1,400
Views
28
CrossRef citations to date
0
Altmetric
Review Article

Recent Electroanalytical Studies of Metal-Organic Frameworks: A Mini-Review

&
Pages 323-331 | Published online: 27 May 2016

References

  • Alavi, M. A.; Morsali, A. Ultrasound assisted synthesis of {[Cu2(BDC)2(dabco)]. 2DMF. 2H2O} Nanostructures in the Presence of Modulator; New Precursor to Prepare Nano Copper Oxides. Ultrason. Sonochem. 2014, 21(2), 674–680.
  • Al‐Kutubi, H.; Gascon, J.; Sudhölter, E., J. R.; Rassaei, L. Electrosynthesis of Metal–Organic Frameworks: Challenges and Opportunities. ChemElectroChem 2015, 2(4), 462–474.
  • Ameloot, R. L.; Stappers, J.; Fransaer, L.; Alaerts, B. F.; De Vos, D. E. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater. 2009, 21(13), 2580–2582.
  • An, J.; Geib, S. J.; Rosi, N. L. Cation-Triggered Drug Release from a Porous Zinc−Adeninate Metal−Organic Framework. J. Am. Chem. Soc. 2009, 131(24), 8376–8377.
  • Babu, K. F.; Kulandainathan, M.; Katsounaros, A. I.; Rassaei, L.; Burrows, A. D.; Raithby, P. R.; Marken F. Electrocatalytic Activity of Basolite F300 Metal-Organic-Framework Structures. Electrochem. Commun. 2010, 12(5), 632–635.
  • Cho, H. Y.; Yang, D.; Kim, J.; Jeong, S. Y.; Ahn W. S. CO Adsorption and Catalytic Application of Co-MOF-74 Synthesized by Microwave Heating. Catal. Today. 2012, 185(1), 35–40.
  • DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y.; Walton, K. S. Stability and Degradation Mechanisms of Metal–Organic Frameworks Containing the Zr6O4(OH)4 Secondary Building Unit. J. Mater. Chem. A 2013, 1(18), 5642–5650.
  • Díaz, R.; Orcajo, M. G.; Botas, J. A.; Calleja, G.; Palma, J. Co8-MOF-5 as Electrode for Supercapacitors. Mater. Lett. 2012, 68, 126–128.
  • Domenech, A.; García, H.; Doménech-Carbó, M.; Llabrés-i-Xamena, F. Electrochemistry of Metal-Organic Frameworks: A Description from the Voltammetry of Microparticles Approach. J. Phys. Chem. C 2007, 111(37), 13701–13711.
  • Farha, O. K.; Hupp, J. T. Rational Design, Synthesis, Purification, and Activation of Metal−; Organic Framework Materials. Acc. Chem. Res. 2010, 43(8), 1166–1175.
  • Fernandes, D. M.; Granadeiro, C. M.; Paes de Sousa, P. M.; Grazina, R.; Moura, J. J.; Silva, P.; Paz, A.; Filipe, A.; Cunha‐Silva L.; Balula S. S. SiW11Fe@ MIL‐101 (Cr) Composite: A Novel and Versatile Electrocatalyst. ChemElectroChem 2014, 1(8), 1293–1300.
  • Fu, Y.; Sun, D.; Chen, Y.; Huang, R.; Ding, Z.; Fu, X.; Li, Z. An Amine‐Functionalized Titanium Metal–Organic Framework Photocatalyst with Visible‐Light‐Induced Activity for CO Reduction. Angew. Chem. 2012, 124(14), 3420–3423.
  • Fujii, K.; Lazuen Garay, A.; Hill, J.; Sbircea, E.; Pan, Z.; Xu, M.; Apperley, D. C.; James S. L.; Harris K. D. Direct Structure Elucidation by Powder X-ray Diffraction of a Metal-Organic Framework Material Prepared by Solvent-Free Grinding. Chem. Commun. 2010, 46(40), 7572–7574.
  • Haldoupis, E.; Nair, S.; Sholl, D. S. Efficient Calculation of Diffusion Limitations in Metal Organic Framework Materials: A Tool for Identifying Materials for Kinetic Separations. J. Am. Chem. Soc. 2010, 132(21), 7528–7539.
  • Halls, J. E.; Jiang, D.; Burrows, A. D.; Kulandainathanb, M. A.; Marken, F. Electrochemistry within Metal-Organic Frameworks. In Electrochemistry, vol. 12, Nanoelectrochemistry; Royal Society of Chemistry: Cambridge, 2013; pp 187–210.
  • Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Fakhari, A. R.; Amini M. M. Au-SH-SiO2 Nanoparticles Supported on Metal-Organic Framework (Au-SH-SiO2@ Cu-MOF) as a Sensor for Electrocatalytic Oxidation and Determination of Hydrazine. Electrochim. Acta 2013a, 88, 301–309.
  • Hosseini, H.; Ahmar, H.; Dehghani, A.; Bagheri, A.; Tadjarodi, A.; Fakhari, A. R. A Novel Electrochemical Sensor Based on Metal-Organic Framework for Electro-Catalytic Oxidation of L-Cysteine. Biosens. Bioelectron. 2013b, 42, 426–429.
  • Hou, C.; Peng, J.; Xu, Q.; Ji, Z.; Hu, X. Elaborate Fabrication of MOF-5 Thin Films on a Glassy Carbon Electrode (GCE) for Photoelectrochemical Sensors. R. Soc. Chem. Adv. 2012, 2(33), 12696.
  • Huang, Y.; Liu, S.; Lin, Z.; Li, W.; Li, X.; Cao, R. Facile Synthesis of Palladium Nanoparticles Encapsulated in Amine-Functionalized Mesoporous Metal–Organic Frameworks and Catalytic for Dehalogenation of Aryl Chlorides. J. Catal. 2012, 292, 111–117.
  • Hu, Z.; Deibert, B. J.; Li, J. Luminescent Metal–Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43(16), 5815–5840.
  • Ishida, T.; Nagaoka, M.; Akita, T.; Haruta M. Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chem. Eur. J. 2008, 14(28), 8456–8460.
  • Jahan, M.; Bao, Q.; Loh K. P. Electrocatalytically Active Graphene–Porphyrin MOF Composite for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134(15), 6707–6713.
  • Jia, G.; Gao, Y.; Zhang, W.; Wang, H.; Cao, Z.; Li, C.; Liu, J. (2013). Metal-Organic Frameworks as Heterogeneous Catalysts for Electrocatalytic Oxidative Carbonylation of Methanol to Dimethyl Carbonate. Electrochem. Commun. 2013, 34, 211–214.
  • Jung, D. W.; Yang, D. A.; Kim, J.; Kim, J.; Ahn, W. S. Facile Synthesis of MOF-177 by a Sonochemical Method Using 1-Methyl-2-pyrrolidinone as a Solvent. Dalton Trans. 2010, 39(11), 2883–2887.
  • Karizi, F. Z.; Safarifard, V.; Khani, S. K.; Morsali, A. Ultrasound-Assisted Synthesis of Nano-structured 3D Zinc (II) Metal–Organic Polymer: Precursor for the Fabrication of ZnO Nano-structure. Ultrason. Sonochem. 2014, 23, 238–245.
  • Ke, F. S.; Wu, Y. S.; Deng, H. Metal-Organic Frameworks for Lithium Ion Batteries and Supercapacitors. J. Solid State Chem. 2015, 223, 109–121.
  • Klein, N.; Senkovska, I.; Gedrich, K.; Stoeck, U.; Henschel, A.; Mueller, U.; Kaskel, S. A Mesoporous Metal-Organic Framework. Angew. Chem. Int. Ed. Eng. 2009, 48(52), 9954–9957.
  • Klimakow, M.; Klobes, P.; Thünemann, A. F.; Rademann, K.; Emmerling, F. Mechanochemical Synthesis of Metal−Organic Frameworks: A Fast and Facile Approach toward Quantitative Yields and High Specific Surface Areas. Chem. Mater. 2010, 22(18), 5216–5221.
  • Klinowski, J.; Paz, F. A.; Silva, P.; Rocha, J. Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Trans. 2011, 40(2), 321–330.
  • Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. 2012, 112(2), 1105–1125.
  • Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Efficient Electrosynthesis of Highly Active Cu3(BTC)2-MOF and Its Catalytic Application to Chemical Reduction. Microporous Mesoporous Mater. 2013, 168, 57–64.
  • Li, M.; Dinca, M. Reductive Electrosynthesis of Crystalline Metal–Organic Frameworks. J. Am. Chem. Soc. 2011, 133(33), 12926–12929.
  • Li, Y.; Chao, H.; Du, H.; Liu, W.; Li, Y.; Ye, J. Electrochemical Behavior of Metal–Organic Framework MIL-101 Modified Carbon Paste Electrode: An Excellent Candidate for Electroanalysis. J. Electroanal. Chem. 2013, 709, 65–69.
  • Lin, Z.; Slawin, A. M.; Morris, R. E. Chiral Induction in the Ionothermal Synthesis of a 3-D Coordination Polymer. J. Am. Chem. Soc. 2007, 129(16), 4880–4881.
  • Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C. Y. Applications of Metal–Organic Frameworks in Heterogeneous Supramolecular Catalysis. Chem. Soc. Rev. 2014, 43(16), 6011–6061.
  • Lu, G.; Hupp, J. T. Metal−Organic Frameworks as Sensors: A ZIF-8 Based Fabry−Pérot Device as a Selective Sensor for Chemical Vapors and Gases. J. Am. Chem. Soc. 2010, 132(23), 7832–7833.
  • Martinez Joaristi, A.; Juan-Alcañiz, J.; Serra-Crespo, P.; Kapteijn, F.; Gascon, J. Electrochemical Synthesis of Some Archetypical Zn, Cu, and Al Metal Organic Frameworks. Cryst. Growth Des. 2012, 12(7), 3489–3498.
  • Morozan, A.; Jaouen, F. Metal Organic Frameworks for Electrochemical Applications. Energy Environ. Sci. 2012, 5(11), 9269–9290.
  • Mueller, U.; Schubert, M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastré, J. Metal–Organic Frameworks—Prospective Industrial Applications. J. Mater. Chem. 2006, 16(7), 626–636.
  • Park, Y. K.; Choi, S. B.; Nam, H. J.; Jung, D. Y.; Ahn, H. C.; Choi, K.; Furukawa, H.; Kim, J. Catalytic Nickel Nanoparticles Embedded in a Mesoporous Metal–Organic Framework. Chem. Commun. 2010, 46(18), 3086–3088.
  • Parnham, E. R.; Morris, R. E. Ionothermal Synthesis of Zeolites, Metal–Organic Frameworks, and Inorganic–Organic Hybrids. Acc. Chem. Res. 2007, 40(10), 1005–1013.
  • Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res. 2010, 43(1), 58–67.
  • Schlesinger, M.; Schulze, S.; Hietschold, M.; Mehring, M. Evaluation of Synthetic Methods for Microporous Metal–Organic Frameworks Exemplified by the Competitive Formation of [Cu2(btc)3(H2O)3] and [Cu2(btc)(OH)(H2O)]. Microporous Mesoporous Mater. 2010, 132(1–2), 121–127.
  • Senthil Kumar, R.; Senthil Kumar, S.; Anbu Kulandainathan, M. Highly Selective Electrochemical Reduction of Carbon Dioxide Using Cu Based Metal Organic Framework as an Electrocatalyst. Electrochem. Commun. 2012, 25, 70–73.
  • Shah, M.; McCarthy, M. C.; Sachdeva, S.; Lee, A. K.; Jeong, H. K. Current Status of Metal–Organic Framework Membranes for Gas Separations: Promises and Challenges. Ind. Eng. Chem. Res. 2012, 51(5), 2179–2199.
  • Solla-Gullón, J.; Vidal-Iglesias, F. J.; Feliu, J. M. Shape Dependent Electrocatalysis. Annu. Rep. Sect. C: Phys. Chem. 2011, 107, 263–297.
  • Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2011, 112(2), 933–969.
  • Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D. W. Hydrogen Storage in Metal–Organic Frameworks. Chem. Rev. 2011, 112(2), 782–835.
  • Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2011, 112(2), 724–781.
  • Tahmasian, A.; Morsali, A.; Joo, S. W. Sonochemical Syntheses of a One-Dimensional Mg(II) Metal-Organic Framework: A New Precursor for Preparation of MgO One-Dimensional Nanostructure. J. Nanomater. 2013, 2013, Article ID 313456.
  • Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-Wheel SBUs upon Hydration. Chem. Mater. 2012, 24(16), 3153–3167.
  • Turner, S.; Lebedev, O. I.; Schröder, F.; Esken, D.; Fischer R. A.; Tendeloo G. V. Direct Imaging of Loaded Metal−Organic Framework Materials (Metal@ MOF-5). Chem. Mater. 2008, 20(17), 5622–5627.
  • Wang, H.; Yin, F.; Li, G.; Chen, B.; Wang Z. Preparation, Characterization and Bifunctional Catalytic Properties of MOF (Fe/Co) Catalyst for Oxygen Reduction/Evolution Reactions in Alkaline Electrolyte. Int. J. Hydrogen Energy 2014a, 39(28), 16179–16186.
  • Wang, Y.; Ge, H.; Wu, Y.; Ye, G.; Chen, H.; Hu, X. Construction of an Electrochemical Sensor Based on Amino-Functionalized Metal-Organic Frameworks for Differential Pulse Anodic Stripping Voltammetric Determination of Lead. Talanta 2014b, 129, 100–105.
  • Wang, Y.; Wu, Y.; Xie, J.; Hu, X. Metal–Organic Framework Modified Carbon Paste Electrode for Lead Sensor. Sens. Actuators B Chem. 2013, 177, 1161–1166.
  • Wen, L. L.; Wang, F.; Leng, X. K.; Wang, C. G.; Wang, L. Y.; Gong, J. M.; Li, D. F. Efficient Detection of Organophosphate Pesticide Based on a Metal−Organic Framework Derived from Biphenyltetracarboxylic Acid. Cryst. Growth Des. 2010, 10(7), 2835–2838.
  • Wu, X.; Bao, Z.; Yuan, B.; Wang, J.; Sun, Y.; Luo, H.; Deng S. Microwave Synthesis and Characterization of MOF-74 (M = Ni, Mg) for Gas Separation. Microporous Mesoporous Mater. 2013, 180, 114–122.
  • Wu, Z. F.; Hu, B.; Feng, M. L.; Huang, X. Y.; Zhao, Y. B. Ionothermal Synthesis and Crystal Structure of a Magnesium Metal-Organic Framework. Inorg. Chem. Commun. 2011, 14(7), 1132–1135.
  • Xu, Q.; Wang, Y.; Jin, G.; Jin, D.; Li, K.; Mao, A.; Hu X. Photooxidation Assisted Sensitive Detection of Trace Mn2+ in Tea by NH2-MIL-125 (Ti) Modified Carbon Paste Electrode. Sens. Actuators B Chem. 2014, 201, 274–280.
  • Yaghi, O. M.; Li, H. Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.
  • Yang, H.; Du, H.; Zhang, L.; Liang, Z.; Li, W. Electrosynthesis and Electrochemical Mechanism of Zn-Based Metal-Organic Frameworks. Int. J. Electrochem. Sci. 2015, 10, 1420–1433.
  • Yang, H.; Orefuwa, S.; Goudy, A. Study of Mechanochemical Synthesis in the Formation of the Metal–Organic Framework Cu3(BTC)2 for Hydrogen Storage. Microporous Mesoporous Mater. 2011, 143(1), 37–45.
  • Yang, L.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H.; Tokunaga, M.; Ishimoto, T.; Ogura, T.; Nagumo, R.; Miyamoto, A. A Metal–Organic Framework as an Electrocatalyst for Ethanol Oxidation. Angew. Chem. 2010, 122(31), 5476–5479.
  • Zhan, W. W.; Kuang, Q.; Zhou, J. Z.; Kong, X. J.; Xie, Z. X.; Zheng L. S. Semiconductor@ Metal–Organic Framework Core–Shell Heterostructures: A Case of ZnO@ ZIF-8 Nanorods with Selective Photoelectrochemical Response. J. Am. Chem. Soc. 2013, 135(5), 1926–1933.
  • Zhang, C.; Wang, M.; Liu, L.; Yang, X.; Xu, X. Electrochemical Investigation of a New Cu-MOF and Its Electrocatalytic Activity towards HO Oxidation in Alkaline Solution. Electrochem. Commun. 2013, 33, 131–134.
  • Zhang, Y.; Bo, X.; Nsabimana, A.; Han, C.; Li, M.; Guo, L. Electrocatalytically Active Cobalt-Based Metal–Organic Framework with Incorporated Macroporous Carbon Composite for Electrochemical Applications. J. Mater. Chem. A. 2015, 3(2), 732–738.
  • Zhang, Y.; Nsabimana, A.; Zhu, L.; Bo, X.; Han, C.; Li, M.; Guo L. Metal Organic Frameworks/Macroporous Carbon Composites with Enhanced Stability Properties and Good Electrocatalytic Ability for Ascorbic Acid and Hemoglobin. Talanta 2014, 129, 55–62.
  • Zheng, B.; Yun, R.; Bai, J.; Lu, Z.; Du, L.; Li, Y. Expanded Porous MOF-505 Analogue Exhibiting Large Hydrogen Storage Capacity and Selective Carbon Dioxide Adsorption. Inorg. Chem. 2013, 52(6), 2823–2829.
  • Zhou, E.; Zhang, Y.; Li, Y.; He, X. Cu(II)‐Based MOF Immobilized on Multiwalled Carbon Nanotubes: Synthesis and Application for Nonenzymatic Detection of Hydrogen Peroxide with High Sensitivity. Electroanalysis. 2014, 26(11), 2526–2533.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.