979
Views
35
CrossRef citations to date
0
Altmetric
ARTICLES

Progress of Mimetic Enzymes and Their Applications in Chemical Sensors

, , &
Pages 469-481 | Received 19 Nov 2015, Accepted 04 Feb 2016, Published online: 22 Jun 2016

References

  • Alexander, C.; Davidson, L.; Hayes, W. Imprinted Polymers: Artificial Molecular Recognition Materials with Applications in Synthesis and Catalysis. Tetrahedron 2003, 59, 2025–2057.
  • Annamalai, S. K.; Palani, B.; Pillai, K. C. Highly Stable and Redox Active Nano Copper Species Stabilized Functionalized-Multiwalled Carbon Nanotube/Chitosan Modified Electrode for Efficient Hydrogen Peroxide Detection. Colloids Surf., A 2012, 395, 207–216.
  • Asati, A.; Santra, S.; Kaittanis, C.; Nath, S.; Perez, J. M. Oxidase-Like Activity of Polymer-Coated Cerium Oxide Nanoparticles. Angew Chem. Int. Ed. 2009, 48, 2308–2312.
  • Beletskaya, I.; Tyurin, V. S.; Tsivadze, A Y.; Guilard, R.; Stern, C. Supramolecular Chemistry of Metalloporphyrins. Chem. Rev. 2009, 109, 1659–1713.
  • Beyer, Jr., W. F.; Wang, Y.; Fridovich, I. Phosphate Inhibition of the Copper- and Zinc-Containing Superoxide Dismutase: A Reexamination. Biochemistry 1986, 25, 6084–6088.
  • Breslow, R. Centenary Lecture. Biomimetic Chemistry. Chem. Soc. Rev. 1972, 1, 553–580.
  • Breslow, R.; Zhang, B. Very Fast Ester Hydrolysis by a Cyclodextrin Dimer with a Catalytic Linking Group. J. Am. Chem. Soc. 1992, 114, 5882–5883.
  • Cao, F.; Guo, S.; Ma, H.; Yang, G.; Yang, S.; Gong, J. Highly Sensitive Nonenzymatic Glucose Sensor Based on Electrospun Copper Oxide-Doped Nickel Oxide Composite Microfibers. Talanta 2011, 86, 214–220.
  • Chen, E. T.; Pardue, H. L. Analytical Applications of Catalytic Properties of Modified Cyclodextrins. Anal. Chem. 1993, 65, 2563–2567.
  • Cheng, S.; Wang, Y.; Yan, J.; Zeng, X. Hydrolysis of Phosphodiester Catalyzed by Analogous Dinuclear Cu (II) Complex in CTAB Micellar Solution. Colloids Surf., A 2007, 292, 32–35.
  • Chung, A. J.; Rubner, M. F. Methods of Loading and Releasing Low Molecular Weight Cationic Molecules in Weak Polyelectrolyte Multilayer Films. Langmuir 2002, 18, 1176–1183.
  • Collman, J. P.; Zhang, X.; Lee, V. J.; Uffelman, E. S.; Brauman, J. I. Regioselective and Enantioselective Epoxidation Catalyzed by Metalloporphyrins. Science 1993, 261, 1404–1411.
  • Corbett, P. T.; Leclaire, J.; Vial, L.; West, K. R.; Wietor, J. L.; Sanders, J. K.; Otto, S. Dynamic Combinatorial Chemistry. Chem. Rev. 2006, 106, 3652–3711.
  • Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes. J. Incl. Phenom. Macro. 1988, 6, 397–413.
  • Cui, L.; Wu, J.; Li, J.; Ju, H. Electrochemical Sensor for Lead Cation Sensitized with a DNA Functionalized Porphyrinic Metal–Organic Framework. Anal. Chem. 2015, 87, 10635–10641.
  • Curigliano, G.; Spitaleri, G.; Pietri, E.; Rescigno M.; De Braud, F.; Cardillo, A.; Muzone, E.; Rocca, A.; Bonizzi, G.; Brichard, V.; Orlando, L.; Goldhirsch, A. Breast Cancer Vaccines: a Clinical Reality or Fairy Tale? Ann. Oncol. 2006, 17, 750–762.
  • Deng, H.; Shen, W.; Peng, Y.; Chen, X.; Yi, G.; Gao, Z. Nanoparticulate Peroxidase/Catalase Mimetic and Its Application. Chem. Eur. J. 2012, 18, 8906–8911.
  • Desbouis, D.; Troitsky, I. P.; Belousoff, M. J.; Spiccia, L.; Graham, B. Copper (II), Zinc (II) and Nickel (II) Complexes as Nuclease Mimetics. Coordin. Chem. Rev. 2012, 256, 897–937.
  • Díez, P.; Piuleac, C. G.; Ruiz, P. M.; Romano, S.; Gamella, M.; Villalonga, R.; Pingarron, J. M. Supramolecular Immobilization of Glucose Oxidase on Gold Coated with Cyclodextrin-Modified Cysteamine Core PAMAM G-4 Dendron/Pt Nanoparticles for Mediatorless Biosensor Design. Anal. Biochem. 2013, 405, 3773–3781.
  • Dincă, M.; Long, J. R. Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites. Angew. Chem. Int. Ed. 2008, 47, 6766–6779.
  • Fan, Y.; Shi, W.; Zhang, X.; Huang, Y. Mesoporous Material-Based Manipulation of the Enzyme-Like Activity of CoFe2O4 Nanoparticles. J. Mater. Chem., A 2014, 2, 2482–2486.
  • Fenger, T. H.; Bols, M. Simple Cyclodextrin Aldehydes as Excellent Artificial Oxidases. J. Incl. Phenom. Macro. Chem. 2011, 69, 397–402.
  • Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett S.; Yan, X. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles. Nat. Nanotech. 2007, 2, 577–583.
  • Ghorbanpour, A.; Gumidyala, A.; Grabow, L. C.; Crossley, S. P.; Rimer, J. D. Epitaxial Growth of ZSM-5@ Silicalite-1: A Core–Shell Zeolite Designed with Passivated Surface Acidity. Nano. 2015, 9, 4006–4016.
  • Giber, J.; Perczel, I. V.; Gerblinger, J.; Lampe, U.; Fleischer, M. Coadsorption and Cross Sensitivity on High Temperature Semiconducting Metal Oxides: Water Effect on the Coadsorption Process. Sens. Actuators, B 1994, 18, 113–118.
  • Gunter, M. J.; Turner, P. Metalloporphyrins as Models for the Cytochromes P-450. Coordin. Chem. Rev. 1991, 108, 115–161.
  • Guo, A.; Wu, D.; Ma, H.; Zhang, Y.; Li, H.; Du, B.; Wei, Q. An Ultrasensitive Enzyme-Free Electrochemical Immunosensor for CA125 Using Au@Pd Core–Shell Nanoparticles as Labels and Platforms for Signal Amplification. J. Mater. Chem. B 2013, 1, 4052–4058.
  • Gu, Y.; Yan, X.; Liu, W.; Li, C.; Chen, R.; Tang, L.; Zhang, Z.; Yang, M. Biomimetic Sensor Based on Copper-Poly (Cysteine) Film for the Determination of Metronidazole. Electrochim. Acta 2015, 152, 108–116.
  • Habibi, B.; Jahanbakhshi, M. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on the Synthesized Mesoporous Carbon and Silver Nanoparticles Nanohybrid. Sens. Actuators, B 2014, 203, 919–925.
  • Harsányi, G. Polymer Films in Sensor Applications: a Review of Present Uses and Future Possibilities. Sens. Rev. 2000, 20, 98–105.
  • Hasdenteufel, F. Twenty Years of Separation of Cis-Trans (Z)-(E) Isomers. Sep. Purif. Rev. 2006, 35, 193–221.
  • Hollenstein, M.; Hipolito, C.; Lam, C.; Dietrich, D.; Perrin, D. M. A Highly Selective DNAzyme Sensor for Mercuric Ions. Angew. Chem. Int. Ed. 2008, 47, 4346–4350.
  • Ho, M. Y. K.; Rechnitz, G. A. Highly Stable Biosensor Using an Artificial Enzyme. Anal. Chem. 1987, 59, 536–537.
  • Ikeno, S.; Haruyama, T. Biological Phosphate Ester Sensing Using an Artificial Enzyme PMP Complex. Sens. Actuators, B 2005, 108, 608–612.
  • Janata, J. Introduction: Modern Topics in Chemical Sensing. Chem. Rev. 2008, 108, 327–328.
  • Janda, K. D.; Benkovic, S. J.; Lerner, R. A. Catalytic Antibodies with Lipase Activity and R or S Substrate Selectivity. Science. 1989, 244, 437–440.
  • Kataky, R.; Morgan, E. Potential of Enzyme Mimics in Biomimetic Sensors: a Modified-Cyclodextrin as a Dehydrogenase Enzyme Mimic. Biosens. Bioelectron. 2003, 18, 1407–1417.
  • Kato, Y.; Furutachi, M.; Chen, Z.; Mitsunuma, H.; Matsunaga, S.; Shibasaki, M. A Homodinuclear Mn (III) 2− Schiff Base Complex for Catalytic Asymmetric 1, 4-Additions of Oxindoles to Nitroalkenes. J. Am. Chem. Soc. 2009, 131, 9168–9169.
  • Kofoed, J.; Darbre, T.; Reymond, J. L. Artificial Aldolases from Peptide Dendrimer Combinatorial Libraries. Org. Biomol. Chem. 2006, 4, 3268–3281.
  • Krause, G.; Lundström, J.; Barea, J. L.; Cuesta, C. P. D. L.; Holmgren, A. Mimicking the Active Site of Protein Disulfide-Isomerase by Substitution of Proline 34 in Escherichia Coli Thioredoxin. J. Biol. Chem. 1991, 266, 9494–9500.
  • Kunishima, M.; Yoshimura, K.; Morigaki, H.; Kawamata, R.; Terao, K.; Tani, S. Cyclodextrin-Based Artificial Acyltransferase: Substrate-Specific Catalytic Amidation of Carboxylic Acids in Aqueous Solvent. J. Am. Chem. Soc. 2001, 123, 10760–10761.
  • Lambert, N.; Freedman, R. B. Structural Properties of Homogeneous Protein Disulphide-Isomerase From Bovine Liver Purified by a Rapid High-Yielding Procedure. Biochem. J. 1983, 213, 225–234.
  • Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.
  • Lehn, J. M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. Angew. Chem. Int. Ed. 1988, 6, 351–396.
  • Li, H.; Eddaoudi, M.; O'keeffe, M.; Yaghi, O. M. Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature 1999, 402, 276–279.
  • Li, J.; Li, Y.; Zhang, Y.; Wei, G. Highly Sensitive Molecularly Imprinted Electrochemical Sensor Based on the Double Amplification by an Inorganic Prussian Blue Catalytic Polymer and the Enzymatic Effect of Glucose Oxidase. Anal. Chem. 2012, 84, 1888–1893.
  • Li, J.; Zhang, L.; Wei, G.; Zhang, Y.; Zeng, Y. Highly Sensitive and Doubly Orientated Selective Molecularly Imprinted Electrochemical Sensor for Cu2+. Biosens. Bioelectron. 2015, 69, 316–320.
  • Li, J.; Wei, X.; Yuan Y. Synthesis of Magnetic Nanoparticles Composed by Prussian Blue and Glucose Oxidase for Preparing Highly Sensitive and Selective Glucose Biosensor. Sens. Actuators, B 2009, 139, 400–406.
  • Ling, P.; Lei, J.; Zhang, L.; Ju, H. Porphyrin-Encapsulated Metal–Organic Frameworks as Mimetic Catalysts for Electrochemical DNA Sensing via Allosteric Switch of Hairpin DNA. Anal. Chem. 2015, 87, 3957–3963.
  • Lin, J.; Yamada, M. Chemiluminescent Flow-Through Sensor for 1, 10-Phenanthroline Based on the Combination of Molecular Imprinting and Chemiluminescence. Analyst 2001, 126, 810–815.
  • Li, T.; Wang, E.; Dong, S. Lead (II)-Induced Allosteric G-Quadruplex DNAzyme as a Colorimetric and Chemiluminescence Sensor for Highly Sensitive and Selective Pb2+ Detection. Anal. Chem. 2010a, 82, 1515–1520.
  • Liu, Z.; Wang, Q.; Mao, L.; Cai, R. Highly Sensitive Spectrofluorimetric Determination of Ascorbic Acid Based on Its Enhancement Effect on a Mimetic Enzyme-Catalyzed Reaction. Anal. Chim. Acta 2000, 413, 167–173.
  • Li, W.; Liu, Z.; Lin, H.; Nie, Z.; Chen, J.; Xu, X.; Yao, S. Label-Free Colorimetric Assay for Methyltransferase Activity Based on a Novel Methylation-Responsive DNAzyme Strategy. Anal. Chem. 2010b, 82, 1935–1941.
  • Machado, A. M.; Wypych, F.; Drechsel, S. M.; Nakagaki, S. Study of the Catalytic Behavior of Montmorillonite/iron (III) and Mn (III) Cationic Porphyrins. J. Colloid Inter. 2002, 254, 158–164.
  • Matsui, J.; Nicholls, I. A.; Karube, I.; Mosbach, K. Carbon−Carbon Bond Formation Using Substrate Selective Catalytic Polymers Prepared by Molecular Imprinting: An Artificial Class II Aldolase. J. Org. Chem. 1996a, 61, 5414–5417.
  • Matsui, J.; Nicholls, I. A.; Takeuchi, T.; Mosbach, K.; Karube, I. Metal Ion Mediated Recognition in Molecularly Imprinted Polymers. Anal. Chim. Acta 1996b, 335, 71–77.
  • Meng, Z.; Yamazaki, T.; Sode, K. Enhancement of the Catalytic Activity of an Artificial Phosphotriesterase Using a Molecular Imprinting Technique. Biotechnol. Lett. 2003, 25, 1075–1080.
  • Migita, S.; Ozasa, K.; Ikeno, S.; Tanaka, T.; Haruyama, T. Molecular Commonality Sensing of Phosphoric Anhydride Substances Using an Ion-Sensitive Field-Effect Transistor Covered with an Artificial Enzyme Membrane. J. Appl. Phys. 2007, 46, 7539.
  • Miles, D.; Roché, H.; Martin, M.; Perren, T. J.; Cameron, D. V.; Glaspy, J.; Dodwell, D.; Parker, J.; Mayordomo, J.; Tres, A.; Murray, J. L.; Ibrahim, N. K. Phase III Multicenter Clinical Trial of the Sialyl-TN (STn)-Keyhole Limpet Hemocyanin (KLH) Vaccine for Metastatic Breast Cancer. Oncologist 2011, 16, 1092–1100.
  • Modak, A.; Nandi, M.; Mondal, J.; Bhaumik, A. Porphyrin Based Porous Organic Polymers: Novel Synthetic Strategy and Exceptionally High CO2 Adsorption Capacity. Chem. Commun. 2012, 48, 248–250.
  • Molenveld, P.; Engbersen, J. F.; Reinhoudt, D. N. Dinuclear Metallo-Phosphodiesterase Models: Application of Calix [4]Arenes as Molecular Scaffolds. Chem. Soc. Rev. 2000, 29, 75–86.
  • Mosbach, K. Molecular imprinting. Trends Biochem. Sci. 1994, 19, 9–14.
  • Motherwell, W. B.; Bingham, M. J.; Six, Y. Recent Progress in the Design and Synthesis of Artificial Enzymes. Tetrahedron 2001, 57, 4663–4686.
  • Mu, J.; Zhang, L.; Zhao, M.; Wang, Y. Catalase Mimic Property of Co3O4 Nanomaterials with Different Morphology and Its Application as a Calcium Sensor. ACS Appl. Mater. Inter. 2014, 6, 7090–7098.
  • Mulchandani, A.; Chen, W.; Mulchandani, P.; Wang, J.; Rogers, K. R. Biosensors for Direct Determination of Organophosphate Pesticides. Biosens. Bioelectron. 2001, 16, 225–230.
  • Okano, L. T.; Barros, T. C.; Chou, D. T. H.; Bennet, A. J.; Bohne, C. Complexation Dynamics of Xanthone and Thioxanthone to β-Cyclodextrin Derivatives. J. Phys. Chem. B 2001, 105, 2122–2128.
  • Panasyuk, D. T.; Mirsky, V. M.; Ulbricht, M.; Wolfbeis, O. S. Impedometric Herbicide Chemosensors Based on Molecularly Imprinted Polymers. Anal. Chim. Acta 2001, 435, 157–162.
  • Park, C.; Keane, M. A. Catalyst Support Effects: Gas-Phase Hydrogenation of Phenol over Palladium. J. Colloid Inter. Sci. 2003, 266, 183–194.
  • Qin, X,.; Luo, Y.; Lu, W.; Chang, G.; Asiri, A. M.; Alyoubi, A. O.; Sun, X. One-Step Synthesis of Ag Nanoparticles-Decorated Reduced Graphene Oxide and Their Application for H2O2 Detection. Electrochim. Acta 2012, 79, 46–51.
  • Raynal, M.; Ballester, P.; Vidal-Ferran A.; Leeuwen, P. W. N. M. V. Supramolecular Catalysis. Part 2: Artificial Enzyme Mimics. Chem. Soc. Rev. 2014, 43, 1734–1787.
  • Richichi, B.; Thomas, B.; Fiore, M.; Bosco, R.; Qureshi, H.; Nativi, C.; Renaudet, O.; Benmohamed L. A Cancer Therapeutic Vaccine Based on Clustered Tn-Antigen Mimetics Induces Strong Antibody-Mediated Protective Immunity. Angew. Chem. Int. Ed. 2014, 53, 11917–11920.
  • Sagawa, T.; Togo, K.; Miyahara, C.; Ihara, H.; Ohkubo K. Rate-Enhancement of Hydrolysis of Long-Chain Amino Acid Ester by Cross-Linked Polymers Imprinted with a Transition-State Analogue: Evaluation of Imprinting Effect in Kinetic Analysis. Anal. Chim. Acta 2004, 504, 37–41.
  • Sheng, X.; Guo, X.; Lu, X. M.; Lu, G. Y.; Shao, Y.; Liu, F.; Xu, Q. DNA Binding, Cleavage, and Cytotoxic Activity of the Preorganized Dinuclear Zinc (II) Complex of Triazacyclononane Derivatives. Bioconjugate Chem. 2008, 19, 490–498.
  • Shi, W.; Zhang, X.; He, S.; Huang, Y. CoFe2O4 Magnetic Nanoparticles as a Peroxidase Mimic Mediated Chemiluminescence for Hydrogen Peroxide and Glucose. Chem. Commun. 2011, 47, 10785–10787.
  • Song, H.; Ma, C.; You, L.; Cheng, Z.; Zhang, X.; Yin, B.; Ni, Y.; Zhang, K. Electrochemical Hydrogen Peroxide Sensor Based on a Glassy Carbon Electrode Modified with Nanosheets of Copper-Doped Copper (II) Oxide. Microchim. Acta 2015a, 182, 1543–1549.
  • Song, H.; Ni, Y.; Kokot, S. A Novel Electrochemical Sensor Based on the Copper-Doped Copper Oxide Nano-Particles for the Analysis of Hydrogen Peroxide. Colloids Surf., A 2015b, 465, 153–158.
  • Song, L.; Zhang, Y.; Bo, H.; Gao, Q. Highly Sensitive and Label-free Fluorescence Detection of DNA Based on Structure Switch of Hairpin Probe DNA to G-Quadruplex-based DNAzyme. Chin. J. Anal. Chem. 2015c, 43, 1402–1407.
  • Syrigosi, K. N.; Karayiannakis, A. J.; Zbar, A. Mucins as Immunogenic Targets in Cancer. Anticancer Res. 1999, 19, 5239–5244.
  • Tabakci, B.; Yilmaz, M.; Beduk, A. D. Novel Calix [4]Arene-Based Polymeric Catalysts as Acyltransferase Enzyme Mimics. J. Appl. Polym. Sci. 2012, 125, 1012–1019.
  • Tabushi, I.; Yamamura, K.; Fujita, K.; Kawakubo, H. Specific Inclusion Catalysis by. Beta.-Cyclodextrin in the One-Step Preparation of Vitamin K1 or K2 Analogs. J. Am. Chem. Soc. 1979, 101, 1019–1026.
  • Takebayashi, S.; Shinkai, S.; Ikeda, M.; Takeuchi, M. Metal Ion Induced Allosteric Transition In the Catalytic Activity of an Artificial Phosphodiesterase. Org. Biomol. Chem. 2008, 6, 493–499.
  • Tang, B.; Zhang, G.; Liu, Y.; Han, F. Studies on Catalytic Spectrophotometry Using β-Cyclodextrin Polymer–Schiff Base Metal Complex as Mimetic Enzyme. Anal. Chim. Acta 2002, 459, 83–91.
  • Tarp, M. A.; Clausen, H. Mucin-Type O-Glycosylation and Its Potential Use in Drug and Vaccine Development. Biochim. Biophys. Acta 2008, 1780, 546–563.
  • Tarp, M. A.; Sørensen, A. L.; Mandel, U.; Paulsen, H.; Burchell, J.; Papadimitriou, J., Clausen, H. Identification of a Novel Cancer-Specific Immunodominant Glycopeptide Epitope in the MUC1 Tandem Repeat. Glycobiology 2007, 17, 197–209.
  • Teller, C.; Shimron, S.; Willner, I. Aptamer-DNAzyme Hairpins for Amplified Biosensing. Anal. Chem. 2009, 81, 9114–9119.
  • Trimboli, J.; Dutta, P. K. Oxidation Chemistry and Electrical Activity of Pt on Titania: Development of a Novel Zeolite-Filter Hydrocarbon Sensor. Sens. Actuators, B 2004, 102, 132–141.
  • Tsubouchi, A.; Bruice, T. C. Phosphonate Ester Hydrolysis Catalyzed by Two Lanthanum Ions. Intramolecular Nucleophilic Attack of Coordinated Hydroxide and Lewis Acid Activation. J. Am. Chem. Soc. 1995, 117, 7399–7411.
  • Vial, L.; Dumy, P. Artificial Enzyme-Based Biosensors. New J. Chem. 2009, 33, 939–946.
  • Vial, L.; Dumy, P. Fluorescent ADP Sensing in Physiological Conditions Based on Cooperative Inhibition of a Miniature Esterase. J. Am. Chem. Soc. 2007, 129, 4884–4885.
  • Wang, F.; Elbaz, J.; Willner, I. Enzyme-Free Amplified Detection of DNA by an Autonomous Ligation DNAzyme Machinery. J. Am. Chem. Soc. 2012a, 134, 5504–5507.
  • Wang, G.; Liu, K.; Shu, J.; Gu, T.; Wu, X.; Dong, Y.; Li, Z. A Novel Photoelectrochemical Sensor Based on Photocathode of PbS Quantum Dots Utilizing Catalase Mimetics of Bio-Bar-Coded Platinum Nanoparticles/G-Quadruplex/Hemin for Signal Amplification. Biosens. Bioelectron. 2015, 69, 106–112.
  • Wang, G.; Zhu, X.; Jiao, H.; Dong, Y.; Wu, X.; Li, Z. “Oxidative Etching-Aggregation” of Silver Nanoparticles by Melamine and Electron Acceptors: An Innovative Route Toward Ultrasensitive and Versatile Functional Colorimetric Sensors. Anal. Chim. Acta 2012b, 747, 92–98.
  • Wang, H.; Huang, Y. Prussian-Blue-Modified Iron Oxide Magnetic Nanoparticles as Effective Peroxidase-Like Catalysts to Degrade Methylene Blue with H2O2. J. Hazard. Mater. 2011, 191, 163–169.
  • Wang, Q.; Yang, Z.; Zhang, X.; Xiao, X.; Chang, C. K.; Xu, B. A Supramolecular Hydrogel Encapsulated Hemin as an Artificial Enzyme to Mimic Peroxidase. Angew. Chem. Int. Ed. 2007, 46, 4285–4289.
  • Wang, R.; Zhu, Y.; He, Y.; Li, Y.; Mao, C.; He, N. Structures and Functions of Metalloporphyrin Protein Conjugates. Prog. Chem. 2010, 22, 1952–1963. (in Chinese)
  • Wang, Y.; Zhang, Y.; Su, Y.; Li, F.; Ma, H.; Li, H.; Du, B.; Wei, Q. Ultrasensitive Non-Mediator Electrochemical Immunosensors Using Au/Ag/Au Core/Double Shell Nanoparticles as Enzyme-Mimetic Labels. Talanta 2014, 124, 60–66.
  • Wei, Q.; Xiang, Z.; He, J.; Wang, G.; Li, H.; Qian, Z.; Yang, M. Dumbbell-Like Au-Fe3O4 Nanoparticles as Label for the Preparation of Electrochemical Immunosensors. Biosens. Bioelectron. 2010, 26, 627–631.
  • Woycechowsky, K. J.; Raines, R. T. The CXC Motif: A Functional Mimic of Protein Disulfide Isomerase. Biochemistry 2003, 42, 5387–5394.
  • Xie, J.; Cao, H.; Jiang, H.; Chen, Y.; Shi, W.; Zheng, H.; Huang, Y. Co3O4-Reduced Graphene Oxide Nanocomposite as an Effective Peroxidase Mimetic and Its Application in Visual Biosensing of Glucose. Anal. Chim. Acta. 2013, 796, 92–100.
  • Xie, J.; Jiang, B.; Kou, X.; Hu, C.; Zeng, X.; Li, Y. Studies on the Reaction Kinetics and the Mechanism of Hydrolysis of Bis (4-Nitrophenyl) Phosphate (BNPP) Catalyzed by Oxamido-Bridged Dinuclear Copper (II) Complexes in Micellar Solution. Trans. Met. Chem. 2003, 28, 782–787.
  • Xie, J.; Zhang, X.; Wang, H.; Zheng, H.; Huang, Y. Analytical and Environmental Applications of Nanoparticles as Enzyme Mimetics. TrAC Trends Anal. Chem. 2012, 39, 114–129.
  • Yang, Z.; Ji, H. 2-Hydroxypropyl-β-Cyclodextrin Polymer as a Mimetic Enzyme for Mediated Synthesis of Benzaldehyde in Water. ACS Sustain. Chem. Eng. 2013, 1, 1172–1179.
  • Yu, T.; Wang, W.; Chen, J.; Zeng, Y.; Li, Y.; Yang, G.; Li, Y. Dendrimer-Encapsulated Pt Nanoparticles: an Artificial Enzyme for Hydrogen Production. J. Phys. Chem. C 2012, 116, 10516–10521.
  • Zeng, A.; Jin, C.; Cho, S. J.; Seo, H. O.; Kim, Y. D.; Lim, D. C.; Kim, D. H.; Hong, B.; Boo, J. H. Nickel Nano-Particle Modified Nitrogen-Doped Amorphous Hydrogenated Diamond-Like Carbon Film for Glucose Sensing. Mater. Res. Bull. 2012, 47, 2713–2716.
  • Zhao, W.; Wang, H.; Qin, X.; Wang, X.; Zhao, Z.; Miao, Z.; Chen, L.; Shan, M.; Fang, Y.; Chen, Q. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on Multi-Wall Carbon Nanotube/Silver Nanoparticle Nanohybrids Modified Gold Electrode. Talanta 2009, 80, 1029–1033.
  • Zhang, B.; Breslow, R. Ester Hydrolysis by a Catalytic Cyclodextrin Dimer Enzyme Mimic with a Metallobipyridyl Linking Group. J. Am. Chem. Soc. 1997, 119, 1676–1681.
  • Zhang, W.; Sun, W. Progress of Late Transition Metal Complexes for Ethylene Oligomerization and Polymerization. Prog. Chem. 2005, 17, 310–319. (in Chinese)
  • Zheng, A.; Li, J.; Wang, J.; Song, X.; Chen, G.; Yang, H. Enzyme-Free Signal Amplification in the DNAzyme Sensor via Target-Catalyzed Hairpin Assembly. Chem. Commun. 2012, 48, 3112–3114.
  • Zhou, Y.; Lindbäck, E.; Pedersen, C. M.; Bols, M. Cyclodextrin-Based Artificial Oxidases with High Rate Accelerations and Selectivity. Tetrahedron Lett. 2014, 55, 2304–2307.
  • Zimmerman, G.; Chow, L. Y.; Paik, U. J. The Photochemical Isomerization of Azobenzene. J. Am. Chem. Soc. 1958, 80, 3528–3531.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.