1,191
Views
21
CrossRef citations to date
0
Altmetric
Review Article

Different Analytical Procedures for the Study of Organic Residues in Archeological Ceramic Samples with the Use of Gas Chromatography-mass Spectrometry

, , &
Pages 67-81 | Published online: 08 Feb 2016

References

  • Ambrose, S. H.; Norr, L. Experimental evidence for the relationship of carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In Prehistoric Human Bone: Archaeology at the Molecular Level; Lambert, J.; Grupe, G., Eds.; Springer-Verlag: Berlin, 1993, 1–38.
  • Baeten, J.; Jervis, B.; De Vos, D.; Waelkens, M. Molecular Evidence for the Mixing of Meat, Fish and Vegetables in Anglo-Saxon Coarseware from Hamwic, UK. Archaeometry 2013, 55, 1150–1174.
  • Begerow, J.; Dunemann, L. Sample Preparation for Trace Analysis. In Handbook of Analytical Techniques; Giinzler, H.; Williams, A., Eds.; Wiley-VCH: Weinheim, 2001; pp. 77–108.
  • Beyer, A.; Biziuk, M. Applications of Sample Preparation Techniques in the Analysis of Pesticides and PCBs in Food. Food Chem. 2008, 108, 669–680.
  • Buckley, M.; Melton, N. D.; Montgomery, J. Proteomics Analysis of Ancient Food Vessel Stitching Reveals >4000-Year-Old Milk Protein. Rapid Commun. Mass Spectrom. 2013, 27, 531–538.
  • Buonasera, T. Investigating the Presence of Ancient Absorbed Organic Residues in Groundstone Using GC–MS and Other Analytical Techniques: A Residue Study of Several Prehistoric Milling Tools from Central California. J. Archaeol. Sci. 2007, 34, 1379–1390.
  • Camel, V. Recent Extraction Techniques for Solid Matrices-Supercritical Fluid Extraction, Pressurized Fluid Extraction and Microwave-Assisted Extraction: Their Potential and Pitfalls. Analyst 2001, 126, 1182–1193.
  • Charrié-Duhaut, A.; Connan, J.; Rouquette, N.; Adam, P.; Barbotin, C.; De Rozières, M. F.; Tchapla, A.; Albrecht, P. The Canopic Jars of Rameses II: Real Use Revealed by Molecular Study of Organic Residues. J. Archaeol. Sci. 2007, 34, 957–967.
  • Colombini, M. P.; Giachi, G.; Modugno, F.; Ribechini, E. Characterisation of Organic Residues in Pottery Vessels of the Roman Age from Antinoe (Egypt). Microchem. J. 2005a, 79, 83–90.
  • Colombini, M. P.; Modugno F.; Ribechini E. Organic Mass Spectrometry in Archaeology: Evidence for Brassicaceae Seed Oil in Egyptian Ceramic Lamps. J. Mass Spectrom. 2005b, 40, 890–898.
  • Copley, M. S.; Rose, P. J.; Clapham, A.; Edwards, D. N.; Horton, M. C.; Evershed, R. P. Detection of Palm Fruit Lipids in Archaeological Pottery from Qasr Ibrim, Egyptian Nubia. Proc. Biol. Sci. 2001, 268, 593–597.
  • Copley, M. S.; Berstan, R.; Dudd, S. N.; Docherty, G.; Mukherjee, A. J.; Straker, V.; Payne, S.; Evershed, R. P. Direct Chemical Evidence for Widespread Dairying in Prehistoric Britain. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 1524–1529.
  • Copley, M. S.; Berstan, R.; Dudd, S. N.; Straker, V.; Paynec, S.; Evershed, R. P. Dairying in Antiquity. I, II, III. J. Archaeol. Sci. 2005a, 32, 485–546.
  • Copley, M. S.; Bland, H. A.; Rose, P.; Horton, M.; Evershed, R. P. Gas Chromatographic, Mass Spectrometric and Stable Carbon Isotopic Investigations of Organic Residues of Plant Oils and Animal Fats Employed as Illuminants in Archaeological Lamps from Egypt. Analyst 2005b, 130, 860–871.
  • Correa-Ascencio, M.; Evershed R. P. High Throughput Screening of Organic Residues in Archaeological Potsherds Using Direct Acidified Methanol Extraction. Anal. Methods 2014, 6, 1330–1340.
  • Craig, O. E. The Development of Dairying in Europe: Potential Evidence from Food Residues on Ceramics. Documenta Praehistorica 2002, 29, 97–107.
  • Craig, O. E.; Love, G. D.; Isaksson, S.; Taylor, G., Snape, C. E. Stable Carbon Isotopic Characterisation of Free and Bound Lipid Constituents of Archaeological Ceramic Vessels Released by Solvent Extraction, Alkaline Hydrolysis and Catalytic Hydropyrolysis. J. Anal. Appl. Pyrolysis 2004, 71, 613–634.
  • Craig, O. E.; Taylor, G.; Mulville, J.; Collins, M. J.; Pearson, M. P. The Identification of Prehistoric Dairying Activities in the Western Isles of Scotland: An Integrated Biomolecular Approach. J. Archaeol. Sci. 2005, 32, 91–103.
  • Cramp, L. J. E.; Jones, J., Sheridan, A.; Smyth, J.; Whelton, H.; Mulville, J.; Sharples, N.; Evershed, R. P. Immediate Replacement of Fishing with Dairying by the Earliest Farmers of the Northeast Atlantic Archipelagos. Proc. R. Soc. B Biol. Sci. 2014, 281(1780), 20132372.
  • DeNiro, M. J. Stable Isotopy and Archaeology. Amer. Scientist 1987, 75, 182–191.
  • Dudd, S. N.; Evershed, R. P.; Gibson, A. M. Evidence for Varying Patterns of Exploitation of Animal Products in Different Prehistoric Pottery Traditions Based on Lipids Preserved in Surface and Absorbed Residues. J. Archaeol. Sci. 1999, 26, 1473–1482.
  • Dunne, J.; Evershed, R. P.; Salque, M.; Cramp, L.; Bruni, S.; Ryan, K.; Biagetti, S.; di Lernia, S. First Dairying in Green Saharan Africa in the Fifth Millennium BC. Nature 2012, 486, 390–394.
  • Echeverría, J.; Planella, M. T.; Niemeyer, H. M. Nicotine in Residues of Smoking Pipes and Other Artifacts of the Smoking Complex from an Early Ceramic Period Archaeological Site in Central Chile. J. Archaeol. Sci. 2014, 44, 55–60.
  • Eerkens, J. W. The Preservation and Identification of Pinon Resins by GC-MS in Pottery from the Western Great Basin. Archaeometry 2002, 44, 95–105.
  • Eerkens, J. W. GC-MS Analysis and Fatty Acid Ratios of Archeological Potsherds from the Western Great Basin of North America. Archaeometry 2005, 47, 83–102.
  • Evershed R. P. Organic Residue Analysis in Archaeology: The Archaeological Biomarker Revolution. Archaeometry 2008, 50, 895–924.
  • Evershed, R. P.; Heron, C.; Goad, L. J. Analysis of Organic Residues of Archaeological Origin by High-Temperature Gas Chromatography and Gas Chromatography-Mass Spectrometry. Analyst 1990, 115, 1339–1342.
  • Evershed, R. P.; Arnot, K. I.; Collister, J.; Eglinton, G.; Charters, S. Application of Isotope Ratio Monitoring Gas Chromatography-Mass Spectrometry to the Analysis of Organic Residues of Archaeological Origin. Analyst 1994, 119, 909–914.
  • Evershed, R. P.; Mottram, H. R.; Dudd, S. N.; Charters, S.; Stott, A. W.; Lawrence, G. J.; Gibson, A. M.; Conner, A.; Blinkhorn, P. W.; Reeves, V. New Criteria for the Identification of Animal Fats Preserved in Archaeological Pottery. Naturwissenschaften 1997, 84, 402–406.
  • Evershed, R. P.; Dudd, S. N.; Charters, S.; Mottram, H. R.; Stott, A. W.; Raven, A. M.; van Bergen, P. F.; Bland, H. A. Lipids as Carriers of Anthropogenic Signals from Prehistory. Philos. Trans. R. Soc. Lond. B 1999, 354, 19–31.
  • Fiore, D.; Maier, M.; Parera, S. D.; Orquera, L.; Piana, E. Chemical Analyses of the Earliest Pigment Residues from the Uttermost Part of the Planet (Beagle Channel Region, Tierra del Fuego, Southern South America). J. Archaeol. Sci. 2006, 35, 3047–3056.
  • Font, J.; Salvado, N.; Buti, S.; Enrich, J. Fourier Transform Infrared Spectroscopy as a Suitable Technique in the Study of the Materials Used in Waterproofing of Archaeological Amphorae. Anal. Chim. Acta 2007, 598, 119–127.
  • Fraser, S. E.; Insoll, T.; Thomson, A.; van Dongen, B. E. Organic Geochemical Analysis of Archaeological Medicine Pots from Northern Ghana. The Multi-functionality of Pottery. J. Archaeol. Sci. 2012, 39, 2506–2514.
  • Gałuszka, A.; Konieczka, P.; Migaszewski, Z.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. TrAC Trends Anal. Chem. 2012, 37, 61–72.
  • Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. The 12 Principles of Green Analytical Chemistry and the SIGNIFICANCE Mnemonic of Green Analytical Practice. TrAC Trends Anal. Chem. 2013, 50, 78–84.
  • Giorgi, G.; Salvini, L.; Pecci, A. The Meals in a Tuscan Building Yard during the Middle Age. Characterization of Organic Residues in Ceramic Potsherds. J. Archaeol. Sci. 2010, 37, 1453–1457.
  • Goldenberg, L.; Neumann, R.; Weiner, S. Microscale Distribution and Concentration of Preserved Organic Molecules with Carbon-Carbon Double Bonds in Archaeological Ceramics: Relevance to the Field of Residue Analysis. J. Archaeol. Sci. 2014, 42, 509–518.
  • Gregg, M. W.; Slater, G. F. A New Method for Extraction, Isolation and Transesterification of Free Fatty Acids from Archaeological Pottery. Archaeometry 2010, 52, 833–854.
  • Gregg, M. W.; Banning, E. B.; Gibbs, K.; Slater, G. F. Subsistence Practices and Pottery Use in Neolithic Jordan: Molecular and Isotopic Evidence. J. Archaeol. Sci. 2009, 36, 937–946.
  • Hansel, F. A.; Bull, I. D.; Evershed, R. P. Gas Chromatographic Mass Spectrometric Detection of Dihydroxy Fatty Acids Preserved in the ‘Bound’ Phase of Organic Residues of Archaeological Pottery Vessels. Rapid Commun. Mass Spectrom. 2011, 25, 1893–1898.
  • Hastorf, C.; DeNiro, M. J. Reconstruction of Prehistoric Plant Production and Cooking Practices by a New Isotopic Method. Nature 1985, 315, 489–491.
  • Heron, C.; Andersen, S.; Fischer, A.; Glykou, A.; Hartz, S.; Saul, H.; Steele, V.; Craig, O. Illuminating the Late Mesolithic: Residue Analysis of ‘Blubber’ Lamps from Northern Europe. Antiquity 2013, 87, 178–188.
  • Hjulström, B.; Isaksson, S.; Karlsson, C. Prominent Migration Period Building. Lipid and Elemental Analyses from an Excavation at Alby, Parish of Botkyrka, Södermanland, Sweden. Acta Archaeol. 2008, 79, 62–78.
  • Isaksson, S.; Hallgren, F. Lipid Residue Analyses of Early Neolithic Funnel-Beaker Pottery from Skogsmossen, Eastern Central Sweden, and the Earliest Evidence of Dairying in Sweden. J. Archaeol. Sci. 2012, 39, 3600–3609.
  • Isaksson, S.; Karlsson, C.; Eriksson, T. Ergosterol (5,7,22-ergostatrien-3β-ol) as a Potential Biomarker for Alcohol Fermentation in Lipid Residues from Prehistoric Pottery. J. Archaeol. Sci. 2010, 37, 3263–3268.
  • Izzo, F. C.; Zendri, E.; Bernardi, A.; Balliana, E.; Sgobbi, M. The Study of Pitch via Gas Chromatography-Mass Spectrometry and Fourier-Transformed Infrared Spectroscopy: The Case of the Roman Amphoras from Monte Poro, Calabria (Italy). J. Archaeol. Sci. 2013, 40, 595–600.
  • Kałużna-Czaplińska, J.; Młodecka, H. Badania organicznych pozostałości w ceramice archeologicznej techniką GC/MS. Nauka i zabytki. Nauki ścisłe w służbie archeologii, ochronie zabytków oraz historii. Wyd; Państwowe Muzeum Archeologiczne, Uniwersytet Warszawski, Uniwersytet Wrocławski: Warsaw, Poland, 2008; pp. 105–110.
  • Kałużna-Czaplińska, J., Kobylińska, U., Kobyliński, Z. The Content of Fatty Acids in Pottery from Strongholds at Kamionka, Mozgowo and Boreczno in Iława Country; Wydawnictwo Fundacji Archeologicznej, Zielona Góra and Uniwersytet Kardynała Stefana Wyszyńskiego: Warsaw, Poland, 2013; pp. 457–466.
  • Kimpe, K.; Jacobs, P. A.; Waelkens, M. Analysis of Oil Used in Late Roman Oil Lamps with Different Mass Spectrometric Techniques Revealed the Presence of Predominantly Olive Oil Together with Traces of Animal Fat. J. Chromatogr. A 2001, 937, 87–95.
  • Kimpe, K.; Jacobs, P. A.; Waelkens, M. Mass Spectrometric Methods Prove the Use of Beeswax and Ruminant Fat in Late Roman Cooking Pots. J. Chromatogr. A 2002, 968, 151–160.
  • Kimpe, K.; Drybooms, C.; Schrevens, E.; Jacobs, P. A.; Degeest, R.; Waelkens, M. Assessing the Relationship between Form and Use of Different Kinds of Pottery from the Archaeological Site Sagalassos (Southwest Turkey) with Lipid Analysis. J. Archaeol. Sci. 2004, 31, 1503–1510.
  • Marshall, L.-J.; Cook, S. R.; Almond, M. J.; Fulford, M. G. Roman Diet and Trade: Evidence from Organic Residues on Pottery Sherds Recovered at the Roman Town of Calleva Atrebatum (Silchester Hants.). Britannia 2009, 39, 245–254.
  • Mayyas, A.; Douglas, K.; Hoffmann, T.; Thorenz, U.; Bany Yaseen, I.; El-Khalili, M. Organic Residues Preserved in Archaeological Ceramics from the Early Bronze Age Site of Khirbet Al-Batrawy in North-Central Jordan. Mediterr. Archaeol. Archaeometry 2013, 13, 189–206.
  • Mitkidou, S.; Dimitrakoudi, E.; Urem-Kotsou, D.; Papadopoulou, D.; Kotsakis, K.; Stratis, J. A.; Stephanidou-Stephanatou, I. Organic Residue Analysis of Neolithic Pottery from North Greece. Microchim. Acta 2008, 160, 493–498.
  • Miyata, Y.; Horiuchi, A.; Paleo Labo AMS Dating Group; Nishimoto, T. Traces of Sea Mammals on Pottery from the Hamanaka 2 Archaeological Site, Rebun Island, Japan: Implications from Sterol Analysis, Stable Isotopes, and Radiocarbon Dating. Res. Org. Geochem. 2009, 25, 15–27.
  • Mukherjee, A. J.; Gibson, A. M.; Evershed, R. P. Trends in Pig Product Processing at British Neolithic Grooved Ware Sites Traced through Organic Residues in Potsherds. J. Archaeol. Sci. 2008, 35, 2059–2073.
  • Namdar, D.; Stacey, R. J.; Simpson, S. J. First Results on Thermally Induced Porosity in Chlorite Cooking Vessels from Merv (Turkmenistan) and Implications for the Formation and Preservation of Archaeological Lipid Residues. J. Archaeol. Sci. 2009, 36, 1507–1516.
  • Namdar, D.; Neumann, R.; Weiner, S. Residue Analysis of Chalices from the Repository Pit. In The Excavation of the ‘Temple Hill’ Repository Pit and the Cult Stands; Kletter, R.; Ziffer, I.; Zwickel, W.; Yavneh, I., Eds.; Academic Press: Fribourg, 2010; pp. 167–173.
  • Namieśnik, J.; Konieczka, P. Ocena i kontrola jakości wyników pomiarów analitycznych; WNT: Warszawa, 2007; pp. 225–300.
  • Ogrinc, N.; Gams Petrišič, M.; Žibrat Gašparič, A.; Budja, M. Pots and Lipids: Molecular and Isotope Evidence of Food Processing at Maharski Prekop. Documenta Praehistorica 2012, 39, 339–347.
  • Olsson, M.; Isaksson, S. Molecular and Isotopic Traces of Cooking and Consumption of Fish at an Early Medieval Manor Site in Eastern Middle Sweden. J. Archaeol. Sci. 2008, 35, 773–780.
  • Pecci, A.; Salvini, L.; Cantini, F. Residue Analysis of Some Late Roman Amphora Coming from the Excavations of the Historical Center of Florence. In LRCW3: Late Roman Coarse Wares, Cooking Wares and Amphorae in the Mediterranean: Archaeology and Archaeometry; Menchelli, S.; Santoro, S.; Pasquinucci, M.; Guiducci, G., Eds.; Archaeopress: Oxford, 2010; Vol. 1, pp. 363–368.
  • Pecci, A.; Giorgi, G.; Salvini, L.; Ontiveros, M. Identifying Wine Markers in Ceramics and Plasters Using Gas Chromatography-Mass Spectrometry. Experimental and Archaeological Materials. J. Archaeol. Sci. 2013, 40, 109–115.
  • Pollard, M.; Heron, C. Archaeological Chemistry; Royal Society of Chemistry: Cambridge, 2008; pp. 3–12.
  • Pollard, M.; Batt, C.; Stern, B.; Young, S. M. M. Analytical Chemistry in Archaeology; Cambridge University Press: New York, 2007; pp. 5–10.
  • Price, T. D.; Burton, J. H. An Introduction to Archaeological Chemistry; Springer: New York, 2011; pp. 15–19.
  • Rafferty, S. M. Identification of Nicotine by Gas Chromatography/Mass Spectroscopy Analysis of Smoking Pipe Residue. J. Archaeol. Sci. 2002, 29, 897–907.
  • Rafferty, S. M. Evidence of Early Tobacco in Northeastern North America? J. Archaeol. Sci. 2006, 33, 453–458.
  • Rafferty, S. M.; Lednev, I.; Virkler, K.; Chovanec, Z. Current Research on Smoking Pipe Residues. J. Archaeol. Sci. 2012, 39, 1951–1959.
  • Reber, E. A.; Evershed, R. P. Identification of Maize in Absorbed Organic Residues: A Cautionary Tale. J. Archaeol. Sci. 2004, 31, 399–410.
  • Reber, E. A.; Hart, J. P. Pine Resins and Pottery Sealing: Analysis of Absorbed and Visible Pottery Residues from Central New York State. Archaeometry 2008, 50, 999–1017.
  • Reber, E. A.; Kerr, M. T. The Persistence of Caffeine in Experimentally Produced Black Drink Residues. J. Archaeol. Sci. 2012, 39, 2312–2319.
  • Regert, M.; Vacher, S.; Moulherat, C.; Decavallas, O. Adhesive Production and Pottery Function during the Iron Age at the Site of Grand Aunay (Sarthe, France). Archaeometry 2003, 45, 101–120.
  • Renfred, C.; Bahn, P. Archeology: Theories, Methods and Practice; Thames & Hudson: London, 1996; pp. 335–339.
  • Ribechini, E.; Modugno, F.; Colombini, M. P.; Evershed, R. P. Gas Chromatographic and Mass Spectrometric Investigations of Organic Residues from Roman Glass Unguentaria. J. Chromatogr. A 2008, 1183, 158–169.
  • Richards, T.W. The composition of Athenian pottery. Amer. Chem. J. 1895, 17, 152–154.
  • Romanus, K.; Poblome, J.; Verbeke, K.; Liypaerts, A.; Jacobs, P.; De Vos, D.; Waelkens, M. An Evaluation of Analytical and Interpretative Methodologies for the Extraction and Identification of Lipids Associated with Pottery Sherds from the Site of Sagalassos, Turkey. Archaeometry 2007, 49, 729–747.
  • Salvini, L.; Pecci, A.; Giorgi, G. Cooking Activities during the Middle Ages: Organic Residues in Ceramic Vessels from the Sant'Antimo Church (Piombino-Central Italy). J. Mass Spectrom. 2008, 43, 108–115.
  • Saul, H.; Wilson, J.; Heron, C. P.; Glykou, A.; Hartz, S.; Craig, O. E. A Systematic Approach to the Recovery and Identification of Starches from Carbonised Deposits on Ceramic Vessels. J. Archaeol. Sci. 2012, 39, 3483–3492.
  • Schwarcz, H. P.; Schoeninger, M. J. Stable Isotope Analyses in Human Nutritional Ecology. Yearb. of Phys. Anthrop. 1991, 34, 283–321.
  • Sherriff, B. L.; Tisdale, M. A.; Sayer B. G.; Schwarcz, H. P.; Knyf M. Nuclear Magnetic Resonance Spectroscopic and Isotopic Analysis of Carbonized, Residues from Subarctic Canadian Prehistoric Pottery. Archaeometry 1995, 37, 95–111.
  • Shillito, L. M.; Almond, M. J.; Wicks, K.; Marshall, L. J.; Matthews, W. The Use of FT-IR as a Screening Technique for Organic Residue Analysis of Archaeological Samples. Spectrochim. Acta Part A 2009, 72, 120–125.
  • Soberl, L.; Gasparic, A. Z.; Budja, M.; Evershed, R. P. Early Herding Practices Revealed through Organic Residue Analysis of Pottery from the Early Neolithic Rock Shelter of Mala Triglavca, Slovenia. Documenta Praehistorica 2008, 35, 253–260.
  • Spangenberg, J. E.; Jacomet, S.; Schibler, J. Chemical Analyses of Organic Residues in Archaelogical Pottery from Arbon Bleiche 3, Switzerland – Evidence for Dairying in the Late Neolithic. J. Archaeol. Sci. 2006, 33, 1–13.
  • Stacey, R. J. Organic Residues: Origins, Analysis and Scope – An Overview for the Archaeological Ceramicist. Old Potter's Almanack 2009, 14, 1–8.
  • Steele, V. J.; Stern, B.; Stott, A. W. Olive Oil or Lard?: Distinguishing Plant Oils from Animal Fats in the Archeological Record of the Eastern Mediterranean Using Gas Chromatography/Combustion/Isotope Ratio Mass Spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 3478–3484.
  • Stern, B.; Heron, C.; Serpico, M.; Bourriau, J. A Comparison of Methods for Establishing Fatty Acid Concentration Gradients across Potsherds: A Case Study Using Late Bronze Age Canaanite Amphorae. Archaeometry 2000, 42, 399–414.
  • Tang, F.; Zhang, Q.; Nie, Z.; Chen, B.; Yao, S. Sample Preparation for Analyzing Traditional Chinese Medicines. TrAC Trends Anal. Chem. 2009, 28, 1253–1262.
  • Tobiszewski, M.; Mechlińska, A.; Zygmunt, B.; Namieśnik, J. Green Analytical Chemistry in Sample Preparation for Determination of Trace Organic Pollutants. TrAC Trends Anal. Chem. 2009, 28, 943–951.
  • Tushingham, S.; Ardura, D.; Eerkens, J. W.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. Hunter-Gatherer Tobacco Smoking: Earliest Evidence from the Pacific Northwest Coast of North America. J. Archaeol. Sci. 2013, 40, 1397–1407.
  • van der Merwe, M. J. Light stable isotopes and the reconstruction of prehistoric diets. In New Developments in Archaeological Science; Pollard, A. M., Ed.; Proceedings of the British Academy 77; Oxford University Press: Oxford, 1992, 247–264.
  • Zagorevski, D. V.; Loughmiller-Newman, J. A. The Detection of Nicotine in a Late Mayan Period Flask by Gas Chromatography and Liquid Chromatography Mass Spectrometry Methods. Rapid Commun. Mass Spectrom. 2012, 26, 403–411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.