1,302
Views
51
CrossRef citations to date
0
Altmetric
Review Articles

Application of Ionic Liquids in Amperometric Gas Sensors

, , , &
Pages 122-138 | Published online: 17 Mar 2016

References

  • AlNashef, I. M.; Leonard, M. L.; Matthews, M. A.;  Weidner, J. W. Superoxide Electrochemistry in an Ionic Liquid. Ind. Eng. Chem. Res. 2002, 41, 4475–4478.
  • Angell, C. A.; Imrie, C. T.; Ingram, M. D.  From Simple Electrolyte Solutions through Polymer Electrolytes to Superionic Rubbers: Some Fundamental Considerations. Polym. Int. 1998, 47, 9–15.
  • Baltes, N.; Beyle, F.; Freiner, S.; Geier, F.; Joos, M.; Pinkwart, K.; Rabenecker, P.  Trace Detection of Oxygen – Ionic Liquids in Gas Sensor Design. Talanta 2013, 116, 474–481.
  • Baril, D.; Michot, C.; Armand, M.  Electrochemistry of Liquids vs. Solids: Polymer Electrolytes. Solid State Ionics 1997, 94, 35–47.
  • Barisci, J. N.; Wallace, G. G.; MacFarlane, D. R.; Baughman, R. H.  Investigation of Ionic Liquids as Electrolytes for Carbon Nanotube Electrodes. Electrochem. Commun. 2004, 6, 22–27.
  • Barrosse-Antle, L. E.; Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  Electroreduction of Sulfur Dioxide in Some Room-Temperature Ionic Liquids. J. Phys. Chem. C 2008, 112, 3398–3404.
  • Barrosse-Antle, L.E.; Compton, R.G.  Reduction of carbon dioxide in 1-butyl-3-methylimidazolium acetate. Chem. Commun. 2009, 3744–3746.
  • Barrosse-Antle, L. E.; Bond, A. M.; Compton, R. G.; O'Mahony, A. M.; Rogers, E. I.; Silvester, D. S.  Voltammetry in Room Temperature Ionic Liquids: Comparisons and Contrasts with Conventional Electrochemical Solvents. Chem. Asian J. 2010, 5, 202–230.
  • Bonhate, P.; Dias A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel, M.  Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg. Chem. 1996, 35, 1168–1178.
  • Bontempelli, G.; Comisso, N.; Toniolo, R.; Schiavon, G.  Electroanalytical Sensors for Nonconducting Media Based on Electrodes Supported on Perfluorinated Ion-Exchange Membranes. Electroanalysis 1997, 9, 433–443.
  • Broder, T. L.; Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  Electrochemical Oxidation of Nitrite and the Oxidation and Reduction of NO2 in the Room Temperature Ionic Liquid [C2mim][NTf2]. J. Phys. Chem. B 2007, 111, 7778–7785.
  • Brzózka, Z.; Wróblewski, W.  Sensory Chemiczne; Oficyna Wydawnicza Politechniki Warszawskiej: Warszawa, 1998.
  • Buzzeo, M. C.; Klymenko, O. V.; Wadhawan, J. D.; Hardacre, C.; Seddon, K. R.; Compton, R. G.  Voltammetry of Oxygen in the Room-Temperature Ionic Liquids 1-Ethyl-3-methylimidazolium Bis((trifluoromethyl)sulfonyl)imide and Hexyltriethylammonium Bis((trifluoromethyl)sulfonyl)imide: One-Electron Reduction to Form Superoxide. Steady-State and Transient Behavior in the Same Cyclic Voltammogram Resulting from Widely Different Diffusion Coefficients of Oxygen and Superoxide. J. Phys. Chem. A 2003, 107, 8872–8878.
  • Buzzeo, M. C.; Giovanelli, D.; Lawrence, N. S.; Hardacre, C.; Seddon, K. R.; Compton, R. G.  Elucidation of the Electrochemical Oxidation Pathway of Ammonia in Dimethylformamide and the Room Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Electroanalysis 2004a, 16, 888–896.
  • Buzzeo, M. C.; Hardacre, C.; Compton, R. G.  Use of Room Temperature Ionic Liquids in Gas Sensor Design. Anal. Chem. 2004b, 76, 4583–4588.
  • Buzzeo, M. C.; Klymenko, O. V.; Wadhawan, J. D.; Hardacre, C.; Seddon, K. R.; Compton, R. G.  Kinetic Analysis of the Reaction between Electrogenerated Superoxide and Carbon Dioxide in the Room Temperature Ionic Liquids 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide and Hexyltriethylammonium Bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. B 2004c, 108, 3947–3954.
  • Cammaroto, C.; Diliberto, L.; Ferralis, M.; Manca, R.; Sanna, A.; Giordano, M.  Use of Carbonic Anhydrase in Electrochemical Biosensors for Dissolved CO2. Sens. Actuators B Chem. 1998, 48, 439–447.
  • Cao, Z.; Buttner, W. J.; Stetter, J. R.  The Properties and Applications of Amperometric Gas Sensors. Electroanalysis 1992, 4, 253–266.
  • Casero, E.; Losada, J.; Pariente, F.; Lorenzo, E.  Modified Electrode Approaches for Nitric Oxide Sensing. Talanta 2003, 61, 61–70.
  • Chachulski, B.  Amperometric Sulfur Dioxide Gas Sensor with Dimethyl Sulfoxide as Solvent for Internal Electrolyte Solution. Analyst 1998, 123, 1141–1144.
  • Chachulski, B.  Amperometryczne Czujniki Ditlenku Siarki oraz Polimerowe Czujniki Wilgotności, Właściwości Prototypów Własnej Konstrukcji; Wydawnictwo politechniki Gdańskiej: Gdańsk, 2009.
  • Chachulski, B.; Gębicki, J.  Influence of Aprotic Solvent on a Signal of an Amperometric Sensor with Nafion Membrane. Sens. Actuators B Chem. 2006a, 119, 435–440.
  • Chachulski, B.; Gębicki, J.  Influence of Aprotic Solvent on Selectivity of an Amperometric Sensor with Nafion Membrane. Electroanalysis 2006b, 18, 433–439.
  • Chang, S. C.; Stetter, J. R.  Electrochemical NO2 Gas Sensors: Model and Mechanism for the Electroreduction of NO2. Electroanalysis 1990, 2, 359–365.
  • Chang, S. C.; Stetter, J. R.; Cha, C. S.  Amperometric Gas Sensors. Talanta 1993, 40, 461–477.
  • Chao, Y.; Yao, S.; Buttner, W. J.; Stetter, J. R.  Amperometric Sensor for Selective and Stable Hydrogen Measurement. Sens. Actuators B Chem. 2005, 106, 784–790.
  • Clark, L. C.  Electrochemical Devices for Chemical Analysis. U.S. Patent No. 2,913,386, 1959.
  • Cook, R. L.; MacDuff, R. C.; Sammells, A. F.  Ambient Temperature Gas Phase CO2 Reduction to Hydrocarbons at Solid Polymer Electrolyte Cells. J. Electrochem. Soc. 1988, 135, 1470–1471.
  • Do, J. S.; Shieh, R. Y.  Electrochemical Nitrogen Dioxide Gas Sensor Based on Solid Polymeric Electrolyte. Sens. Actuators B Chem. 1996, 37, 19–26.
  • Dossi, N.; Toniolo R.; Pizzariello, A.; Carrilho, E.; Piccin, E.; Battiston, S.; Bontempelli, G.  An Electrochemical Gas Sensor Based on Paper Supported Room Temperature Ionic Liquids. Lab Chip 2012, 12, 153–158.
  • Dzyuba, S. V.; Bartsch, R. A.  Expanding the Polarity Range of Ionic Liquids. Tetrahedron Lett. 2002, 43, 4657–4659.
  • Earle, M. J.; Seddon, K. R. Ionic Liquids. Green Solvents for the Future. Pure Appl. Chem. 2000, 72, 1391–1398.
  • Earle, M. J.; Esperanca, J. M. S. S.; Gilea, M. A.; Lopes, J. N. C.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A.  The Distillation and Volatility of Ionic Liquids. Nature 2006, 439, 831–834.
  • Evans, R. G.; Klymenko, O. V.; Saddoughi, S. A.; Hardacre, C.; Compton, R. G.  Electroreduction of Oxygen in a Series of Room Temperature Ionic Liquids Composed of Group 15-Centered Cations and Anions. J. Phys. Chem. B 2004, 108, 7878–7886.
  • Ferguson, L.; Scovazzo, P.  Solubility, Diffusivity, and Permeability of Gases in Phosphonium-Based Room Temperature Ionic Liquids: Data and Correlations. Ind. Eng. Chem. Res. 2007, 46, 1369–1374.
  • Fitchett, B. D.; Knepp, T. N.; Conboy, J. C.  1-Alkyl-3-methylimidazolium Bis(perfluoroalkylsulfonyl)imide Water-Immiscible Ionic Liquids. The Effect of Water on Electrochemical and Physical Properties. J. Electrochem. Soc. 2004, 151, 219–225.
  • Frant, M. S.; Ross, J. W.  Electrode for Sensing Fluoride Ion Activity in Solution. Science 1966, 154, 1553–1555.
  • Fuller, J.; Carlin, R. T.; Osteryoung, R. A.  The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate: Electrochemical Couples and Physical Properties. J. Electrochem. Soc. 1997, 144, 3881–3886.
  • Gardas, R. L.; Coutinho, A. P.  A Group Contribution Method for Viscosity Estimation of Ionic Liquids. Fluid Phase Equilib. 2008, 266, 195–201.
  • Gardner, J. W.; Bartlett, P. N.  A Brief History of Electronic Noses. Sens. Actuators B Chem. 1994, 18, 210–211.
  • Garrison, J. D.  Environmental Measurement; CRC Press: Boca Raton, FL, 1999.
  • Gębicki, J.  A Prototype of Electrochemical Sensor for Measurement of Carbonyl Compounds in Air. Electroanalysis 2011, 23, 1958–1966.
  • Gębicki, J.; Chachulski, B.  Impedance Investigations of Amperometric Gas Sensor Containing Aprotic Solvent. Electroanalysis 2006, 18, 2413–2420.
  • Gębicki, J.; Chachulski, B.  Influence of Analyte Flow Rate on Signal and Response Time of the Amperometric Gas Sensor with Nafion Membrane. Electroanalysis 2009a, 21, 1568–1576.
  • Gębicki, J.; Chachulski, B.  Metrological Parameters of Sulphur Dioxide Amperometric Sensor Containing Addition of Aprotic Solvents. Sens. Actuators B Chem. 2009b, 141, 249–255.
  • Gębicki, J.; Kloskowski, A.  Electrochemical Sensor for Measurement of Volatile Organic Compounds Employing Square Wave Perturbation Voltage. Metrol. Meas. Syst. 2010, 17, 637–650.
  • Gębicki, J.; Kloskowski, A.; Chrzanowski, W.  Effect of Oxygenation Time on Signal of a Sensor Based on Ionic Liquids. Electrochim. Acta 2011, 56, 9910–9915.
  • Gębicki, J.; Kloskowski, A.; Chrzanowski, W.  Prototype of Electrochemical Sensor for Measurements of Volatile Organic Compounds in Gases. Sens. Actuators B Chem. 2013, 177, 1173–1179.
  • Giovanelli, D.; Buzzeo, M. C.; Lawrence, N. S.; Hardacre, C.; Seddon, K. R.; Compton, R. G.  Determination of Ammonia Based on the Electro-Oxidation of Hydroquinone in Dimethylformamide or in the Room Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium Bis(trifluoromethylsulfonyl)imide. Talanta 2004, 62, 904–911.
  • Hapiot, P.; Lagrost, C.  Electrochemical Reactivity in Room-Temperature Ionic Liquids. Chem. Rev. 2008, 108, 2238–2264.
  • Hirao, M.; Sugimoto, H.; Ohno, H.  Preparation of Novel Room-Temperature Molten Salts by Neutralization of Amines. J. Electrochem. Soc. 2000, 147, 4168– 4172.
  • Ho, K. C.; Hung, W. T.  An Amperometric NO2 Gas Sensor Based on Pt/Nafion ® Electrode. Sens. Actuators B Chem. 2001, 79, 11–16.
  • Ho, K. C.; Hung, W. T.; Yang, J. C.  On the Electrooxidation and Amperometric Detection of NO Gas at the Pt/Nafion ® Electrode. Sensors 2003, 3 (8),290–303.
  • Howlett, P. C.; MacFarlane, D. R.; Hollenkamp, A. F.  High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochem. Solid-State Lett. 2004, 7, A97–A101.
  • Huang, X.-J.; Silvester, D. S.; Streeter, I.; Aldous, L.; Hardacre, C.; Compton, R. G.  Electroreduction of Chlorine Gas at Platinum Electrodes in Several Room Temperature Ionic Liquids: Evidence of Strong Adsorption on the Electrode Surface Revealed by Unusual Voltammetry in Which Currents Decrease with Increasing Voltage Scan Rates. J. Phys. Chem. C 2008, 112, 19477–19483.
  • Huang, X.-J.; Aldous, L.; O’Mahony, A. O.; del Campo, F. J.; Compton, R. G.  Toward Membrane-Free Amperometric Gas Sensors: A Microelectrode Array Approach. Anal. Chem. 2010, 82, 5238–5245.
  • Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D.  Characterization and Comparison of Hydrophilic and Hydrophobic Room Temperature Ionic Liquids Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156–164.
  • Hulanicki, A.; Głąb, S.; Ingman, F.  Chemical Sensors: Definitions and Classfication. Pure Appl. Chem. 1991, 63, 1247–1250.
  • Hwang, B. J.; Liu, Y. C.; Hsu, W. C.  Nafion-Based Solid-State Gas Sensors: Pt/Nafion Electrodes Prepared by an Impregnation-Reduction Method in Sensing Oxygen. J. Solid State Electrochem. 1998, 2, 378–385.
  • Ignat’ev, N. V.; Welz-Biermann, U.; Kucheryna, A.; Bissky, G.; Willner, H.  New Ionic Liquids with Tris(perfluoroalkyl)trifluorophosphate (FAP) Anions. J. Fluorine Chem. 2005, 126, 1150–1159.
  • Jacquinot, P.; Hodgson, A. W. E.; Hauser, P. C.  Amperometric Detection of NO and NO2 in the ppb Range with Solid-Polymer Electrolyte Membrane Supported Noble Metal Electrodes. Anal. Chim. Acta 2001, 443, 53–61.
  • Janata, J.  Principles of Chemical Sensors; Plenum Press: New York, 1989.
  • Ji, X.; Banks, C. E.; Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  Electrochemical Ammonia Gas Sensing in Nonaqueous Systems: A Comparison of Propylene Carbonate with Room Temperature Ionic Liquids. Electroanalysis 2007a, 19(21), 2194–2201.
  • Ji, X.; Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  Mechanistic Studies of the Electro-oxidation Pathway of Ammonia in Several Room-Temperature Ionic Liquids. J. Phys. Chem. C 2007b, 111, 9562–9572.
  • Jiang, Y.-Y.; Zhou, Z.; Jiao, Z.; Li, L.; Wu, Y.-T.; Zhang, Z.-B.  SO2 Gas Separation Using Supported Ionic Liquid Membranes. J. Phys. Chem. B 2007, 111, 5058–5061.
  • Jordan, L. R.; Hauser, P. C.; Dawson, G. A.  Amperometric Sensor for Monitoring Ethylene. Anal. Chem. 1997a, 69, 558–562.
  • Jordan, L. R.; Hauser, P. C.; Dawson, G. A.  Humidity and Temperature Effects on the Response to Ethylene of an Amperometric Sensor Utilizing a Gold-Nafion Electrode. Electroanalysis 1997b, 9, 1159–1162.
  • Katayama, Y.; Dan, S.; Miura, T.; Kishi, T.  Electrochemical Behavior of Silver in 1-Ethyl-3-methylimidazolium Tetrafluoroborate Molten Salt. J. Electrochem. Soc. 2001, 148, C102–C105.
  • Konieczka, P.; Namieśnik, J.  Quality Assurance and Quality Control in the Analytical Chemical Laboratory: A Practical Approach; Analytical Chemistry Series; CRC Press: Boca Raton, FL, 2009.
  • Knake, R.; Jacquinot, P.; Hauser, P. C.  A Direct Comparison of Amperometric Gas Sensors with Gas-Diffusion and Ion-Exchange Membrane Based Electrodes. Analyst 2002, 127, 114–118.
  • Knake, R.; Hauser, P. C.  Portable Instrument for Electrochemical Gas Sensing. Anal. Chim. Acta 2003, 500, 145–153.
  • Knake, R.; Jacquinot, P.; Hodgson, A. W. E.; Hauser, P. C.  Amperometric Sensing in the Gas-Phase. Anal. Chim. Acta 2005, 549, 1–9.
  • Lee, J.; Murugappan, K.; Arrigan, D. W. M.; Silvester, D. S.  Oxygen Reduction Voltammetry on Platinum Macrodisk and Screen-Printed Electrodes in Ionic Liquids: Reaction of the Electrogenerated Superoxide Species with Compounds Used in the Paste of Pt Screen-Printed Electrodes? Electrochim. Acta 2013, 101, 158–168.
  • Li, H.; Wang, Q.; Xu, J.; Zhang, W.; Jin, L.  A Novel Nano-Au-Assembled Amperometric SO2 Gas Sensor: Preparation, Characterization and Sensing Behavior. Sens. Actuators B Chem. 2002, 87, 18–24.
  • Macca, C.; Wang, J.  Experimental Procedures for the Determination of Amperometric Selectivity Coefficients. Anal. Chim. Acta 1995, 303, 265–274.
  • MacFarlane, D. R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M.  High Conductivity Molten Salts Based on the Imide Ion. Electrochim. Acta 2000, 45, 1271–1278.
  • Marsh, K. N.; Deev, A.; Wu, A. C. T.; Tran, E.; Klamt, A.  Room Temperature Ionic Liquids as Replacements for Conventional Solvents – A Review. Korean J. Chem. Eng. 2002, 19, 357–362.
  • McEwen, A. B.; Ngo, H. L.; LeCompte, K.; Goldman, J. L.  Electrochemical Properties of Imidazolium Salt Electrolytes for Electrochemical Capacitor Applications. J. Electrochem. Soc. 1999, 146, 1687–1695.
  • Mizutani, Y.; Matsuda, H.; Ishiji, T.; Furuya, N.; Takahashi, K. Improvement of Electrochemical NO2 Sensor by Use of Carbon–Fluorocarbon Gas Permeable Electrode. Sens. Actuators B Chem. 2005, 108, 815–819.
  • Moseley, P. T.; Norris, J. O. W.; Williams, D. E.  Techniques and Mechanisms in Gas Sensing; IOP Publishing Ltd.: Bristol, 1991.
  • Mu, X.; Wang, Z.; Zeng, X.; Mason, A. J.  A Robust Flexible Electrochemical Gas Sensor Using Room Temperature Ionic Liquid. IEEE Sens. J. 2013, 13(10), 3976–3981.
  • Murugappan, K.; Lee, J.; Silvester, D. S.  Comparative Study of Screen Printed Electrodes for Ammonia Gas Sensing in Ionic Liquids. Electrochem. Commun. 2011, 13, 1435–1438.
  • Murugappan, K.; Kang, C.; Silvester, D. S.  Electrochemical Oxidation and Sensing of Methylamine Gas in Room Temperature Ionic Liquids. J. Phys. Chem. C 2014, 118, 19232–19237.
  • Nadherna, M.; Opekar, F.; Reiter, J.  Ionic Liquid-Polymer Electrolyte for Amperometric Solid-State NO2 Sensor. Electrochim. Acta 2011, 56, 5650–5655.
  • Nadherna, M.; Opekar, F.; Reiter, J.; Stulik, K.  A Planar, Solid-State Amperometric Sensor for Nitrogen Dioxide, Employing an Ionic Liquid Electrolyte Contained in a Polymeric Matrix. Sens. Actuators B Chem. 2012, 161, 811–817.
  • Nakagawa, H.; Izuchi, S.; Kuwana, K.; Nukuda, T.; Aihara, Y.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt. J. Electrochem. Soc. 2003, 150, A695–A700.
  • Namieśnik, J.  Trends in Environmental Analytics and Monitoring. Crit. Rev. Anal. Chem. 2000, 30, 221–269.
  • Neves, L. A.; Crespo, J. G.; Coelhoso, I. M.  Gas Permeation Studies in Supported Ionic Liquid Membranes. J. Membr. Sci. 2010, 357, 160–170.
  • Newman, J. S.; Tobias, C. W.  Theoretical Analysis of Current Distribution in Porous Electrodes. J. Electrochem. Soc. 1962, 109, 1183–1191.
  • Ng, S. R.; Guo, Ch. X.; Li, Ch. M.  Highly Sensitive Nitric Oxide Sensing Using Three-Dimensional Graphene/Ionic Liquid Nanocomposite. Electroanalysis 2011, 23, 442–448.
  • Oehme, F.  Chemische Sensoren; Vievweg: Braunschweig, 1991.
  • Ohno, H.  Ionic Liquids: The Front and Future of Material Development; CMC Press: Tokyo, 2003.
  • Olivier, H.  Recent Developments in the Use of Non-Aqueous Ionic Liquids for Two-Phase Catalysis. J. Mol. Catal. A: Chem. 1999, 146, 285–289.
  • O'Mahony, A. M.; Compton, R. G.  The Mediated Detection of Hydrogen Sulfide in Room Temperature Ionic Liquids. Electroanalysis 2010, 22, 2313–2322.
  • O'Mahony, A. M.; Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. J. Chem. Eng. Data 2008a, 53, 2884–2891.
  • O’Mahony, A. M.; Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  The Electrochemical Reduction of Hydrogen Sulfide on Platinum in Several Room Temperature Ionic Liquids. J. Phys. Chem. C 2008b, 112, 7725–7730.
  • Opekar, F.; Stulik, K.  Electrochemical Sensors with Solid Polymer Electrolytes. Anal. Chim. Acta 1999, 385, 151–162.
  • Pandey, S.  Analytical Applications of Room-Temperature Ionic Liquids: A Review of Recent Efforts. Anal. Chim. Acta 2006, 556, 38–45.
  • Plechkova, N. V.; Seddon, K. R.  Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123–150.
  • Rebelo, L. P. N.; Lopes, J. N. C.; Esperanca, J. M. S. S.; Filipe, E.  On the Critical Temperature, Normal Boiling Point, and Vapor Pressure of Ionic Liquids. J. Phys. Chem. B 2005, 109, 6040–6043.
  • Rogers, R. D.; Seddon, K. R.  Ionic Liquids as Green Solvents: Progress and Prospects; ACS Symp. Ser., Vol. 856; American Chemical Society: Washington, DC, 2003.
  • Rooney, D. W.; Seddon, K. R.  Ionic Liquids. In Handbook of Solvents; Wypych, G., Ed.; ChemTech Publishing: Toronto, 2001.
  • Schiavon, G.; Zotti, G.; Bontempelli, G.  Electrodes Supported on Ion-Exchange Membranes as Sensors in Gases and Low-Conductivity Solvents. Anal. Chim. Acta 1989, 221, 27–41.
  • Schiavon, G.; Comisso, N.; Toniolo, R.; Bontempelli, G.  Pulsed Amperometric Detection of Ethanol in Breath by Gold Electrodes Supported on Ion Exchange Membranes (Solid Polymer Electrolytes). Electroanalysis 1996, 8, 544–548.
  • Scovazzo, P.  Testing and Evaluation of Room Temperature Ionic Liquid (RTIL) Membranes for Gas Dehumidification. J. Membr. Sci. 2010, 355, 7–17.
  • Seddon, K. R.; Stark, A.; Torres, M. J.  Influence of Chloride, Water, and Organic Solvents on the Physical Properties of Ionic Liquids. Pure Appl. Chem. 2000, 72, 2275–2287.
  • Sedlak, J. M.; Blurton, K. F.  A New Electrochemical Analyser for Nitric Oxide and Nitrogen Dioxide. Talanta 1976, 23, 811–814.
  • Sheldon, R. A.; Lau, R. M.; Sorgedrager, M. J.; van Rantwijk, F.; Seddon, K. R.  Biocatalysis in Ionic Liquids. Green Chem. 2002, 4, 147–151.
  • Shen, X.; Chen, X.; Liu, J.-H.; Huang, X.-J.  Free Standing Pt–Au Bimetallic Membranes with a Leaf-Like Nanostructure from Agarose-Mediated Electrodeposition and Oxygen Gas Sensing in Room Temperature Ionic Liquids. J. Mater. Chem. 2009, 19, 7687–7693.
  • Shi, G.; Luo, M.; Xue, J.; Xian, Y.; Jin, L.; Jin, J.  The Study of PVP/Pd/IrO2 Modified Sensor for Amperometric Determination of Sulfur Dioxide. Talanta 2001, 55, 241–247.
  • Silvester, D. S. Recent Advances in the Use of Ionic Liquids for Electrochemical Sensing. Analyst 2011, 136, 4871–4882.
  • Silvester, D. S.; Aldous, L.; Hardacre, C.; Compton, R. G.  An Electrochemical Study of the Oxidation of Hydrogen at Platinum Electrodes in Several Room Temperature Ionic Liquids. J. Phys. Chem. B 2007, 111, 5000–5007.
  • Silvester, D. S.; Ward, K. R.; Aldous, L.; Hardacre, C.; Compton, R. G.  The Electrochemical Oxidation of Hydrogen at Activated Platinum Electrodes in Room Temperature Ionic Liquids as Solvents. J. Electroanal. Chem. 2008, 618, 53–60.
  • Simmonds, M. C.; Hitchman, M. L.; Kheyrandish, H.; Colligon, J. S.; Cade, N. J.; Iredale, J.  Thin Sputtered Platinum Films on Porous Membranes as Working Electrodes in Gas Sensors. Electrochim. Acta 1998, 43, 3285–3291.
  • Stetter, J. R.; Li, J.  Amperometric Gas Sensors—A Review. Chem. Rev. 2008, 108, 352–366.
  • Sun, J.; Forsyth, M.; MacFarlane, D. R.  Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. J. Phys. Chem. B 1998, 102, 8858–8864.
  • Tokuda, H.; Tsuzuki, S.; Susan, M. A. B. H.; Hayamizu, K.; Watanabe, M.  How Ionic Are Room-Temperature Ionic Liquids? An Indicator of the Physicochemical Properties. J. Phys. Chem. B 2006, 110, 19593–19600.
  • Toniolo, R.; Dossi, N.; Pizzariello, A.; Doherty, A. P.; Bontempelli, G.  A Membrane Free Amperometric Gas Sensor Based on Room Temperature Ionic Liquids for the Selective Monitoring of NOx. Electroanalysis 2012a, 24(4), 865–871.
  • Toniolo, R.; Dossi, N.; Pizzariello, A.; Doherty, A. P.; Susmel, S.; Bontempelli, G.  An Oxygen Amperometric Gas Sensor Based on Its Electrocatalytic Reduction in Room Temperature Ionic Liquids. J. Electroanal. Chem. 2012b, 670, 23–29.
  • Toniolo, R.; Dossi, N.; Pizzariello, A.; Casagrande, A.; Bontempelli, G.  Electrochemical Gas Sensors Based on Paper-Supported Room-Temperature Ionic Liquids for Improved Analysis of Acid Vapours. Anal. Bioanal. Chem. 2013, 405, 3571–3577.
  • Toniolo R.; Dossi, N.; Svigely, R.; Susmel, S.; Casella, I. G.; Bontempelli, G.  Amperometric Sniffer for Volatile Amines Based on Paper-Supported Room Temperature Ionic Liquids Enabling Rapid Assessment of Fish Spoilage. Electroanalysis 2014, 26, 1966–1974.
  • Ue, M.; Murakami, A.; Nakamura, S.  A Convenient Method to Estimate Ion Size for Electrolyte Materials Design. J. Electrochem. Soc. 2002, 149, A1385–A1388.
  • van Rantwijk, F.; Lau, R. M.; Sheldon, R. A.  Biocatalytic Transformations in Ionic Liquids. Trends Biotechnol. 2003, 21, 131–138.
  • Vlasov, Y.; Legin, A.  Non-selective Chemical Sensors in Analytical Chemistry: From “Electronic Nose” to “Electronic Tongue.” Fresenius J. Anal. Chem. 1998, 361, 255–260.
  • Vogel, W. M.; Lundquist, J. T.  Reduction of Oxygen on Teflon-Bonded Platinum Electrodes. J. Electrochem. Soc. 1970, 117, 1512–1516.
  • Wang, J.  Selectivity Coefficients for Amperometric Sensors. Talanta 1994, 41, 857–863.
  • Wang, R.; Hoyano, S.; Ohsaka, T.  O2 Gas Sensor Using Supported Hydrophobic Room-Temperature Ionic Liquid Membrane-Coated Electrode. Chem. Lett. 2004a, 33, 6–7.
  • Wang, R.; Okajima, T.; Kitamura, F.; Ohsaka, T.  A Novel Amperometric O2 Gas Sensor Based on Supported Room-Temperature Ionic Liquid Porous Polyethylene Membrane-Coated Electrodes. Electroanalysis 2004b, 16, 66–72.
  • Wang, Z.; Lin, P.; Baker, G. A.; Stetter, J.; Zeng, X.  Ionic Liquids as Electrolytes for the Development of a Robust Amperometric Oxygen Sensor. Anal. Chem. 2011, 83, 7066–7073.
  • Wei, D.; Ivaska, A.  Applications of Ionic Liquids in Electrochemical Sensors. Anal. Chim. Acta 2008, 607, 126–135.
  • Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev. 1999, 99, 2071–2083.
  • Xiong, S.-Q.; Wei, Y.; Guo, Z.; Chen, X.; Wang, J.; Liu, J.-H.; Huang, X.-J.  Toward Membrane-Free Amperometric Gas Sensors: An Ionic Liquid-Nanoparticle Composite Approach. J. Phys. Chem. C 2011, 115, 17471–17478.
  • Xiong, L.; Goodrich, P.; Hardacre, C.; Compton, R. G.  Evaluation of a Simple Disposable Microband Electrode Device for Amperometric Gas Sensing. Sens. Actuators B Chem. 2013, 188, 978–987.
  • Xiong, L.; Barnes, E. O.; Compton, R. G.  Amperometric Detection of Oxygen under Humid Conditions: The Use of a Chemically Reactive Room Temperature Ionic Liquid To ‘Trap’ Superoxide Ions and Ensure a Simple One Electron Reduction. Sens. Actuators B Chem. 2014, 200, 157–166.
  • Xu, W.; Cooper, E. I.; Angell, C. A.  Ionic Liquids:  Ion Mobilities, Glass Temperatures, and Fragilities. J. Phys. Chem. B 2003, 107, 6170–6178.
  • Yoshizawa, M.; Narita, A.; Ohno, H.  Design of Ionic Liquids for Electrochemical Applications. Aust. J. Chem. 2004, 57, 139–144.
  • Zevenbergen, M. A. G.; Wouters, D.; Dam, V.-A. T.; Brongersma, S. H.; Crego-Calama, M.  Electrochemical Sensing of Ethylene Employing a Thin Ionic-Liquid Layer. Anal. Chem. 2011, 83, 6300–6307.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.