1,895
Views
53
CrossRef citations to date
0
Altmetric
ARTICLES

SELEX Modifications and Bioanalytical Techniques for Aptamer–Target Binding Characterization

, , , , &
Pages 521-537 | Received 01 Nov 2015, Accepted 18 Feb 2016, Published online: 22 Jun 2016

References

  • Abe, K.; Ogasawara, D.; Yoshida, W.; Sode, K.; Ikebukuro, K. Aptameric Sensors based on Structural Change for Diagnosis. Farad. Discuss. 2011, 149, 93–106.
  • Acquah, C.; Danquah, M. K.; Agyei, D.; Moy, C. K.; Sidhu, A.; Ongkudon, C. M. Deploying Aptameric Sensing Technology for Rapid Pandemic Monitoring. Crit. Rev. Biotechnol. 2015b, 35, 1–13.
  • Acquah, C.; Danquah, M. K.; Yon, J. L. S.; Sidhu, A.; Ongkudon, C. M. A Review on Immobilised Aptamers for High Throughput Biomolecular Detection and Screening. Anal. Chim. Acta. 2015a, 888, 10–8.
  • Allers, J.; Shamoo, Y. Structure-based Analysis of Protein-RNA Interactions Using the Program ENTANGLE. J. Mol. Biol. 2001, 311, 75–86.
  • Amaya-González, S.; de-los-Santos-Álvarez, N.; Miranda-Ordieres, A. J.; Lobo-Castañón, MJs. Aptamer Binding to Celiac Disease-Triggering Hydrophobic Proteins: A Sensitive Gluten Detection Approach. Anal. Chem. 2014, 86, 2733–2739.
  • Amero, P.; Esposito, C. L.; Rienzo, A.; Moscato, F.; Catuogno, S.; de Franciscis, V. Identification of an Interfering Ligand Aptamer for EphB2/3 Receptors. Nucleic Acid Ther. 2016, 1–9.
  • André, C.; Xicluna, A.; Guillaume, Y. C. Aptamer-oligonucleotide Binding Studied by Capillary Electrophoresis: Cation Effect and Separation Efficiency. Electrophoresis 2005, 26, 3247–3255.
  • Andrea, R.; Ulrich, H.; Cindy, M. Cell-Specific Aptamers as Emerging Therapeutics. Journal of Nucleic Acids. 2011, 2011(2011), 904750.
  • Andrew, D. E.; Jack, W. S. In vitro Selection of RNA Molecules that Bind Specific Ligands. Nature 1990, 346, 818.
  • Anthony, D. K.; Supriya, P.; Andrew, E. Aptamers as Therapeutics. Nat. Rev. Drug Discov. 2010, 9, 660.
  • Aquino-Jarquin, G.; Toscano-Garibay, J. D. RNA Aptamer Evolution: Two Decades of Selection. Int. J. Mol. Sci. 2011, 12, 9155–71.
  • Baird, G. S. Where are All the Aptamers? Am. J. Clin. Pathol. 2010, 134, 529–531.
  • Berezovski, M.; Drabovich, A.; Krylova, S. M.; Musheev, M.; Okhonin, V.; Petrov, A.; Krylov, S. N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures: A Universal Tool for Development of Aptamers. J. Am. Chem. Soc. 2005, 127, 3165.
  • Berezovski, M.; Musheev, M.; Drabovich, A.; Krylov, S. N. Non-SELEX Selection of Aptamers. J. Am. Chem. Soc. 2006, 128, 1410.
  • Blind, M.; Blank, M. Aptamer Selection Technology and Recent Advances. Mol. Ther.–Nucleic Acids 2015, 4, e223.
  • Bouchard, P.; Hutabarat, R.; Thompson, K. Discovery and Development of Therapeutic Aptamers. Annu. Rev. Pharmacol. Toxicol. 2010, 50, 237–257.
  • Buff, M. C.; Schäfer, F.; Wulffen, B.; Müller, J.; Pötzsch, B.; Heckel, A.; Mayer, G. Dependence of Aptamer Activity on Opposed Terminal Extensions: Improvement of Light-regulation Efficiency. Nucleic Acids Res. 2009, 38, 2111–2118.
  • Burke, D. H.; Willis, J. H. Recombination, RNA Evolution, and Bifunctional RNA Molecules Isolated Through Chimeric SELEX. Rna. 1998, 4, 1165–1175.
  • Cao, X.; Li, S.; Chen, L.; Ding, H.; Xu, H.; Huang, Y.; Li, J.; Liu, N.; Cao, W.; Zhu, Y. Combining use of a Panel of ssDNA Aptamers in the Detection of Staphylococcus Aureus. Nucleic Acids Res. 2009, 37, 4621–4628.
  • Chang, Y. M.; Donovan, M. J.; Tan, W. Using Aptamers for Cancer Biomarker Discovery. J. Nucleic Acids 2013, 2013, 817350.
  • Chang, A.; McKeague, M.; Liang, J.; Smolke, C. Kinetic and Equilibrium Binding Characterization of Aptamers to Small Molecules using a Label-Free, Sensitive, and Scalable Platform. Anal. Chem. 2014, 86, 3273.
  • Chen, S.-H.; Chuang, Y.-C.; Lu, Y.-C.; Lin, H.-C.; Yang, Y.-L.; Lin, C.-S. A Method of Layer-by-layer Gold Nanoparticle Hybridization in a Quartz Crystal Microbalance DNA Sensing System used to Detect Dengue Virus. Nanotechnology 2009, 20, 215501.
  • Cibiel, A.; Dupont, D. M.; Ducongé F. Methods to Identify Aptamers Against Cell Surface Biomarkers. Pharmaceuticals 2011, 4, 1216–1235.
  • Cooper, M. A.; Singleton, V. T. A Survey of the 2001 to 2005 Quartz Crystal Microbalance Biosensor Literature: Applications of Acoustic Physics to the Analysis of Biomolecular Interactions. J. Mol. Recognit. 2007, 20, 154–184.
  • Coulter, L.; Landree, M. A.; Cooper, T. A. Identification of a New Class of Exonic Splicing Enhancers by in vivo Selection. Mol. Cell. Biol. 1997, 17, 2143–2150.
  • Cruz-Aguado, J. A.; Penner, G. Determination of Ochratoxin A with a DNA Aptamer. J. Agric. Food Chem. 2008, 56, 10456–10461.
  • Darmostuk, M.; Rimpelová, S.; Gbelcová, H.; Ruml, T. Current Approaches in SELEX: An Update to Aptamer Selection Technology. Biotechnol. Adv. 2015, 33, 1141–1161.
  • Davlieva, M.; Donarski, J.; Wang, J.; Shamoo, Y.; Nikonowicz, E. P. Structure Analysis of Free and Bound States of an RNA Aptamer Against Ribosomal Protein S8 from Bacillus Anthracis. Nucleic Acids Res. 2014, 42, 10795–10808.
  • Deng, Q.; German, I.; Buchanan, D.; Kennedy, R. T. Retention and Separation of Adenosine and Analogues by Affinity Chromatography with an Aptamer Stationary Phase. Anal. Chem. 2001, 73, 5415–5421.
  • Di Primo, C.; Dausse, E.; Toulmé, J.-J. Surface Plasmon Resonance Investigation of RNA Aptamer-RNA Ligand Interactions. Therapeutic Oligonucleotides; Springer: Berlin, 2011. pp. 279–300.
  • Dobbelstein, M.; Shenk, T. In-vitro Selection of RNA Ligands for the Ribosomal L22 Protein Associated with Epstein-Barr Virus-Expressed RNA by Using Randomized and CDNA-Derived RNA Libraries. J. Virol. 1995, 69, 8027–8034.
  • Dong, Y.; Xu, Y.; Yong, W.; Chu, X.; Wang, D. Aptamer and its Potential Applications for Food Safety. Crit. Rev. Food Sci. Nutr. 2014, 54, 1548–1561.
  • Ellington, A. D.; Szostak, J. W. In vitro Selection of RNA Molecules that Bind Specific Ligands. Nature 1990, 346, 818–822.
  • Entzian, C.; Schubert, T. Studying Small Molecule–Aptamer Interactions using MicroScale Thermophoresis (MST). Methods 2015, 97, 27–34.
  • Esposito, V.; Scuotto, M.; Capuozzo, A.; Santamaria, R.; Varra, M.; Mayol, L.; Virgilio, A.; Galeone, A. A Straightforward Modification in the Thrombin Binding Aptamer Improving the Stability, Affinity to Thrombin and Nuclease Resistance. Org. Biomol. Chem. 2014, 12, 8840–8843.
  • Girardot, M.; Gareil, P.; Varenne, A. Interaction Study of a Lysozyme-binding Aptamer with Mono- and Divalent Cations by ACE. Electrophoresis 2010, 31, 546–555.
  • Gold, L.; Ayers, D.; Bertino, J.; Bock, C.; Bock, A.; Brody, E.; Carter, J.; Dalby, A.; Eaton, B.; Fitzwater, T.; Flather, D.; Forbes, A.; Foreman, T.; Fowler, C.; Gawande, B.; Goss, M.; Gunn, M.; Gupta, S.; Halladay, D.; Heil, J.; Heilig, J.; Hicke, B.; Husar, G.; Janjic, N.; Jarvis, T.; Jennings, S.; Katilius, E.; Keeney, T.; Kim, N.; Koch, T.; Kraemer, S.; Kroiss, L.; Le, N.; Levine, D.; Lindsey, W.; Lollo, B.; Mayfield, W.; Mehan, M.; Mehler, R.; Nelson, S.; Nelson, M.; Nieuwlandt, D.; Nikrad, M.; Ochsner, U.; Ostroff, R.; Otis, M.; Parker, T.; Pietrasiewicz, S.; Resnicow, D.; Rohloff, J.; Sanders, G.; Sattin, S.; Schneider, D.; Singer, B.; Stanton, M.; Sterkel, A.; Stewart, A.; Stratford, S.; Vaught, J.; Vrkljan, M.; Walker, J.; Watrobka, M.; Waugh, S.; Weiss, A.; Wilcox, S.; Wolfson, A.; Wolk, S.; Zhang, C.; Zichi, D. Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery. PloS One 2010, 5, e15004.
  • Gong, Q.; Wang, J. P.; Ahmad, K.; Csordas, A.; Zhou, J.; Nie, J.; Stewart, R.; Thomson, J.; Rossi, J.; Soh, H. Selection Strategy to Generate Aptamer Pairs that Bind to Distinct Sites on Protein Targets. Anal. Chem. 2012, 84, 5365–5371.
  • Graham, J. C.; Zarbl, H. Use of Cell-SELEX to Generate DNA Aptamers as Molecular Probes of HPV-associated Cervical Cancer Cells. PloS One 2012, 7, e36103.
  • Guo, K.; Paul, A.; Schichor, C.; Ziemer, G.; Wendel, H. P. CELL-SELEX: Novel Perspectives of Aptamer-Based Therapeutics. Int. J. Mol. Sci. 2008, 9, 668–678.
  • Han, S. R. In vitro Selection of RNA Aptamer Specific to Salmonella Typhimurium. J. Microbiol. Biotechnol. 2013, 23, 878–884.
  • Hermann, T.; Patel, D. J. Adaptive Recognition by Nucleic Acid Aptamers. Science 2000, 287, 820–825.
  • Heydari, S.; Gholam Hossein Haghayegh. Application of Nanoparticles in Quartz Crystal Microbalance Biosensors. J. Sen. Technol. 2014, 4, 81–100.
  • Hianik, T.; Ostatna, V.; Sonlajtnerova, M.; Grman, I. Influence of Ionic Strength, pH and Aptamer Configuration for Binding Affinity to Thrombin. Bioelectrochemistry 2007, 70, 127–133.
  • Hicke B. J.; Marion, C; Chang, Y. F.; Gould, T.; Lynott, C. K.; Parma, D.; Schmidt, P. G.; Warren, S. Tenascin-C aptamers are generated using tumor cells and purified protein. JBC. 2001, 276(52), 48644–48654.
  • Homann, M.; Goeringer, H. Combinatorial Selection of High Affinity RNA Ligands to Live African Trypanosomes. Nucleic Acids Res. 1999, 27, 2006–2014.
  • Hu, J.; Easley, C. J. A Simple and Rapid Approach for Measurement of Dissociation Constants of DNA Aptamers Against Proteins and Small Molecules via Automated Microchip Electrophoresis. The Analyst. 2011, 136, 3461–3468.
  • Huang, Y.; Chen, X.; Duan, N.; Wu, S.; Wang, Z.; Wei, X.; Wang, Y. Selection and Characterization of DNA Aptamers Against Staphylococcus Aureus Enterotoxin C1. Food Chem. 2015, 166, 623–629.
  • Huang, C. J.; Lin, H.; Shiesh, S. C.; Lee, G. B. Integrated Microfluidic System for Rapid Screening of CRP Aptamers Utilizing Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Biosens. Bioelectron. 2010, 25, 1761–1766.
  • Jayasena, S. D. Aptamers: An Emerging Class of Molecules That Rival Antibodies in Diagnostics. Clin. Chem. 1999, 45, 1628–1650.
  • Jenison, R. D.; Gill, S. C.; Pardi, A.; Polisky, B. High-resolution Molecular Discrimination by RNA. Science 1994, 263, 1425–1429.
  • Jensen, K.; Atkinson, B.; Willis, M. C.; Koch, T.; Gold, L. Using in vitro Selection to Direct the Covalent Attachment of Human Immunodeficiency Virus Type 1 Rev Protein to High-affinity RNA Ligands. Proc. Natl. Acad. Sci. USA. 1995, 92, 12220–12224.
  • Jerabek-Willemsen, M.; André T, Wanner, R.; Roth, H. M.; Duhr, S.; Baaske, P.; Breitsprecher, D. MicroScale Thermophoresis: Interaction Analysis and Beyond. J. Mol. Struct. 2014, 1077, 101–113.
  • Jiang, L.; Majumdar, A.; Hu, W.; Jaishree, T.; Xu, W.; Patel, D. J. Saccharide–RNA Recognition in a Complex Formed Between Neomycin B and an RNA Aptamer. Structure 1999, 7, 817–827.
  • Jing, M.; Bowser, M. T. Methods for Measuring Aptamer-protein Equilibria: A Review. Anal. Chim Acta 2011, 686, 9–18.
  • Kailas, L.; Ratcliffe, E.; Hayhurst, E.; Walker, M.; Foster, S.; Hobbs, J. Immobilizing Live Bacteria for AFM Imaging of Cellular Processes. Ultramicroscopy 2009, 109, 775–780.
  • Kang, D.; Wang, J.; Zhang, W.; Song, Y.; Li, X. L.; Zou, Y.; Zhu, M.; Zhu, Z.; Chen, F. Y.; Yang, C. J. Selection of DNA Aptamers Against Glioblastoma Cells with High Affinity and Specificity. PloS One 2012, 7, e42731.
  • Kaul, M.; Barbieri, C. M.; Kerrigan, J. E.; Pilch, D. S. Coupling of Drug Protonation to the Specific Binding of Aminoglycosides to the A Site of 16S rRNA: Elucidation of the Number of Drug Amino Groups Involved and Their Identities. J. Mol. Biol. 2003, 326, 1373–1387.
  • Kawakami, J.; Imanaka, H.; Yokota, Y.; Sugimoto, N. In vitro Selection of Aptamers That Act with Zn2+. J. Inorg. Biochem. 2000, 82, 197–206.
  • Kawano, R.; Osaki, T.; Sasaki, H.; Takinoue, M.; Yoshizawa, S.; Takeuchi, S. Rapid Detection of a Cocaine-binding Aptamer Using Biological Nanopores on a Chip. J. Am. Chem. Soc. 2011, 133, 8474–8477.
  • Konopsky, V. N.; Alieva, E. V. Optical Biosensors Based on Photonic Crystal Surface Waves. Biosensors and Biodetection. 2009, 503, 49–64.
  • Krishnan, A.; Vogler, E.; Sullenger, B. A.; Becker, R. C. The Effect of Surface Contact Activation and Temperature on Plasma Coagulation with an RNA Aptamer Directed Against Factor IXa. J. Thromb. Thrombolysis. 2013, 35, 48–56.
  • Kwon, M.; Chun S-M, Jeong, S.; Yu, J. In vitro Selection of RNA Against Kanamycin, B. Mol. Cells. 2001, 11, 303–311.
  • Latham, M. P.; Zimmermann, G. R.; Pardi, A. NMR Chemical Exchange as a Probe for Ligand-binding Kinetics in a Theophylline-binding RNA Aptamer. J. Am. Chem. Soc. 2009, 131, 5052–5053.
  • Le, X. C.; Pavski, V.; Wang, H. 2002 WAE McBryde Award Lecture Affinity Recognition, Capillary Electrophoresis, and Laser-induced Fluorescence Polarization for Ultrasensitive Bioanalysis. Can. J. Chem. 2005, 83, 185–194.
  • Li, Y.; Guo, L.; Zhang, F.; Zhang, Z.; Tang, J.; Xie, J. High-sensitive Determination of Human α-thrombin by its 29-mer Aptamer in Affinity Probe Capillary Electrophoresis. Electrophoresis 2008, 29, 2570–2577.
  • Li, L.; Xiang, D.; Shigdar, S.; Yang, W.; Li, Q.; Lin, J.; Liu, K.; Duan, W. Epithelial Cell Adhesion Molecule Aptamer Functionalized PLGA-lecithin-curcumin-PEG Nanoparticles for Targeted Drug Delivery to Human Colorectal Adenocarcinoma Cells. Int. J. Nanomed. 2014, 9, 1083–1096.
  • Lin, P.; Chen, R. H.; Lee, C.; Chang, Y.; Chen, C. S.; Chen, W. Studies of the Binding Mechanism Between Aptamers and Thrombin by Circular Dichroism, Surface Plasmon Resonance and Isothermal Titration Calorimetry. Colloid. Surf. B-Biointerfaces. 2011, 88, 552–558.
  • Lonergan, N.; Britt, L.; Sullivan, C. Immobilizing live Escherichia Coli for AFM Studies of Surface Dynamics. Ultramicroscopy 2014, 137, 30–39.
  • Long, S. B.; Long, M. B.; White, R. R.; Sullenger, B. A. Crystal Structure of an RNA Aptamer Bound to Thrombin. Rna 2008, 14, 2504–2512.
  • Lou, X.; Qian, J.; Xiao, Y.; Viel, L.; Gerdon, A. E.; Lagally, E. T.; Atzberger, P.; Tarasow, T. M.; Heeger, A. J.; Soh, H. T. Micromagnetic Selection of Aptamers in Microfluidic Channels. Proc. Natl Acad. Sci. USA. 2009, 106, 2989–2994.
  • Lu, B.; Wang, J.; Zhang, J.; Zhang, X.; Yang, D.; Wu, L.; Luo, Z.; Ma, Y.; Zhang, Q.; Ma, Y.; Pei, X.; Yu, H.; Liu, J. Screening and Verification of ssDNA Aptamers Targeting Human Hepatocellular Carcinoma. Acta Biochim. Biophys. Sin. 2014, 46, 128–135.
  • Luscombe, N. M.; Laskowski, R. A.; Thornton, J. M. Amino Acid–base Interactions: A Three-dimensional Analysis of Protein–DNA Interactions at an Atomic Level. Nucleic Acids Res. 2001, 29, 2860–2874.
  • Macaya, R. F.; Schultze, P.; Smith, F. W.; Roe, J. A.; Feigon, J. Thrombin-binding DNA Aptamer Forms a Unimolecular Quadruplex Structure in Solution. Proc. Natl. Acad. Sci. 1993, 90, 3745–3749.
  • McKeague, M.; Derosa, M. C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic. Acids 2012, 2012, 748913.
  • McKeague, M.; McConnell, E.; Cruz-Toledo, J.; Bernard, E.; Pach, A.; Mastronardi, E.; Zhang, X.; Beking, M.; Francis, T.; Giamberardino, A.; Cabecinha, A.; Ruscito, A.; Aranda-Rodriguez, R.; Dumontier, M.; DeRosa, M. Analysis of In Vitro Aptamer Selection Parameters. J. Mol. Evol. 2015, 81, 150–161.
  • Meyer, C.; Hahn, U.; Rentmeister, A. Cell-specific Aptamers as Emerging Therapeutics. J. Nucleic Acids 2011, 2011, 904750.
  • Min, K.; Cho, M.; Han, S. Y.; Shim, Y. B.; Ku, J.; Ban, C. A Simple and Direct Electrochemical Detection of Interferon-gamma Using its RNA and DNA Aptamers. Biosens. Bioelect. 2008, 23, 1819–1824.
  • Miyachi, Y.; Shimizu, N.; Ogino, C.; Kondo, A. Selection of DNA Aptamers Using Atomic Force Microscopy. Nucleic Acids Res. 2009, 38, 1–8.
  • Musafia, B.; Oren-Banaroya, R.; Noiman, S. Designing Anti-Influenza Aptamers: Novel Quantitative Structure Activity Relationship Approach Gives Insights into Aptamer–Virus Interaction. 2014, 9, 1–13.
  • Musumeci, D.; Montesarchio, D. Polyvalent Nucleic Acid Aptamers and Modulation of Their Activity: A Focus on the Thrombin Binding Aptamer. Pharmacol. Ther. 2012, 136, 202–215.
  • Nagatoishi, S.; Tanaka, Y.; Tsumoto, K. Circular Dichroism Spectra Demonstrate Formation of the Thrombin-binding DNA Aptamer G-quadruplex Under Stabilizing-cation-deficient Conditions. Biochem. Biophys. Res. Commun. 2007, 352, 812–817.
  • Ngubane, N. A. C.; Gresh, L.; Pym, A.; Rubin, E.; Khati, M. Selection of RNA Aptamers Against the M. Tuberculosis EsxG Protein Using Surface Plasmon Resonance-based SELEX. Biochem. Biophys. Res. Commun. 2014, 449, 114–119.
  • Nguyen, B.; Stanek, J.; Wilson, W. D. Binding-linked Protonation of a DNA Minor-groove Agent. Biophys. J. 2006, 90, 1319–1328.
  • Ninomiya, K.; Kaneda, K.; Kawashima, S.; Miyachi, Y.; Ogino, C.; Shimizu, N. Cell-SELEX based Selection and Characterization of DNA Aptamer Recognizing Human Hepatocarcinoma. Bioorg. Med. Chem. Lett. 2013, 23, 1797–1802.
  • Nishikawa, F.; Arakawa, H.; Nishikawa, S. Application of Microchip Electrophoresis in the Analysis of RNA Aptamer-protein Interactions. Nucleosides, Nucleotides, and Nucleic Acids. 2006, 25, 369–382.
  • Nitsche, A.; Kurth, A.; Dunkhorst, A.; Panke, O.; Sielaff, H.; Junge, W.; Muth, D.; Scheller, F.; Stocklein, W.; Dahmen, C.; Pauli, G.; Kage, A. One-step Selection of Vaccinia Virus-binding DNA Aptamers by MonoLEX. BMC Biotechnol. 2007, 7, 48.
  • Ouellet, E.; Foley, J. H.; Conway, E. M.; Haynes, C. Hi-Fi SELEX: A High-fidelity Digital-PCR Based Therapeutic Aptamer Discovery Platform. Biotechnol. Bioeng. 2015, 112, 1506–1522.
  • Peng, L.; Stephens, B.; Bonin, K.; Cubicciotti, R.; Guthold, M. A Combined Atomic Force/Fluorescence Microscopy Technique to Select Aptamers in a Single Cycle from a Small Pool of Random Oligonucleotides. Microsc. Res. Tech. 2007, 70, 372–381.
  • Pilch, D. S.; Kaul, M.; Barbieri, C. M.; Kerrigan, J. E. Thermodynamics of Aminoglycoside–rRNA Recognition. Biopolymers 2003, 70, 58–79.
  • Pinto, A.; Polo, P. N.; Henry, O.; Redondo, M. C.; Svobodova, M.; O'Sullivan, C. K. Label-free Detection of Gliadin Food Allergen Mediated by Real-time Apta-PCR. Anal. Bioanal. Chem. 2014, 406, 515–524.
  • Radom, F.; Jurek, P. M.; Mazurek, M. P.; Otlewski, J.; Jelen, F. Aptamers: Molecules of Great Potential. Biotechnol. Adv. 2013, 31, 1260–1274.
  • Rebekah, W.; Christopher, R.; Elizabeth, S.; Alisa, W.; Jeffrey, L.; Maureane, H.; Bruce, S. Generation of Species Cross-reactive Aptamers Using “Toggle” SELEX. Mol. Ther. 2001, 4, 567.
  • Robertson, D. L.; Joyce, G. F. Selection in vitro of an RNA Enzyme That Specifically Cleaves Single-Stranded DNA. Nature 1990, 344, 467–468.
  • Rodriguez-Mozaz, S.; de Alda, M. J. L.; Barceló D. Biosensors as Useful Tools for Environmental Analysis and Monitoring. Anal. Bioanal. Chem. 2006, 386, 1025–1041.
  • Roulet, E.; Busso, S.; Camargo, A. A.; Simpson, A. J. G.; Mermod, N.; Bucher, P. High-throughput SELEX SAGE Method for Quantitative Modeling of Transcription-factor Binding Sites. Nature Biotechnol. 2002, 20, 831.
  • Ruigrok, V. J.; Levisson, M.; Hekelaar, J.; Smidt, H.; Dijkstra, B. W.; Van Der Oost, J. Characterization of Aptamer-protein Complexes by X-ray Crystallography and Alternative Approaches. Int. J. Mol. Sci. 2012, 13, 10537–10552.
  • Sakamoto, T.; Oguro, A.; Kawai, G.; Ohtsu, T.; Nakamura, Y. NMR Structures of Double Loops of an RNA Aptamer Against Mammalian Initiation Factor 4A. Nucleic Acids Res. 2005, 33, 745–754.
  • Santosh, B.; Yadava, P. K. Nucleic Acid Aptamers: Research Tools in Disease Diagnostics and Therapeutics. Bio. Med. Res. Int. 2014, 2014, 540451.
  • Seferos, D. S.; Prigodich, A. E.; Giljohann, D. A.; Patel, P. C.; Mirkin, C. A. Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids. Nano Lett. 2008, 9, 308–311.
  • Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. Aptamers Evolved from Live Cells as Effective Molecular Probes for Cancer Study. Proc. Natl. Acad. Sci. 2006, 103, 11838–11843.
  • Shangguan, D.; Meng, L.; Cao, Z. C.; Xiao, Z.; Fang, X.; Li, Y.; Cardona, D.; Witek, R. P.; Liu, C.; Tan, W. Identification of Liver Cancer-specific Aptamers Using Whole Live Cells. Anal. Chem. 2008, 80, 721–728.
  • Shi, H.; Zhao, G.; Liu, M.; Fan, L.; Cao, T. Aptamer-based Colorimetric Sensing of Acetamiprid in Soil Samples: Sensitivity, Selectivity and Mechanism. J. Hazard. Mater. 2013, 260, 754–761.
  • Smestad, J.; Maher, L. J. Ion-dependent Conformational Switching by a DNA Aptamer That Induces Remyelination in a Mouse Model of Multiple Sclerosis. Nucleic Acids Res. 2012, 41, 1329–1342.
  • Smirnov, I.; Shafer, R. H. Effect of Loop Sequence and Size on DNA Aptamer Stability. Biochemistry 2000, 39, 1462–1468.
  • Song, K. M.; Lee, S.; Ban, C. Aptamers and Their Biological Applications. Sensors 2012, 12, 612–631.
  • Stoltenburg, R.; Reinemann, C.; Strehlitz, B. FluMag-SELEX as an Advantageous Method for DNA Aptamer Selection. Anal. Bioanal. Chem. 2005, 383, 83–91.
  • Stoltenburg, R.; Reinemann, C.; Strehlitz, B. SELEX—A (r)evolutionary Method to Generate High-affinity Nucleic Acid Ligands. Biomol. Eng. 2007, 24, 381–403.
  • Stoltenburg, R.; Schubert, T.; Strehlitz, B. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein, A. PloS One 2015, 10, e0134403.
  • Stratis-Cullum, D. N.; McMasters, S.; Pellegrino, P. M. Affinity Probe Capillary Electrophoresis Evaluation of Aptamer Binding to Campylobacter Jejuni Bacteria. DTIC Document, 2009.
  • Strehlitz, B.; Reinemann, C.; Linkorn, S.; Stoltenburg, R. Aptamers for Pharmaceuticals and Their Application in Environmental Analytics. Bioanal. Rev. 2012, 4, 1–30.
  • Suh, S.; Dwivedi, H.; Choi, S. J.; Jaykus, L. Selection and Characterization of DNA Aptamers Specific for Listeria Species. Anal. Biochem. 2014, 459, 39–45.
  • Sultan, Y.; Walsh, R.; Monreal, C.; DeRosa, M. C. Preparation of Functional Aptamer Films Using Layer-by-layer Self-assembly. Biomacromolecules 2009, 10, 1149–1154.
  • Sun, H.; Zu, Y. A Highlight of Recent Advances in Aptamer Technology and its Application. Mol. (Basel, Switzerland). 2015, 20, 11959.
  • Sundaresan, N.; Suresh, C. H. A Base-Sugar-Phosphate Three-Layer ONIOM Model for Cation Binding: Relative Binding Affinities of Alkali Metal Ions for Phosphate Anion in DNA. J. Chem. Theory Comput. 2007, 3, 1172–1182.
  • Tan, Y.; Guo, Q.; Xie, Q.; Wang, K.; Yuan, B.; Zhou, Y.; Liu, J.; Huang, J.; He, X. X.; Yang, X.; He, C. M.; Zhao, X. Single-Walled Carbon Nanotubes (SWCNTs)-Assisted Cell-Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX) for Improving Screening Efficiency. Anal. Chem. 2014, 86, 9466–9472.
  • Tatarinova, O.; Tsvetkov, V.; Basmanov, D.; Barinov, N.; Smirnov, I.; Timofeev, E.; Kaluzhny, D.; Chuvilin, A.; Klinov, D.; Varizhuk, A. Comparison of the ‘chemical'and ‘structural'Approaches to the Optimization of the Thrombin-binding Aptamer. PloS One 2014, 9, e89383.
  • Thirunavukarasu, D.; Shi, H. An RNA Aptamer Specific to Hsp70-ATP Conformation Inhibits its ATPase Activity Independent of Hsp40. Nucleic Acid Ther. 2015, 25, 103–112.
  • Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510.
  • Van Simaeys, D.; López-Colón, D.; Sefah, K.; Sutphen, R.; Jimenez, E.; Tan, W. Study of the Molecular Recognition of Aptamers Selected Through Ovarian Cancer Cell-SELEX. PloS One 2010, 5, e13770.
  • Vater, A.; Jarosch, F.; Buchner, K.; Klussmann, S. Short Bioactive Spiegelmers to Migraine-associated Calcitonin Gene-related Peptide Rapidly Identified by a Novel Approach: Tailored-SELEX. Nucleic Acids Res. 2003, 31, e130.
  • Vater, A.; Sell, S.; Kaczmarek, P.; Maasch, C.; Buchner, K.; Pruszynska-Oszmalek, E.; Kolodziejski, P.; Purschke, W.; Nowak, K.; Strowski, M.; Klussmann, S. A Mixed Mirror-image DNA/RNA Aptamer Inhibits Glucagon and Acutely Improves Glucose Tolerance in Models of Type 1 and Type 2 Diabetes. J. Biol. Chem. 2013, 288, 21136–21147.
  • Velazquez-Campoy, A.; Todd, M. J.; Freire, E. HIV-1 Protease Inhibitors: Enthalpic Versus Entropic Optimization of the Binding Affinity. Biochemistry 2000, 39, 2201–2207.
  • Venczel, E. A.; Sen, D. Parallel and Antiparallel G-DNA Structures from a Complex Telomeric Sequence. Biochemistry 1993, 32, 6220.
  • Wang, K.; Gan, L.; Jiang, L.; Zhang, X.; Yang, X.; Chen, M.; Lan, X. Neutralization of Staphylococcal Enterotoxin B by an Aptamer Antagonist. Antimicrob. Agents Chemother. 2015, 59, 2072.
  • Wang, B.; Huang, F.; Nguyen, T.; Xu, Y.; Lin, Q. Microcantilever-based Label-free Characterization of Temperature-dependent Biomolecular Affinity Binding. Sens. Actuator. B Chem. 2013, 176, 653–659.
  • Wen, J. D.; Gray, D. M. Selection of Genomic Sequences That Bind Tightly to Ff Gene 5 Protein: Primer-free Genomic SELEX. Nucleic Acids Res. 2004, 32, e182.
  • Wickiser, J. K.; Cheah, M. T.; Breaker, R. R.; Crothers, D. M. The Kinetics of Ligand Binding by an Adenine-sensing Riboswitch. Biochemistry 2005, 44, 13404–13414.
  • Win, M. N.; Klein, J. S.; Smolke, C. D. Codeine-binding RNA Aptamers and Rapid Determination of Their Binding Constants Using a Direct Coupling Surface Plasmon Resonance Assay. Nucleic acids Res. 2006, 34, 5670–5682.
  • Wong, A.; Wu, G. Selective Binding of Monovalent Cations to the Stacking G-Quartet Structure Formed by Guanosine 5’-Monophosphate:  A Solid-State NMR Study. J. Am. Chem. Soc. 2003, 125, 13895–13905.
  • Wu, L. H.; Curran, J. An allosteric synthetic DNA. Nucleic Acids Res. 1999, 27, 1512–1516.
  • Yang, M.; Peng, Z.; Ning, Y.; Chen, Y.; Zhou, Q.; Deng, L. Highly Specific and Cost-Efficient Detection of Salmonella Paratyphi A Combining Aptamers with Single-Walled Carbon Nanotubes. Sensors 2013, 13, 6865–6881.
  • Yang, Y.; Yang, D.; Schluesener, H. J.; Zhang, Z. Advances in SELEX and Application of Aptamers in the Central Nervous System. Biomol. Eng. 2007, 24, 583–592.
  • Zhang, Y.; Chen, Y.; Han, D.; Ocsoy, I.; Tan, W. Aptamers Selected by Cell-SELEX for Application in Cancer Studies. Bioanalysis 2010, 2, 907–918.
  • Zhao, N.; Pei S-n, Parekh, P.; Salazar, E.; Zu, Y. Blocking Interaction of Viral gp120 and CD4-Expressing T Cells by Single-stranded DNA Aptamers. Int. J. Biochem. Cell Biol. 2014, 51, 10–18.
  • Zimbres, F. M.; Tárnok, A.; Ulrich, H.; Wrenger, C. Aptamers: Novel Molecules as Diagnostic Markers in Bacterial and Viral Infections? Bio. Med. Res. Int. 2013, 2013, 731516.
  • Zykovich, A.; Korf, I.; Segal, D. Bind-n-Seq: High-throughput Analysis of in vitro Protein-DNA Interactions Using Massively Parallel Sequencing. Nucleic Acids Res. 2009, 37, e151.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.