59.
  • Goldman, J. A. Redox Equilibria. V. The Locations of Inflection Points on Titration Curves for Homogeneous Reactions. J. Electroanal. Chem. 1968b, 18(1–2), 41–45.
  • Goldman, J. A. Redox Equilibria. VI. A Completely General Titration Curve Equation for Homogenous and Symmetrical Redox Reactions. J. Electroanal. Chem. 1968c, 19(3) 205–214.
  • Goldman, J. A. The Equivalence Point Potential in Redox Titrations. Anal. Chim. Acta 1965, 33, 217–218.
  • Goldman, J. A. The Locations of Inflection Points on Titration Curves for Symmetrical Redox Reactions, J. Electroanal. Chem. 1967, 14(4), 373–383.
  • Gottardi, W. Redox-Potentiometric/Titrimetric Analysis of Aqueous Iodine Solutions. Fresenius J. Anal. Chem. 1998, 362(3), 263–269.
  • Gottardi, W.; Pffeiderer, J. Redox-Iodometry: A New Potentiometric Method. Anal. Bioanal. Chem. 2005, 382(5), 1328–1338.
  • Gran, G. Determination of the Equivalence Point in Potentiometric Titration. Acta Chem. Scand., 1950, 4, 559–577.
  • Gran, G. Determination of the Equivalence Point in Potentiometric Titrations. Part II. Analyst, 1952, 67(11), 661–671.
  • Grundl, T. J.; Haderlein, S.; Nurmi, J. T.; Tratnyek P. G. Introduction to Aquatic Redox Chemistry. In Aquatic Redox Chemistry; Tratnyek, P. G.; Grundl, T. J.; Haderlein, S., Eds.; ACS Symposium Series Vol. 1071; American Chemical Society: Washington, DC, 2011; Ch. 1; pp. 1–14.
  • Halliwell, B. Biochemistry of Oxidative Stress. Biochem. Soc. Trans. 2007, 35(5), 1147–1150.
  • Halliwell, B. Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol. 2006, 141(2), 312–322.
  • Hazlehurst, T. H. Acid-Base Reactions. Their Analogy to Oxidation-Reduction Reactions in Solution. J. Chem. Educ. 1940, 17(10), 466–468.
  • Heeb, M. B.; Criquet, J.; Zimmermann-Steffens, S.; von Gunten, U. Oxidative Tretment of Bromide-Containing Waters: Formation of Bromine and Its Reactions with Inorganic and Organic Compounds. Water Res. 2014, 48, 15–42.
  • Herringshaw, J. F. A Rapid Method of Forecasting the End-Point in Potentiometric Titration. Analyst 1962, 87, 463–466.
  • Hildebrand, J. H. Gilbert Newton Lewis 1875-1946, a Biographical Memoir; National Academy of Sciences: Washington, DC, 1958a; Vol. 31; pp. 209–235.
  • Hildebrand, J. H. Wendell Mitchell Latimer 1893-1955, a Biographical Memoir. National Academy of Sciences: Washington, DC, 1958b; pp. 219–237.
  • Hill, J. W.; Kolb, D. K. Oxidation and Reduction, Burn and Unburn. In Chemistry for Changing Times, 10th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, 2004; Ch. 8; pp. 213–237.
  • Housecroft, C. E.; Sharpe, A. G. Inorganic Chemistry, 2nd ed.; Pearson Education Limited: Harlow, Essex, UK, 2005.
  • Hulanicki, A.; Głąb, S. Redox Indicators: Characteristics and Applications. Pure Appl. Chem. 1978, 50(5), 463–498.
  • Hulanicki A.; Głab S. Total Systematic Error in Redox Titrations with Visual Indicators. I: Basic Principles. Talanta 1975, 22(4–5), 363–370.
  • Hulanicki A.; Głab S. Total Systematic Error in Redox Titrations with Visual Indicators. II Experimental Verification. Talanta 1976, 23(8), 608–611.
  • Huang, X.-Z.; Chen, H.-L. The Computer Simulation of Redox Titration. J. Nanyan Inst. Technol. 2011, 2. Available at http://en.cnki.com.cn/Article_en/CJFDTOTAL-NYLG201102028.htm
  • Husson, O. Redox Potential (Eh) and pH as Drivers of Soil/ Plant/ Microorganism Systems: A Transdisciplinary Overview Pointing to Integrative Opportunities for Agronomy. Plant Soil 2013, 362(1–2), 389–417.
  • Huybrechts, M. Le pH et sa Measure, le Potentiels d’Oxido-Réduction, le Rh; Georges Thone: Liégé, 1932.
  • Ibañez, J. G.; Hernandez-Esparza, M.; Doria-Serrano, C.; Fregoso-Infante, A.; Singh, M. M. Experimental Transitions in E vs pH (or Pourbaix) Diagrams. In Environmental Chemistry, Microscale Laboratory Experiments; Springer-Verlag: New York, 2008; pp. 79–88.
  • Imlay, J. A. Cellular Defenses against Superoxide and Hydrogen Peroxide. Annu. Rev. Biochem. 2008, 77, 755–776.
  • Inczédy, J. Analytical Applications of Complex Equilibria; Wiley: New York, 1976.
  • Inczédy, J. Representation of Titrations Errors in Logarithmic Diagrams. J. Chem. Educ. 1970, 47(11), 769–772.
  • Inzelt, G. Standard Potentials. In Encyclopedia of Electrochemistry, Vol 7A, Inorganic Chemistry; Pickett, C. J.; Scholz, F., Eds.; Wiley: New York, 2006, pp. 1–16.
  • Jagner, D. Computers in Titrimetry. Microchem. J. 1974, 19(4), 406–415.
  • Jenne, E. A. Chemical Modeling in Aqueous Systems: Speciation, Sorption, Solubility, and Kinetics; ACS Symposium Series Vol. 93; ACS: Washington, DC, 1979a.
  • Jenne, E. A. Chemical Modeling—Goals, Problems, Approaches and Principles. In Chemical Modeling in Aqueous Systems: Speciation, Sorption, Solubility, and Kinetics; Jenne, E. A. Ed.; ACS Symposium Series Vol. 93; American Chemical Society: Washington, DC, 1979b.
  • Johansson, A. Choice of Chemical Conditions in Order to Obtain Linear Titration Curves in Potentiometry. Talanta 1975, 22(12), 945–954.
  • Kahlert, H.; Scholz, F. Acid-Base Diagrams; Springer-Verlag: Berlin, 2013.
  • Karlsson, C.; Gogoll, A.; Stromme, M.; Sjödin, M. Investigation of the Redox Chemistry of Isoindole-4,7-diones. J. Phys. Chem. C 2013, 117(2), 894–901.
  • Kaufman, L.; Perepezko, J. H.; Hildal, K.; Farmer, J.; Day, D.; Yang, N.; Branagan, D. Transformation, Stability and Pourbaix Diagrams of High Performance Corrosion Resistant (HPCRM) Alloys. Calphad 2009, 33(1), 89–99.
  • Kaur, R.; Kaur, J.; Mahajan, J.; Kumar, R.; Avora, S. Oxidative Stress—Implications, Source and Its Prevention. Environ. Sci. Pollut. Res. 2014, 21, 1599–1613.
  • Khopkar, S. M. Basic Concepts of Analytical Chemistry, 2nd ed.; New Age International Publ.: New Delhi, India, 1998.
  • King, D. W. A General Approach for Calculating Speciation and Poising Capacity of Redox Systems with Multiple Oxidation States: Application to Redox Titrations and the Generation of pϵ-pH Diagrams. J. Chem. Educ. 2002, 79(9), 1135–1140.
  • Kinniburgh, D.; Cooper, D. PhrePlot. Creating Graphical Output with PHREEQC. 2014. http://www.phreeplot.org/PhreePlot.pdf
  • Kinniburgh, D. G.; Cooper, D. M. Predominance and Mineral Stability Diagrams Revisited. Environ. Sci. Technol. 2004, 38(13), 3641–3648.
  • Kolthoff, I. M. Chem. Weekbl. 1919, 16, 408.
  • Kolthoff, I. M. The Development of Analytical Chemistry as a Science. Some Personal Annotations. Amer. Lab. 1979, May, 42–44.
  • Kolthoff, I. M.; Belcher, R.; Stenger, V. A.; Matsuyama, G. Volumetric Analysis, Vol III, Titration Methods: Oxidation-Reduction Reactions; Interscience Publishers: New York, 1957.
  • Kolthoff, I. M.; Furman, N. H. Potentiometric Titrations, 2nd ed.; Wiley: New York, 1947; Ch. III; pp. 45–60.
  • Kratochvil, B.; Coetzee, J. F. Analytical Oxidation-Reduction in Organic Solvents. Crit. Rev. Anal. Chem. 1971, 1(4), 415–464.
  • Krotopov, V. A. Approximation of Potentiometric Titration Curves by Logarithmic Functions. Factors Affecting the Accuracy of Redox Titration. J. Anal. Chem. 2000a, 55(2) 160–164.
  • Krotopov, V. A. Approximation of Potentiometric Titration Curves by Logarithmic Functions: Prediction of Random Errors in Titration Parameters. J. Anal. Chem. 2000b, 51(5), 449–453.
  • Krotopov, V. A. Approximation of Redox Titration Curves by Logarithmic Functions. J. Anal. Chem. 1998, 53(8), 701–703.
  • Krotopov, V. A. Numerical Simulation of Redox Titrations. J. Anal. Chem. 1993, 48(2), 167–173.
  • Kruger, J. Marcel Pourbaix (1904-1998), in Memoriam. Electrochem. Soc. Interface 1999, Spring, 17.
  • Kuskoski, E. M.; Asuero, A. G.; Garcia-Parrilla, M. C.; Troncoso, A. M.; Fett, R. Actividad Antioxidante de Pigmentos Antociánicos. Food Sci. Technol. (Campinas) 2004, 24(4), 691–693.
  • Kuskoski, E. M.; Asuero, A. G.; Morales, M. T.; Fett, R. Frutos Tropicais Silvestres e Polpas de Frutas Congeladas: Atividade Antioxidante, Polifenóis e Antocianinas. Cienc. Rural 2006, 36(4), 1283–1287.
  • Kuskoski, E. M.; Asuero, A. G.; Trocoso, A. M.; Mancini-Filho, J.; Fett, R. Aplicación de Diversos Métodos Químicos para Determinar Actividad Antioxidante en Pulpa de Frutos. Food Sci. Technol. (Campinas) 2005, 25(4), 726–732.
  • Latimer, W. M. The Oxidation States of the Elements and Their Potentials in Aqueous Solutions; Prentice-Hall: New York, 1938.
  • Latimer, W. M. Oxidation Potentials; Prentice-Hall: Englewood Cliffs, NJ, 1952.
  • Latimer, W. M.; Hildebrand, J. H. Reference Book of Inorganic Chemistry; Macmillan: New York, 1940.
  • Lavoisier, A. L. Elements of Chemistry; Dover: New York, 1984 (unabridged facsimile reprinting of original (1790) Kerr translation).
  • Leal, A. M. M.; Blunt, M. J.; LaForce, T. C. Efficient Chemical Equilibrium Calculations for Geochemical Speciation and Reactive Transport Modelling. Geochim. Cosmochim. Acta 2014, 131, 301–321.
  • Li, C. H.; White, C. F. Kinetics of Hypoiodite Decomposition. J. Am. Chem. Soc. 1943, 65, 335–339.
  • Lin, Z. A New General Formula to Estimate Potential Break of Redox Titration. J. Hebi Normal Univ. (Nat. Sci.) 1997, 2. Available at http://en.cnki.com.cn/Article_en/CJFDTOTAL-HBSZ702.021.htm
  • Lingane, J. J. Electroanalytical Chemistry, 2nd ed.; Interscience Publishers: New York, 1958.
  • Liu, H.; Zhang, C. Computation of Multi-Component E-pH Predominance Diagrams. Calphad 2001, 25(3), 363–380.
  • Liu, Z.-Q. Chemical Methods to Evaluate Antioxidant Ability. Chem. Rev. 2010, 110(10), 5675–5691.
  • Liynage, J. A.; Janaratne, T. Chemical Speciation: A Guide to Understand Titrimetric Analysis. J. Chem. Educ. 2002, 79(5), 635–636.
  • Maccà, C. The Formulation of the Electron and Proton Balance Equations for Solving Complicated Equilibrium Problems in Redox Titrations. Fresenius J. Anal. Chem. 1997, 357(2), 229–232.
  • Maccà, C; Bombi, G. G. A Graphical Approach to Redox Titrations. Fresenius J. Anal. Chem. 1986, 324(1), 52–57.
  • Maccà, C; Bombi, G. G. Linearity Range of Gran Plots for the End-Point in Potentiometric Titrations. Analyst 1989, 114, 463–470.
  • Machado, A. A. S. C. The Use of Electron Balance in Ionic Equilibrium Calculations. J. Chem. Educ. 1976, 53(5), 305.
  • Martíinez-Rivera, M. C.; Berry, B. W.; Valentine, K. C.; Westerlund, K.; Hay, S.; Tommos, C. Electrochemical and Structural Properties of a Protein System Designed to Generate Tyrosine Pourbaix Diagrams. J. Am. Chem. Soc. 2011, 133, 17786–17795.
  • Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. The Nature of the Hydrated Excess Proton in Water. Nature 1999, 397, 601–604.
  • Maryanov, B. M. Linear Regression Analysis of Potentiometric Titration Data for Asymmetric Redox Titrations. J. Anal. Chem. 1997, 52(6), 508–513.
  • Maryanov, B. M.; Kalchikhina, S. N. Processing of Potentiometric Redox Titration Data by Regression-Analysis with Reduction of the Number of Variables. J. Anal. Chem. 1992, 47(3), 396–398.
  • May, P. M. SolEq: Solution Equilibria Principles and Applications. J. Chem. Eng. Data 2002, 47(5), 1330.
  • May, P. M.; Rowland, D.; Königsber, E.; Hefter, G. JESS, a Joint Expert Speciation System. IV. A Large Database of Aqueous Solution Physicochemical Properties with an Automatic Means of Achieving Thermodynamic Consistence. Talanta 2010, 81, 142–148.
  • McCafferty, E. Thermodynamics of Corrosion: Pourbaix Diagrams. In Introduction to Corrosion Science; Springer: New York, 2010; pp. 95–117.
  • Meites, L.; Fanelli, N. Factors Affecting the Precision of a New Method for Determining the Reduced and Oxidized Forms of a Redox Couple by a Single Potentiometric Titration. Anal. Chim. Acta 1987, 194, 151–162.
  • Melchior, D. C.; Bassett, R. L., Eds. Chemical Modeling of Aqueous Systems II; ACS Symposium Series Vol. 416; American Chemical Society: Washington, DC, 1990.
  • Menshutkin, B. N. Russia's Lomonosov, Chemist, Courtier, Physicist, Poet; Princeton University Press: Princeton, NJ, 1952.
  • Meretoja, A.; Lukkari, O.; Hakoila, E. Redox Titrations. 2. Location of Inflection Points of Titration Curves for Homogeneous Redox Reactions. Talanta 1978, 25(10), 557–562.
  • Meretoja, A.; Lukkari, O.; Lukkari, H. Redox Titrations.1. Coincidence of Equivalence Point and Inflection Point of Titration Curve. Finn. Chem. Lett. 1976, (4–5), 77–80.
  • Michaelis, L. Die Wasserstoffionenkonzentration; Springer: Berlin, 1922, 1929; Hydrogen Ion Concentration; Williams & Wilkins: Baltimore, MD, 1926.
  • Michaelis, L. Semiquinones, the Intermediate Steps of Reversible Organic Oxidation–Reduction. Chem. Rev. 1935, 16(2), 243–286.
  • Michaelis, J.; Flexnor, L. B. Oxidation-Reduction Potentials; Lippincott: Philadelphia, PA, 1930; p. 79.
  • Michaelis, L.; MacInnes, D. A.; Granic, S. Leonor Michaelis 1875-1949, a Biographical Memoir; National Academy of Sciences: Washington, DC, 1958; pp. 280–321.
  • Michaelis, L.; Schubert, M. P. Some Problems in Two-Step Oxidation Treated for the Case of Phenanthraquinone Sulfonate. J. Biol. Chem. 1937, 119(1), 133–140.
  • Michaelis, L.; Schwarzenbach, G. The Intermediate Forms of Oxidation Reductions of the Flavins. J. Biol. Chem. 1938, 123(2), 527–542.
  • Michałowska-Kaczmarczyk, A. M.; Asuero, A. G.; Michalowski, T. Why Not Stoichiometry versus Stoichiometry—Why Not? Part I. General Context. Crit. Rev. Anal. Chem., 2015a, 45(2), 166–188.
  • Michałowska-Kaczmarczyk, A. M.; Michałowski, T. Compact Formulation of Redox Systems According to GATES/GEB Principles. J. Anal. Sci. Methods Instrum., 2014a, 4(2), 39–45.
  • Michałowska-Kaczmarczyk, A. M.; Michałowski, T. Comparative Balancing of Non-Redox and Redox Electrolytic Systems and Its Consequences. Am. J. Anal. Chem. 2013, 4(10), 46–53.
  • Michałowska-Kaczmarczyk, A. M.; Michałowski, T. GATES as the Unique Tool for Simulation of Electrolytic Redox and Non-Redox Systems. Journal of Analytical & Bioanalytical Techniques, 2014b. doi: 10.4172/2155-9872.1000204
  • Michałowska-Kaczmarczyk, A. M.; Michałowski, T. Generalized Electron Balance for Dynamic Redox Systems in Mixed-Solvent Media. J. Anal. Sci. Methods Instrum., 2014c, 4, 102–109.
  • Michałowska-Kaczmarczyk, A. M.; Michałowski, T. Linear Dependence of Balances for Non-Redox Electrolytic Systems. Am. J. Anal. Chem., 2014d, 5, 1285–1289.
  • Michałowska-Kaczmarczyk, A. M.; Rymanowski, M.; Asuero, A.G.; Toporek, M.; Michałowski, T. Formulation of Titration Curves for Some Redox Systems. Am. J. Anal. Chem. 2014, 5, 861–878.
  • Michałowska-Kaczmarczyk A. M.; Toporek M.; Michałowski T. Speciation Diagrams in Dynamic Iodide +Dichromate System. Electrochim. Acta 2015b, 155, 217–227.
  • Michałowski, T. Application of GATES and MATLAB for Resolution of Equilibrium, Metastable and Non-Equilibrium Electrolytic Systems. In Applications of MATLAB in Science and Engineering; Michałowski, T. Ed.; InTech: Rijeka, Croatia, 2011; Ch. 1. Available at http://www.intechopen.com/books/show/title/applications-of-matlab-in-science-and-engineering
  • Michałowski, T. Calculation of pH and Potential E for Bromine Aqueous Solution. J. Chem. Educ. 1994, 71(7), 560–562.
  • Michałowski, T. Calculations in Analytical Chemistry with Elements of Computer Programming, PK: Cracow, 2001 (in Polish).
  • Michałowski, T. Complementarity of Physical and Chemical Laws of Preservation in Aspect of Electrolytic Systems. Wiadomości Chemiczne 2007, 61, 625–640. (in Polish). Available at http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUS5-0004-0047
  • Michałowski, T. Some Remarks on Acid-Base Titration Curves. Chemia Analityczna 1981, 26, 799–813.
  • Michałowski, T. The Generalized Approach to Electrolytic Systems: I. Physicochemical and Analytical Implications. Crit. Rev. Anal. Chem. 2010, 40(1), 2–16.
  • Michałowski, T.; Asuero, A. G. New Approaches in Modeling Carbonate Alkalinity. Crit. Rev. Anal. Chem. 2012a, 42(3), 220–244.
  • Michałowski, T.; Asuero, A. G. Thermodynamic Modelling of Dolomite Behavior in Aqueous Media. J. Thermodyn. 2012b, 2012, Article ID 723052. doi: 10.1155/2012/723052.
  • Michałowski, T.; Asuero, A. G.; Ponikvar-Svet, M.; Toporek, M.; Pietrzyk, A.; Rymanowski, M. Liebig-Denigès Method of Cyanide Determination: A Comparative Study of Two Approaches. J. Solution Chem. 2012, 41(7), 1224–1239.
  • Michałowski, T.; Baterowicz, A.; Madej, A.; Kochana, J. Extended Gran Method and Its Applications for the Simultaneous Determination of Fe(II) and Fe(III). Anal. Chim. Acta 2001, 442(2), 287–293.
  • Michałowski, T.; Borzęcka, M.; Toporek, M.; Wybraniec, S.; Maciukiewicz, P.; Pietrzyk, A. Quasistatic Processes in Non-equilibrium Two-Phase Systems with Ternary Salts: II. Dolomite + Aqueous Media. Chem. Anal. (Warsaw) 2009, 54(6), 1203–1217.
  • Michałowski, T.; Kupiec, K.; Rymanowski, M. Numerical Analysis of the Gran Methods. A Comparative Study. Anal. Chim. Acta 2008, 606(2), 172–183.
  • Michałowski, T.; Lesiak, A. Acid-Base Titration Curves in Disproportionating Redox Systems. J. Chem. Educ. 1994a, 71(8), 632–636.
  • Michałowski, T.; Lesiak, A. Formulation of Generalized Equations for Redox Titration Curves. Chem. Anal. (Warsaw) 1994b, 39(5), 623–637.
  • Michałowski, T.; Michałowska-Kaczmarczyk, A. M.; Toporek, M. Formulation of general criterion distinguishing between non-redox and redox systems. Electrochim. Acta 2013a, 112, 199–211.
  • Michałowski, T.; Pietrzyk, A. A Thermodynamic Study of Struvite+Water System. Talanta 2006, 68(3), 594–601.
  • Michałowski, T.; Pietrzyk, A. Quasistatic Processes in Non-equilibrium Two-Phase Systems with Ternary Salts: I. Struvite + Aqueous Solution (CO2 + KOH). Chem. Anal. (Warsaw) 2008, 53, 33–46.
  • Michałowski, T.; Pietrzyk, A.; Ponikvar-Svet, M.; Rymanowski, M. The Generalized Approach to Electrolytic Systems: II. The Generalized Equivalent Mass (GEM) Concept. Crit. Rev. Anal. Chem. 2010a, 40(1), 17–29.
  • Michałowski, T.; Pilarski, B.; Dobkowska, A.; Młodzianowski, J. Mathematical modeling and physicochemical studies on acid-base equilibria in binary-solvent systems, Wiadomości Chemiczne 2010b, 54, 124–154.
  • Michalowski, T.; Pilarski, B.; Asuero, A. G.; Michalowska-Kaczmarczyk, A. M. Modeling of Acid-Base Properties in Binary-Solvent Systems. In Handbook of Solvents, 2nd ed.; Wypych, G., Ed.; ChemTec Publishing: Toronto, 2014; Ch. 9.4, pp. 623–648.
  • Michałowski, T.; Rymanowski, M.; Pietrzyk, A. Non-typical Brönsted's Acids and Bases. J. Chem. Educ. 2005, 82(3), 470–472.
  • Michałowski, T.; Toporek, M.; Michałowska-Kaczmarczyk, A. M.; Asuero, A. G. New Trends in Studies on Electrolytic Redox Systems. Electrochim. Acta 2013b, 109, 519–531.
  • Michałowski, T.; Wajda, N.; Janecki, D. An Unified Quantitative Approach to Electrolytic Systems. Chem. Anal. (Warsaw) 1996, 41(4), 667–685.
  • Minguzzi, A.; Fan, F. R. F.; Vertova, A.; Rondinini, S.; Bard, A. J. Dynamic Potential pH-Diagrams Application to Electrocatalysis for Water Oxidation. Chem. Sci. 2012, 3, 217–229.
  • Monnier, D.; Haerdi, W.; Buffle, Y.; Ruscony, Y. Chimie Analytique. Application aux Méthodes Instrumentales, Radiochimiques et a la Chimie de l’Environnent; Georg Genève: Genève, 1979.
  • Monnier, D.; Haerdi, W.; Ruscony, Y. Chimie Analytique. Analyse Qualitative Minérale. Eléments de Radiochimie; Georg Genève: Genève, 1968; Ch. IX; pp. 118–132.
  • Morales, D. A. Mathematical Modelling of Titration Curves. J. Chemom. 2002, 16, 247–260.
  • Morgan, J. J. Applications and Limitations of Chemical Thermodynamics in Natural Water Systems. In Equilibrium Concepts in Natural Water Systems; Stumm, W., Ed.; American Chemical Society: Washington, DC, 1967; Ch. 1; pp. 1–29.
  • Morris, J. C. The Mechanism of the Hydrolysis of Chlorine. J. Am. Chem. Soc. 1946, 68(9), 1692–1694.
  • Müller, B. Manual ChemEQL v. 3.0. A Program to Calculate Chemical Speciation Equilibria, Titrations, Dissolution, Precipitation, Adsorption, Kinetics, pX-pY Diagrams, Solubility Diagrams, Libraries with Complexation Constants. For MacOSX, Windows, Linus, Solaris: Limnological Research Center, EAWAG/ETH: Kastanienbaum, Switzerland, 2004.
  • Muñoz-Portero, M. J.; García-Antón, J.; Guiñón, J. L.; Leiva-García, R. Pourbaix Diagrams for Titanium in Concentrated Aqueous Lithium Bromide Solutions at 25°C. Corros. Sci. 2011, 53(4), 1440–1450.
  • Muñoz-Portero, M. J.; García-Antón, J.; Guiñón, J. L.; Pérez-Herranz, V. Pourbaix Diagrams for Chromium in Concentrated Aqueous Lithium Bromide Solutions at 25°C. Corros. Sci. 2009, 51(4), 807–819.
  • Murgulescu, I. G.; Dragulescu, C. Z., Über die Abweichung des Äquivalenzvolumens von dem Umschlagsvolumen bei den potentiometrischen Titrationen (About the Deviation of the Equivalence Volume of the End-Point Volume in Potentiometric Titrations). Z. Phys. Chem. 1940, 185A, 375–388
  • Nemzer, B.; Pietrzkowski, Z.; Spórna, A.; Stalica, P.; Thresher, W.; Michałowski, T.; Wybraniec, S. Betalainic and Nutritional Profiles of Pigment-Enriched Red Beet Root (Beta vulgaris L.) Dried Extracts. Food Chem. 2011, 127(1), 42–53.
  • Nightingale, Jr., E. R. Poised Oxidation-Reduction Systems. A Quantitative Evaluation of Redox Poising Capacity and Its Relation to the Feasibility of Redox Titrations. Anal. Chem. 1958, 30(2), 267–272.
  • Niki, E. Assessment of Antioxidant Capacity in Vitro and in Vivo. Free Radic. Biol. Med. 2010, 49(4), 503–515.
  • Nikolaychuk, P. A. The Third Dimension in Pourbaix Diagrams: A Further Extension. J. Chem. Educ. 2014, 91(5), 763–765. doi: 10.1021/ed400735g
  • Paabo, M.; Bates, R. G.; Robinson, R. A. Dissociation of Acetic Acid-d4 in Deuterium Oxide from 5 to 50º and Related Isotope Effects. J. Phys. Chem. 1966, 70(7), 2073–2077.
  • Pacer, R. A. Conjugate Acid-Base and Redox Theory. J. Chem. Educ. 1973, 50(3), 178–180.
  • Palazhcenko, O. Pourbaix Diagrams at Elevated Temperatures – A Study of Zn and Sn; master's thesis, University of Ontario Institute of Technology, August 2012.
  • Pankow, J. F. Aquatic Chemistry Concepts; Lewis Publishers: Chelsea, MI, 1991.
  • Parkhurst, D. L.; Appelo, C. A. J. User's Guide to PHREEQC (Version 2). A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations; Water Resources Investigations, Report 99-4259; U.S. Geological Survey: Reston, VA, 1999.
  • Pereira, C. F.; Alcalde, M.; Villegas, R.; Vale, J. Predominance Diagrams, a Useful Tool for the Correlation of the Precipitation-Solubility Equilibria with Other Ionic Equilibria. J. Chem. Educ. 2007, 84(3), 520–525.
  • Perez, R. J.; Heideman, R. A.; Perez, E. C. A New Approach to Multiphase Geochemical Speciation Modeling. Appl. Geochem. 2012, 27(9), 1724–1737.
  • Perez-Ruiz, T.; Hernández Córdoba, M.; Martínez-Lozano, C.; Sánchez-Pedreño, C. Nuevas Consideraciones Teóricas sobre las Valoraciones de Oxido-Reducción. Quim. Anal. 1984, 3, 138–146.
  • Pesterfield, L. L.; Maddox, J. B.; Crocker, M. S.; Schweitzer, G. K. Pourbaix (E-pH-M) Diagrams in Three Dimensions. J. Chem. Educ. 2012, 89, 891–899.
  • Pickering, W. F.; Meites, L. Heterogeneous Oxidation and Reduction Processes. Mechanisms and Analytical Applications. Crit. Rev. Anal. Chem. 1973, 3(3), 271–297.
  • Pietrzkowski, Z.; Nemzer, B.; Spórna, A.; Stalica, P.; Treser, W.; Keller, R.; Jimenez, R.; Michałowski, T.; Wybraniec, S., Influence of Betalain-Rich Extract on Reduction of Discomfort Associated with Osteoarthritis. New Med. 2010(1), 12–17. Available at http://www.newmedicine.pl/plshown.php?ktory=3333
  • Pilarski, B.; Dobkowska, A.; Foks, H.; Michałowski, T. Modeling of acid–base equilibria in binary-solvent systems: A comparative study, Talanta 2010, 80(3), 1073–1080.
  • Ponikvar, M.; Michałowski, T.; Kupiec, K.; Wybraniec, S.; Rymanowski, M. Experimental Verification of the Modified Gran Methods Applicable to Redox Systems. Anal. Chim. Acta 2008, 628(2), 181–189.
  • Pourbaix, M. Atlas of Chemical and Electrochemical Equilibria in the Presence of a Gaseous Phase; National Association of Corrosion Engineers: Houston, TX, 1988.
  • Pourbaix, M. Atlas of Electrochemical Equilibria in Aqueous Solutions; Pergamon Press: Oxford, 1966.
  • Pourbaix, M. Electrochemical Corrosion of Metallic Biomaterials. Biomaterials 1984b, 5, 122–134.
  • Pourbaix, M. Lectures on Electrochemical Corrossion, Plenum Press: New York, 1973.
  • Pourbaix, M. The Application of High Temperature Equilibrium Diagrams to the Metal Production Industry. J. Electroanal. Chem. 1984a, 180 (1–2), 527–547.
  • Pourbaix, M. Thermodynamics and Corrosion. Corrosion Sci. 1990, 30(10), 963–988.
  • Pourbaix, M. Thermodynamics of Dilute Aqueous Solutions with Applications to Electrochemistry and Corrosion; Edward Arnold & Co: London, 1949.
  • Pourbaix, M. Thermodynamique des Solutions Aqueuses Diluées. Potentiel d’Oxydo-Reduction (résumé de conférence). Bull. Soc. Chim. Belges 1938, 48.
  • Pourbaix, M. U.R. Evans, in Memoriam. Br. Corros. J. 1980, 15 (2), 49–50.
  • Pourbaix, M. J. N. Thermodynamique des Solutions Aqueuses Dilués. Représentation Graphique du Rôle du pH et du Potentiel, PhD Thesis, Technische Hogeschool, Delft, The Netherlands, 1945.
  • Powell, K. J.; Pettit, L. D.; Ramette, W. SolEq: Solution Equilibria Principles and Applications; Academic Software and IUPAC: Otley, UK, 2001.
  • Powell, K. J.; Pettit, L. D.; Town, R. M.; Popov, K. I. SolEq: Tools and Tutorials for Studying Solution Equilibria Univ. Chem. Educ. 2000, 4(1), 9–13.
  • Qiu, Y.; Gao, Y.; Wei, P.; Wang, L. Organic Light-Emitting Diodes with Improved Hole-Electron Balance by Using Copper Phthalocyanine/Aromatic Diamine Multiple Quantum Wells. Appl. Phys. Lett. 2002, 80, 2628–2630.
  • Rapp, R. A. (Robert F. Mehl Award Medalist), Some Generalities in the Analyses of Equilibria in Ionic Solutions. Metall. Mater. Trans. A 2000, 31(9), 2105–2118.
  • Rieger, P. H. Electrochemistry, 2nd ed.; Chapman and Hall: New York, 1994.
  • Rives-Arnau, V. Free Energy-Oxidation State Diagrams. J. Chem. Educ. 1989, 66(8), 652.
  • Rojas-Hernández, A.; Ramirez, T.; Ibañez, J.G.; Gonzalez, I. Construction of Multicomponent Pourbaix Diagrams using Generalized Species. J. Electrochem. Soc. 1991, 138(2), 365–371.
  • Rosset, R.; Bauer, D.; Desbarres, J. Chimie Analytique des Solutions et Informatique, 2nd ed.; Masson, Paris, 1991.
  • Rowland, D.; May, P. M. JESS, a Joint Expert Speciation System. V: Approaching Thermodynamic Property Prediction for Multicomponent Concentrated Aqueous Electrolyte Solutions. Talanta 2010, 81(1–2), 149–155.
  • Rymanowski, M. Mathematical Modeling and Testing of Complex Analytical Systems. PhD diss., Cracow University of Technology, 2007. (in Polish)
  • Sillén, L. G. Graphic Presentation of Equilibrium Data. In Treatise of Analytical Chemistry, Part I, Section B; Kolthoff, I. M.; Elving, P. J., Eds.; Wiley: New York, 1959; Ch. 8; pp. 277–317.
  • Sillén, L. G. High-Speed Computers as a Supplement to Graphical Methods. I. Functional Behaviour of the Error Square Sum. Acta Chem. Scand. 1962, 16, 159–172.
  • Sillén, L. G. Redox Diagrams. J. Chem. Educ. 1952, 29(12), 600–608.
  • Silverstein, T. P. The Aqueous Proton Is Hydrated by More Than One Water Molecule: Is the Hydronium Ion a Useful Conceit?. J. Chem. Educ. 2014, 91(4), 608–610.
  • Sposito, G. Oxidation-Reduction Reactions. In The Chemistry of Soils, 2nd ed.; Oxford University Press: Oxford, 2008; Ch. 6; pp. 144–173.
  • Spycher, N.; Peiffer, L.; Sonnenthal, E. GeoT User's Guide, a Computer Program for Multicomponent Geothermometry and Geochemical Speciation, Version 1.4, Revision 0.01; Lawrence Berkeley National Laboratory, University of California: Berkeley, CA, 2013.
  • Sriraman, K. A Study on the Theory of Action of Reversible Redox Indicators. Talanta 1976, 23, 864–866.
  • Staehle, R. W.; Marcel, J. M. Pourboix-Palladium Award Medalist. J. Electrochem. Soc. 1976, 123(2), 23C–25C.
  • Stumm, W.; Morgan, J. J. Oxidation and Reduction. Equilibria and Microbial Mediation. In Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; Wiley: New York, 1996; Ch. 7; pp. 425–515.
  • Stur, J.; Bos, M.; Van der Linden, W. E. A Generalized Approach for the Calculation and Automation of Potentiometric Titrations. Part 2. Redox Titrations. Anal. Chim. Acta 1984, 158, 125–129.
  • Sucha, L.; Kotrly, St. Solution Equilibria in Analytical Chemistry; Van Nostrand Reinhold: New York, 1972.
  • Sudha, P. D. C. Pharmaceutical Analysis; Pearson Education India: New Delhi, 2012.
  • Tabbut, F. D. Titration Curves from Logarithmic Concentration Diagrams. J. Chem. Educ. 1966, 43(5), 245–249.
  • Takeno, N. Atlas of Eh-pH Diagrams, Intercomparison of Thermodynamic Databases; Geological Survey of Japan Open File Report No. 419; National Institute of Advanced Industrial Science and Technology, Research Center for Deep Geological Environments, 2005. Available at http://www.fssm.ucam.ac.ma/biblioadmin/opac_css/chimie/Atlas_Eh-pH_diagrams.pdf
  • Tao, D.; Wang, Y. End Point Error Equation for Redox Titration and Its Application. Hauaxue Tongbao 1988, (11), 50–51.
  • Thompson, W. T.; Kaye, M. H.; Bale, C. W.; Pelton, A. D. Pourbaix Diagrams for Multielement Systems. In Uhlig's Corrosion Handbook, 2nd ed.; Revie, R. W., Ed.; Wiley: New York, 2000; Ch. 7; pp. 125–136.
  • Toporek, M.; Michałowska-Kaczmarczyk, A. M.; Michałowski, T. Disproportionation Reactions of HIO and NaIO in Static and Dynamic Systems. Am. J. Anal. Chem. 2014, 5, 1046–1056.
  • Tremillon, B. Reactions in Solution: An Applied Analytical Approach, Wiley: New York, 1997.
  • Turner, D. R.; Clegg, S. L. MARCHEMSPEC Chemical Speciation Modelling in Seawater to Meet 21st Century Needs; Working Group Proposal Submitted to SCOR; Scientific Committee on Ocean Reseach: Newark, DE, 2014; Available at http://www.scor-int.org/Annual%20Meetings/2014GM/MARCHEMSPEC.pdf
  • Turyan, Y.; Ivanova, G. V.; Pokhodzei, V. F. The Gran Method in Redox Potentiometric Titrations. J. Anal. Chem. 1992, 47(4), 527–533.
  • Ure, A. M.; Davidson, C. M., Eds. Chemical Speciation in the Environment, 2nd ed.; Blackwell Science: London, 2001.
  • Verink, E. D. Simplified Procedure for Constructing Pourbaix Diagrams. In Uhlig's Corrosion Handbook, 2nd ed.; Revie, R. W., Ed.; Wiley: New York, 2000; Ch. 6; pp. 111–124.
  • Vershinin, V. I. Calculation of the Extent of Reactions at the Equivalence Point and the Use of These Calculations in Titrimetric Analysis. J. Anal. Chem. 2003, 58(11), 1012–1017.
  • Vershinin, V. I.; Kukin, G. P. Change in the Extent of a Reaction during Titration. J. Anal. Chem. 2004, 59(2), 107–113.
  • Vicente-Pérez, S. Química de las Disoluciones. Diagramas y Cálculos Gráficos; UNED: Madrid, 1997.
  • Vicente-Perez, S.; Durand, J. S.; Montes, F. Titration of Weak Reductants (or Oxidants) with Weak Oxidants (or Reductants)—The Study with Logarithmic Diagrams. Ann. Quim. (Madrid) 1992, 88(7–8), 688–693.
  • Vicente-Perez, S.; Losada, J.; Espinosa, A. E-pC Diagrams for Monoelectronic-Redox Equilibrium System—Applications. Ann. Quim. (Madrid) 1990, 86(7), 751–761.
  • Vickery, H. B. William Mansfield Clark 1884-1964, a Biographical Memoir; National Academy of Sciences: Washington, DC, 1967.
  • Villafañe, F. Where Is Ozone in the Frost Diagram? J. Chem. Educ. 2009, 86(4), 432.
  • Voloshchuk, A. G.; Tsipishchuk, N. I. Equilibrium Potential–pH Diagram of the CdTe–H2O System. Inorg. Mater. 2002, 38(11), 1114–1116.
  • Williams, B. G.; Patrick, Jr., W. H. A Computer Method for the Construction of Eh-pH Diagrams. J. Chem. Educ. 1977, 54(2), 107.
  • Williams, D. R. Chemical Speciation Contributing to Research, Knowledge and Everyday Life. Coord. Chem. Rev. 1999, 185186, 177–188.
  • Winkler-Oswatitsch, R.; Mangen, M. The Art of Titration: From Classical End Points to Modern Differential and Dynamics Analysis. Angew. Chem. Int. Ed. Engl. 1979, 18, 1–19.
  • Wybraniec, S.; Michałowski, T. New Pathways of Betanidin and Betanin Enzymatic Oxidation. J. Agric. Food Chem. 2011, 59(17), 9612–9622.
  • Wybraniec, S.; Stalica, P.; Spórna, A.; Nemzer, B.; Pietrzkowski, Z.; Michałowski, T. Antioxidant Activity of Betanidin: Electrochemical Study in Aqueous Media. J. Agric. Food Chem. 2011, 59(22), 12163–12170.
  • Wybraniec, S.; Starzak, K.; Skopińska, A.; Nemzer, B.; Pietrzkowski, Z.; Michałowski, T. Studies on Non-enzymatic Oxidation Mechanism in Neobetanin, Betanin and Decarboxylated Betanins. J. Agric. Food Chem. 2013b, 61(26), 6465–6476.
  • Wybraniec, S.; Starzak, K.; Skopińska, A.; Szaleniec, M.; Słupski, J.;P.; Mitka, K.; Kowalski, P.; Michałowski, T. Effects of Metal Cations on Betanin Stability in Aqueous-Organic Solutions. Food Sci. Biotechnol. 2013a, 22(2), 353–363.
  • Xiao, J.; VanBriesen, J. M. Expanded Thermodynamic True Yield Prediction Model: Adjustments and Limitations. Biodegradation 2008, 19(1), 99–127.
  • Ye, X.; Morgenroth, E.; Zhang, X.; Finneran, K. T. Anthrahydroquinone-2,6,-Disulfonate (AH 2 QDS) Increases Hydrogen Molar Yield and Xylose Utilization in Growing Cultures of Clostridium beijerinckii. Appl. Microbiol. Biotechnol. 2011, 92(4), 855–864.
  • Yokokawa, H. Generalized Chemical Potential Diagram and Its Applications to Chemical Reactions at Interfaces Between Dissimilar Materials. J. Phase Equilib. 1999, 20(3), 258–287.
  • Yokokawa, H.; Yamaji, K.; Horita, T.; Sakai, N. A Convex Polyhedron Approach of Constructing Chemical Potential Diagrams for Multicomponent Systems. Calphad 2000, 24(4), 435–448.
  • Yongnian, N.; Ling, J. Application and Advancement of Titration Assisted with Mathematical Methods. Chin. J. Anal. Chem. 1996, 24(10), 1219–1226.
  • Zeng, Y.; Min-Rui, M. A. Predominance Diagram of Dissolved Species and Pourbaix Diagram of V-H2O System at High Vanadium Concentration. Acta Phys. Chim. Sin. 2009, 25(5), 953–957.
  • Zhang, C.-I.; Fu, Y.; Kong, C.-y. The Discussion of the Calculation about Stoichiometric Point Potential for Redox Titration. Journal of Dezhou University 2003–04. Available at http://en.cnki.com.cn/Journal_en/H-H000-DZHX-2003-04.htm
  • Zhang, C.-L.; Fu, Y.; Long, C.-Y. The Discussion of the Calculation about Stoichiometric Point Potential for Redox-Titration. J. Dezhou Univ. 2003, 4. Available at http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZHX200304015.htm
  • Zhang, C. L.; Narusawa, Y. A New Titration Method Based on Concentration-Variable Patterns—Principles and Applications to Acid-Base and Redox Titrations. Bull. Chem. Soc. Jpn. 1997, 70(3), 593–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.