1,873
Views
43
CrossRef citations to date
0
Altmetric
ARTICLES

Microfluidic Synthesis of Nanoparticles and their Biosensing Applications

, &
Pages 538-561 | Received 31 Dec 2015, Accepted 21 Mar 2016, Published online: 30 Jun 2016

References

  • Abate, A. R.; Agresti, J. J.; Weitz, D. A. Microfluidic Sorting with High-Speed Single-Layer Membrane Valves. Appl. Phys. Lett. 2010a, 96, 203509.
  • Abate, A. R.; Hung, T.; Mary, P.; Agresti, J. J.; Weitz, D. A. High-throughput Injection with Microfluidics Using Picoinjectors. Proc. Natl. Acad. Sci. USA. 2010b, 107, 19163–19166.
  • Abate, A. R.; Weitz, D. A. Faster Multiple Emulsification with Drop Splitting. Lab. Chip. 2011, 11, 1911–1915.
  • Agresti, J. J.; Antipov, E; Abate, A. R.; Ahn, K.; Rowat, A. C.; Baret, J. C.; Marquez, M.; Klibanov, A. M.; Griffiths, A. D.; Weitz, D. A. Ultrahigh-throughput Screening in Drop-based Microfluidics for Directed Evolution. Proc. Natl. Acad. Sci. USA. 2010, 107, 4004–4009.
  • Ahmad, R.; Distaso, M.; Azimi, H.; Brabec, C. J.; Peukert, W. Facile Synthesis and Post-processing of Eco-friendly, Highly Conductive Copper Zinc Tin Sulphide Nanoparticles. Nanopart. Res. 2013, 15, 1886.
  • Ahn, K.; Agresti, J.; Chong, H; Marquez, M.; Weitz, D. A. Electrocoalescence of Drops Synchronized by Size-dependent Flow in Microfluidic Channels. Appl. Phys. Lett. 2006, 88, 264105.
  • Aizenberg, J.; Muller, D. A.; Grazul, J. L.; Harman, D. R. Direct Fabrication of Large Micropatterned Single Crystals. Science. 2003, 299, 1205–1208.
  • Albero, J.; Riente, P.; Clifford, J. N.; Pericas, M. A.; Palomares, E. Improving CdSe Uantum Dot/polymer Solar Cell Efficiency Through the Covalent Functionalization of Quantum Dots: Implications in the Device Recombination Kinetics. Phys. Chem. C. 2013, 117, 13374–13381.
  • Alharbi, K. K.; Al-Sheikh, Y. A. Role and Implications of Nanodiagnostics in the Changing Trends of Clinical Diagnosis. Saudi J. Biol. Sci. 2014, 21, 109–117.
  • Alivisatos, A. P. Semiconductor Clusters, Nanocrystals and Quantum Dots. Science. 2010, 271, 933–937.
  • Ansary, A. E.; Faddash, L. M. Nanoparticles as Biochemical Sensors. Nanotechnol. Sci. Appl. 2010, 3, 65–76.
  • Asanomi, Y.; Yamaguchi, H; Miyazaki, M.; Maeda, H. Enzyme-immobilized Microfluidic Process Reactors. Molecules. 2011, 16, 6041–6059.
  • Atencia, J.; Beebe, D. J. Controlled Microfluidic Interfaces. Nature. 2005, 437, 648–655.
  • Aussillous, P.; Quere, D. Liquid Marbles. Nature. 2001, 411, 924–927.
  • Badilesu, S.; Packirisamy, M. Micro-fluidics-nano-integration for Synthesis and Sensing. Polymers. 2012, 4, 1278–1310.
  • Baeten, E.; Verbraeken, Hoogenboom.; R, Junkers. Continuous poly(2-oxazoline) Triblock Copolymer Synthesis in a Microfluidic Reactor Cascade. Chem. Commun. 2015, 51, 11701.
  • Bai, Z.; He, Q.; Huang, S.; Hu, X.; Chen, H. Preparation of Hybrid Soda-lime/quartz Glass Chips with Wettability-patterned Channels for Manipulation of Flow Profiles in Droplet-based Analytical Systems. Anal. Chim. Acta. 2013, 767, 97–103.
  • Barich, M. V.; Krummel, A. T. Polymeric Infrared Compatible Microfluidic Devices for Spectrochemical Analysis. Anal. Chem. 2013, 85, 10000–10003.
  • Ben-Tzvi, P.; Rone, W. Microdroplet Generation in Gaseous and Liquid Environments. Microsyst. Tech. 2010, 16, 333–356.
  • Bernath, K.; Hai, M; Mastrobattista, E.; Griffiths, A. D.; Magdassi, S.; Tawfik, D. In Vitro Compartmentalisation by Double Emulsions: Sorting and Gene Enrichment by Fluorescence Activated Cell Sorting. Anal. Biochem. 2004, 325, 151–157.
  • Bertok, T.; Sediva, A.; Katrlik, J.; Gemeiner, P.; Mikula, M.; Nosko, M.; Tkac, J. Lable-free Detection of Glycoproteins by the Lectin Biosensor Down to Attomalor Level Using Gold Nanoparticles. Talanta. 2013, 108, 11–18.
  • Bhavsar, M. D.; Amiji, M. M. Development of Novel Biodegradable Polymeric Nanoparticles-in-microsphere Formulation for Local Plasmid DNA Delivery in the Gastrointestinal Tract. Expert Opin. Drug Deliv. 2007, 4, 197–213.
  • Boedicker, J. Q.; Vincent, M. E.; Ismagilov, R. F. Microfluidic Confinement of Single Cells of Bacteria in Small Volumes Initiates High-density Behavior of Quorum Sensing and Growth and Reveals its Variability. Angew Chem. Int. Ed. 2009, 48, 5908–5911.
  • Boken, J; Kumar, D.; Dalela, S. Synthesis of Nanoparticles for Plasmonics Applications: A Microfluidic Approach. Synth. React. Inorg. Met. Org. Chem. 2015, 45, 1211–1223.
  • Brennich, M. E.; Nolting, J. F.; Dammann, C.; Noding, B.; Bauch, S.; Herrmann, H.; Pfohl, T.; Koster, S. Dynamics of Intermediate Filament Assembly Followed in Micro-flow by Small Angle X-ray Scattering. Lab. Chip. 2011, 11, 708–716.
  • Breslauer, D. N.; Lee, P. J.; Lee, L. P. Microfluidics-based Systems Biology. Mol. Biosyst. 2006, 2, 97–112.
  • Brivio, M.; Verboom, W; Reinhoudt, D. N. Miniaturized Continuous Flow Reaction Vessels: Influence on Chemical Reactions. Lab. Chip. 2006, 6, 329–344.
  • Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102.
  • Cao, J.; Kursten, D.; Schneider, S.; Knauer, A; Gunther, P. M.; Kohler, J. M. Uncovering Toxicological Complexity by Multi-dimensional Screenings in Microsegmented Flow: Modulation of Antibiotic Interference by Nanoparticles. Lab. Chip. 2012, 12, 474–484.
  • Capretto, L.; Carugo, D.; Mazzitelli, S.; Nastruzzi, C.; Zhang, X. Microfluidic and Lab-on-a-chip Preparation routes for Organic Nanoparticles and Vesicular Systems for Nanomedicine Applications. Adv. Drug. Delivery Rev. 2013, 65, 1496–1532.
  • Carboni, M.; Capretto, L.; Carugo, D.; Stulz, E.; Zhang, X. Microfluidics-based Continuous flow Formation of Triangular Silver Nanoprisms with Tuneable Surface Plasmon Resonance. Mater. Chem. C. 2013, 1, 7540–7546.
  • Carcouet, C. C. M. C.; van dePut, M. W. P.; Mezari, B.; Magusin, P. C. M. M.; Laven, J.; Bomans, P. H. H.; Friedrich, H.; Esteves, A. C. C.; Sommerdijk, N. A. J. M.; van Benthem, R. A. T. M.; deWith, G. Nucleation and Growth of Monodisperse Silica Nanoparticles. Nano. Lett. 2014, 14, 1433–1438.
  • Carlo, D. D.; Lee, L. P. Dynamic Single-cell Analysis for Quantitative Biology. Anal. Chem. 2006, 78, 7918–7925.
  • Carlomagno, T. Present and Future of NMR for RNA-protein Complexes: A Perspective of Integrated Structural Biology. J. Magn. Reson. 2014, 241, 126–136.
  • Cecchini, M. P.; Hong, J.; Lim, C.; Choo, J.; Albrecht, T.; deMello, A. J.; Edel, J. B. Ultrafast Surface Enhanced Resonance Raman Scattering Detection in Droplet-based Microfluidic Systems. Anal. Chem. 2011, 83, 3076–3081.
  • Chan, E. M.; Mathies, R. A.; Alivisatos, A. P. Size-controlled Growth of CdSe Nanocrystals in Microfluidic Reactors. Nano. Lett. 2003, 3, 199–201.
  • Chang, C. C.; Yang, R. J. Electrokinetic Mixing in Microfluidic Systems. Microfluid. Nanofluid. 2007, 3, 501–525.
  • Chang, C. H.; Paul, B. K.; Remcho, V. T.; Atre, S.; Hutchison, J. E. Synthesis and Post-processing of Nanomaterials Using Microreaction Technology. Nanopart. Res. 2008, 10, 965–980.
  • Charpentier, J. C. Modern Chemical Engineering in the Framework of Globalization, Sustainability and Technical Innovation. Ind. Eng. Chem. Res. 2007, 46, 3465–3485.
  • Charpentier, J. C.; Mckenna, T. F. Managing Complex Systems: Some Trends for the Future of Chemical and Process Engineering. Chem. Eng. Sci. 2004, 59, 1617–1640.
  • Che, D.; Zhu, X.; Liu, P.; Duan, Y.; Wang, H.; Zhang, Q.; Li, Y. A Facile Aqueous Strategy for the Synthesis of High-brightness LaPO4:Eu Nanocrystals Via Controlling the Nucleation and Growth Process. J. Lumin. 2014, 153, 369–374.
  • Chen, C. H.; Sarkar, A.; Song, Y. A.; Miller, M. A.; Kim, S. J.; Griffith, L. G.; Lauffenburger, D. A.; Han, J. Enhancing Protease Activity Assay in Droplet-based Microfluidics Using a Biomolecule Concentrator. Am. Chem. Soc. 2011, 133, 10368–010371.
  • Chen, H.; Yuan, F.; Wang, S.; Xu, J.; Zhang, Y.; Wang, L. Aptamer-based Sensing for Thrombin in Red Region Via Fluorescence Resonant Energy Transfer Between NaYF4:Yb, Er Upconversion Nanoparticles and Gold Nanorods. Biosens. Bioelectron. 2013a, 48, 19–25.
  • Chen, P.; Huang, Y. Y.; Hoshino, K.; Zhang, X. Multiscale Immunomagnetic Enrichment of Circulating Tumor Cells: From Tubes to Microchips. Lab. Chip. 2014, 14, 446–458.
  • Chen, Y.; Ni, Z.; Wang, G.; Xu, D.; Li, D. Electroosmotic Flow in Nanotubes with High Surface Charge Densities. Nano Lett. 2008, 8, 42–48.
  • Chen, Y.; Zhao, Y.; Han, M.; Ye, C.; Dang, M.; Chen, G. Safe, Effcient and Selective Synthesis of Dinitro Herbicides Via a Multifunctional Continuous-flow Microreactor: One-step Dinitration with Nitric Acid as Agent. Green Chem. 2013b, 15, 91–94.
  • Cheng, X.; Chen, G.; Rodriguez, W. R. Micro and Nanotechnology for Viral Detection. Anal Bioanal. Chem. 2009, 393, 487–501.
  • Choi, S.; Goryll, M.; Sin, L. Y. M.; Wong, P. K.; Chae, J. Microfluidic-based Biosensors Toward Point-of-care Detection of Nucleic Acids and Proteins. Microfluid. Nanofluid. 2011, 10, 231–247.
  • Christopher, G. F.; Anna, S. L. Microfluidic Methods for Generating Continuous Droplet Streams. J. Phys. D: Appl. Phys. 2007, 40, R319–R336.
  • Ciceri, D.; Perera, J. M.; Stevens, G. W. The Use of Microfluidic Devices in Solvent Extraction. J. Chem. Tech. Biot. 2014, 89, 771–786.
  • Clark, T. J.; McPherson, P. H.; Buechler, K. F. The Triage Cardiac Panel: Cardiac Markers for the Triage System. Point of Care. 1, 42–46.
  • Copper, R. M.; Leslie, D. C.; Domansky, K.; Jain, A.; Yung, C.; Cho, M.; Workman, S.; Super, M.; Ingber, D. E. A Microdevice for Rapid Optical Detection of Magnetically Captured Rare Blood Pathogens. Lab. Chip. 2014, 14, 182–188.
  • Costa, R. R.; Castro, E.; Arias, F. J.; Rodriguez-Cabello, J. C.; Mano, J. F. Multifunctional Compartmentalized Capsules with a Hierarchical Organization from the Nano to the Macro Scales. Biomacromolecules. 2013, 14, 2403–2410.
  • Courcier, T.; Goulart, M.; Pittet, P.; de Lima Monteiro, D. W.; Charette, P. G.; Aimez, V.; Lu, G. N CMOS BQJ Detector Chip with Integrated Charge-amplifiers for Fluorescence Measurements. Sensor Actuat B-Chem. 2014, 190, 288–294.
  • Couto, R.; Chambon, S.; Aymonier, C.; Mignard, E.; Pavageau, B.; Erriguible, A.; Marre, S. Microfluidic Supercritical Antisolvent Continuous Processing and Direct Spray-coating of Poly(3-hexylthiophene) Nanoparticles for OFET Devices. Chem. Commun. 2015, 51, 1008–1011.
  • Cubaud, T.; Ho, C. M. Transport of Bubbles in Square Microchannels. Phys. Fluid. 2004, 16, 4575–4585.
  • Culbertson, C. T; Mickleburgh, T. G; Stewart-James, S. A.; Sellens, K. A.; Pressnall, M. Micro Total Analysis Systems: Fundamental Advances and Biological Applications. Anal Chem. 2014, 86, 95–118.
  • Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J. Recent Advances in the Liquid-phase Syntheses of Inorganic Nanoparticles. Chem. Rev. 2004, 104, 3893–3946.
  • Daniel, M. C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-size-related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Daniel, S.; Chaudhury, M. K.; deGennes, P. G. Vibration-actuated Drop Motion on Surfaces for Batch Microfluidic Processes. Langmuir. 2005, 21, 4240–4248.
  • De Jong, W. H.; Borm, P. J. A. Drug Delivery and Nanoparticles: Applications and Hazards. Int. J. Nanomedicine. 2008, 3, 133–149.
  • DeMello, A. J. Control and Detection of Chemical Reactions in Microfluidic Systems. Nature. 2006, 442, 394–402.
  • Dendukuri, D.; Hatton, T. A.; Doyle, P. S. Synthesis and Self-assembly of Amphiphilic Polymeric Microparticles. Langmuir. 2007, 23, 4669–4674.
  • Dendukuri, D.; Tsoi, K.; Hatton, T. A.; Doyle, P. S. Controlled Synthesis of On-spherical Microparticles Using Microfluidics. Langmuir. 2005, 21, 2113–2116.
  • Deng, N. N.; Sun, J.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Wetting-induced Coalescence of Nanoliter Drops as Microreactors in Microfluidics. ACS Appl. Mater. Interfaces. 2014, 6, 3817–3821.
  • Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Multifunctional Mesoporous Composite Microspheres with Well-designed Nanostructure: A Highly Integrated Catalyst System. Am. Chem. Soc. 2010, 132, 8466–8473.
  • Deveza, L.; Ashoken, J.; Castaneda, G.; Tong, X.; Keeney, M.; Han, Li; Yang, F. Microfluidic Synthesis of Biodegradable Polyethylene-glycol Microspheres for Controlled Delivery of Proteins and DNA Nanoparticles. ACS Biomater. Sci. Eng. 2015, 1, 157–165.
  • Dhakshinamoorthy, A.; Garcia, H. Catalysis by Metal Nanoparticles Embedded on Metal-organic Frameworks. Chem. Soc. Rev. 2012, 41, 5262–5284.
  • Diana, F. S.; Lee, S. H.; Petroff, P. M.; Kramer, E. J. Fabrication of Hcp-Co Nanocrystals Via Rapid Pyrolysis in Inverse PS-b-PVP Micelles and Thermal Annealing. Nano Lett. 2003, 3, 891–895.
  • Dobson, M. G.; Galvin, P.; Barton, D. E. Emerging Technologies for Point-of-care Genetic Testing, Expert Review of Molecular Diagnostics. Expert. Rev. Mol. Diagn. 2007, 7, 359–370.
  • Dootz, R.; Evans, H.; Koster, S.; Pfohl, T. Rapid Prototyping of X-ray Microdiffraction Compatible Continuous Microflow Foils. Small. 2007, 3, 96–100.
  • Doshi, R.; Day, P. J. R. Scrapheap Challenge and the Single Cell. Lab. Chip. 2008, 8, 1774–1778.
  • Dragosavac, M. M.; Holdich, R. G.; Vladisavljevic, G. T. Continuous Flow Stirred Cell Microfiltration of Ion Exchange Media to Determine Mass Transfer Kinetics and Equilibrium Data. J. Ind. Eng. Chem. 2011, 50, 2408–2417.
  • Duraiswamy, S.; Khan, S. A. Microfluidics: Small 24/2009. Small. 2009, 5, 2828–2834.
  • Duraiswamy, S.; Khan, S. A. Plasmonic Nanoshell Synthesis in Microfluidic Composite Foams. Nano Lett. 2010, 10, 3757–3763.
  • Dwars, T.; Paetzold, E.; Oehme, G. Reactions in Micellar Systems. Angew Chem. Int. Ed. 2005, 117, 7338–7364.
  • Eastburn, D. J.; Sciambi, A.; Abate, A. R. Identification and Genetic Analysis of Cancer Cells with PCR-activated Cell Sorting. Anal Chem. 2013, 85, 8016–8021.
  • Ebara, M.; Hoffman, J. M.; Hoffman, A. S.; Stayton, P. S.; Lai, J. J. A Photoinduced Nanoparticle Separation in Microchannels Via pH-sensitive Surface Traps. Langmuir. 2013, 29, 5388–5393.
  • Edel, J. B.; Fortt, R.; deMello, J. C.; deMello, A. J. Controlled Quantum Dot Synthesis within Microfluidic Circuits. Chem. Commun. 2002, 1136–1137.
  • El-Ali, J.; Sorger, P. K.; Jensen, K. F. Cells on Chips. Nature. 2006, 442, 403–411.
  • Evans, E.; Gabriel, E. F. M.; Benavidez, T. E.; Coltro, W. K. T.; Garcia, C. D. Modification of Microfluidic Paper-based Devices with Silica Nanoparticles. Analyst. 2014, 139, 5560–5567.
  • Fan, J. B.; Huang, C.; Jiang, L.; Wang, S. Nanoporous Microspheres: From Controllable Synthesis to Healthcare Applications. Mater. Chem. B. 2013, 1, 2222–2235.
  • Faustini, M.; Kim, J.; Jeong, G. Y.; Kim, J. Y.; Moon, H. R.; Ahn, W. S.; Kim, D. P. Microfluidic Approach Toward Continuous and Ultrafast Synthesis of Metal-organic Framework Crystals and Hetero Structures in Confined Microdroplets. Am. Chem. Soc. 2013, 135, 14619–14626.
  • Fernandes, T. G.; Kwon, S. J.; Bale, S. S.; Lee, M. Y.; Diogo, M. M.; Clark, D. S.; Dordick, J. S.; Cabral, J. M. S.; Dordick, J. S. Three-Dimensional Cell Culture Microarray for High-throughput Studies of Stem Cell Fate. Biotechnol. Bioeng. 2010, 106, 106–118.
  • Fialkowski, M.; Bitner, A.; Grzybowski, B. A. Self-assembly of Polymeric Microspheres of Complex Internal Structures. Nature Mater. 2005, 4, 93–97.
  • Finetti, C.; Colombo, M.; Prosperi, D.; Alessio, G.; Morasso, C.; Sola, L.; Chiari, M. One-pot Phase Transfer and Surface Modification of CdSe-ZnS Quantum Dots Using a Synthetic Functional Copolymer. Chem. Commun. 2014, 50, 240–242.
  • Fletcher, P. D. I.; Haswell, S. J.; Pombo-Villar, E.; Warrington, B. H.; Watts, P.; Wong, S. Y. F.; Zhang, X. Microreactors: Principles and Applications in Organic Synthesis. Tetrahedron. 2002, 58, 4735–4757.
  • Fwrnandez-Sanchez, C.; Gallardo-Soto, A. M.; Rawson, K.; Nilsson, O.; McNeil, C. J. Quantitative Impedimetric Immunosensor for Free and Total Prostate Specific Antigen Based on a Lateral Flow Assay Format. Electrochem. Commun. 2004, 6, 138–143.
  • Gallifuoco, A.; Alfani, F.; Cantarella, M. Advantages of Continuous Over Batch Reactors for the Kinetic Analysis of Enzymes Inhibited by an Unknown Substrate Impurity. Biotechnol. Bioeng. 2002, 79, 641–646.
  • Gamez, R. C.; Castellana, E. T.; Russell, D. H. Sol-gel-derived Silver-nanoparticle Embedded Thin Film for Mass Spectrometry-based Biosensing. Langmuir. 2013, 29, 6502–6507.
  • Ganan-Calvo, A. M.; Gordillo, J. M. Perfectly Monodisperse Microbubbling by Capillary Flow Focusing. Phys. Rev. Lett. 2001, 87, 274501.
  • Gardeniers, J. G.; Berg, A. V. D. Lab-on-a-chip Systems for Biomedical and Environmental Monitoring. Anal Bioanal. Chem. 2004, 378, 1700–1703.
  • Garnier, N.; Grigoriev, R. O.; Schatz, M. F. Optical Manipulation of Microscale Fluid Flow. Phys. Rev. Lett. 2003, 91, 054501.
  • Garstecki, P.; Fuerstman, M. J.; Whitesides, G. M. Nonlinear Dynamics of a Flow-focusing Bubble Generator: An Inverted Dripping Faucet. Phys. Rev. Lett. 2005, 94, 234502.
  • Garstecki, P.; Gitlin, I.; DiLuzio, W.; Whitesides, G. M.; Kumacheva, E.; Stone, H. A. Formation of Monodisperse Bubbles in a Microfluidic Flow-focusing Device. Appl. Phys. Lett. 2004, 85, 2649–2651.
  • Gasilova, N.; Yu, Q.; Qiao, L.; Girault, H. H. On-chip Spyhole Mass Spectrometry for Droplet-based Microfluidics. Angew Chem. Int. Ed. 2014, 53, 4408–4412.
  • Gemoets, H. P. L.; Su, Y.; Shang, M.; Hessel, V.; Luque, R.; Noel, Timothy. Liquid Phase Oxidation Chemistry in Continuous Flow Microreactors. Chem. Soc. Rev. 2016, 45, 83.
  • Gerhardus, A.; Schleberger, H.; Schlegelberger, B.; Gadzicki, D. Diagnostic Accuracy of Methods for the Detection of BRCA1 and BRCA2 Mutations: A Systematic Review. Eur. J. Hum. Genet. 2007, 15, 619–627.
  • Gibb, T. R.; Ivanov, A. P.; Edel, J. B.; Albrecht, T. Single Molecule Ionic Current Sensing in Segmented Flow Microfluidics. Anal Chem. 2014, 86, 1864–1871.
  • Gomez, L.; Sebastian, V.; Irusta, S.; Ibarra, A.; Arruebo, M.; Santamaria, J. Scaled-up Production of Plasmonic Nanoparticles using Microfluidics: From Metal Precursors to Functionalized and Sterilized Nanoparticles. Lab. Chip. 2014, 14, 325–332.
  • Gopiraman, M.; Babu, S. G.; Khatri, Z.; Kai, W.; Kim, Y. A; Endo, M.; Karvembu, R.; Kim, I. S. Dry Synthesis of Easily Tunable Nano Ruthenium Supported on Graphene: Novel Nanocatalysts for Aerial Oxidation of Alcohols and Transfer Hydrogenation of Ketones. Phys. Chem. C. 2013, 117, 23582–23596.
  • Gourevich, I.; Field, L. M.; Wei, Z.; Paquet, C.; Petukhova, A.; Alteheld, A.; Kumacheva, E.; Saarinen, J. J.; Sipe, J. E. Polymer Multilayer Particles: A Route to Spherical Dielectric Resonators. Micromolecules. 2006, 39, 1449–1454.
  • Goyal, S.; Desai, A. V.; Lewis, R. W.; Ranganathan, D. R.; Li, H.; Zeng, D.; Reichert, D. E.; Kenis, P. J. A. Thiolene and SIFEL-based Microfluidic Platforms for Liquid-liquid Extraction. Sensors Actuat. B-Chem. 2014, 190, 634–644.
  • Groß, G. A.; Hamann, C.; Gunther, M.; Kohler, J. M. Formation of Polymer and Nanoparticle Doped Polymer Minirods by Use of the Microsegmented Flow Principle. Chem. Eng. Technol. 2007, 30, 341–346.
  • Gu, H.; Rong, F.; Tang, B.; Zhao, Y.; Fu, D.; Gu, Z. Photonic Crystal Beads from Gravity-driven Microfluidics. Langmuir. 2013, 29, 7576–7582.
  • Gu, S.; Lu, Y.; Ding, Y.; Li, L.; Song, H.; Wang, J.; Wu, Q. A Droplet-based Microfluidic Electrochemical Sensor Using Platinum-black Microelectrode and its Application in High Sensitive Glucose Sensing. Biosens. Bioelectron. 2014, 55, 106–112.
  • Guillot, P.; Colin, A. Stability of Parallel Flows in a Microchannel After a T Junction. Phys. Rev. E. 2005, 72, 066301.
  • Gunther, A.; Jensen, K. Multiphase Microfluidics: From Flow Characteristics to Chemical and Materials Synthesis. Lab. Chip. 2006, 6, 1487–1503.
  • Gunther, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M. A.; Jensen, K. F. Micromixing of Miscible Liquids in Segmented Gas-liquid Flow. Langmuir. 2005a, 21, 1547–1555.
  • Gunther, A.; Khan, S. A.; Thalmann, M.; Trachsel, F.; Jensen, K. F. Transport and Reaction in Microscale Segmented Gas-liquid Flow. Lab. Chip. 2004, 4, 278–286.
  • Gunther, P. M.; Moller, F.; Henkel, T.; Kohler, J. M; Gross, G. A. Formation of Monomeric and Novolak Azo Dyes in Nanofluid Segments by Use of a Double Injector Chip Reactor. Chem. Eng. Technol. 2005b, 28, 520–527.
  • Guo, M. T.; Rotem, A.; Heyman, J. A.; Weitz, D. A. Droplet Microfluidics for High-throughput Biological Assays. Lab. Chip. 2012, 12, 2146–2155.
  • Hakimi, N.; Tsai, S. S.; Cheng, C. H.; Hwang, D. K. One-step Two-dimensional Microfluidics-based Synthesis of Three-dimensional Particles. Adv. Mater. 2014, 26, 1393–1398.
  • Halldorsson, S.; Lucumi, E.; Sjoberg, R. G.; Fleming, R. M. T. Advantages and Challenges of Microfluidic Cell Culture in Polydimethylsiloxane Devices. Biosens. Bioelectron. 2015, 63, 218–231.
  • Han, C.; Luque, R.; Dionysiou, D. D. Facile Preparation of Controllable Size Monodisperse Anatase Titania Nanoparticles. Chem. Commun. 2012, 48, 1860–1862.
  • Han, G.; Chen, G. Theranostic Upconversion Nanoparticles (II). Theranostics. 2013, 3, 354–355.
  • Harink, B.; Gac, S. L.; Truckenmuller, R.; van Blitterswijk, C.; Habibovic, P. Regeneration-on-a-chip? The Perspectives on Use of Microfluidics in Regenerative Medicine. Lab. Chip. 2013, 13, 3512–3528.
  • Hartman, R. L.; Naber, J. R.; Zaborenko, N.; Buchwald, S. L.; Jensen, K. F. Overcoming the Challenges of Solid Bridging and Constriction During Pd-catalyzed C-N Bond Formation in Microreactors. Org. Process. Res. Dev. 2010, 14, 1347–1357.
  • Hassan, A. A.; Neveu, S.; Dupuis, V.; Cabuil, V. Synthesis of Cobalt Ferrite Nanoparticles in Continuous-flow Microreactors. RSC Adv. 2012, 2, 11263–11266.
  • Hassan, A. A.; Sandre, O.; Cabuil, V. Microfluidics in Inorganic Chemistry. Angew Chem. Int. Ed. 2010, 49, 6268–6286.
  • He, J.; Wang, L.; Wei, Z.; Yang, Y.; Wang, C.; Han, X.; Nie, Z. Vesicular Self-assembly of Colloidal Amphiphiles in Microfluidics. ACS Appl. Mater. Interfaces. 2013, 5, 9746–9751.
  • He, M.; Kuo, J. S.; Chiu, D. T. Electro-generation of Single Femtoliter and Picoliter Volume Aqueous Droplets in Microfluidic Systems. Appl. Phys. Lett. 2005, 87, 031916.
  • Heider, P. L.; Born, S. C.; Basak, S.; Benyahia, B.; Lakerveld, R.; Zhang, H.; Hogan, R.; Buchbinder, L.; Wolfe, A.; Mascia, S.; Evans, J. M. B.; Jamison, T. F.; Jensen, K. F. Development of Multi-step Synthesis and Workup Sequence for an Integrated, Continuous Manufacturing Process of a Pharmaceutical. Org. Process. Res. Dev. 2014, 18, 402–409.
  • Hessel, V.; Gursel, IV.; Wang, Q.; Noel, T.; Lang, J. Potential Analysis of Smart Flow Processing and Micro Process Technology for Fastening Process Development: Use of Chemistry and Process Design as Intensification Fields. Chem. Eng. Tech. 2012, 35, 1184–1204.
  • Hidi, I. J.; Jahn, M.; Weber, K.; Cialla-May, D.; Popp, J. Droplet Based Microfluidics: Spectroscopic Characterization of Levofloxacin and its SERS Detection. Phys. Chem. Chem. Phys. 2015, DOI: 10.1039/C4CP04970E
  • Ho, C. M.; Tai, Y. C. Micro-electro-Mechanical Systems (MSMS) and Fluid Flows. Annu. Rev. Fluid. Mech. 1998, 30, 579–612.
  • Hoang, D. A.; Haringa, C; Portela, L. M.; Kreutzer, M. T.; Kleijn, C. R.; van Steijn, V. Design and Characterization of Bubble-splitting Distributor for Scaled-out Multiphase Microreactors. Chem. Eng. 2014b, 236, 545–554.
  • Hoang, P. H.; Dien, L. Q. Fast Synthesis of an Inorganic-organic Block Copolymer in a Droplet-based Microreactor. RSC Adv. 2014a, 4, 8283–8288.
  • Hoang, P. H.; Park, H.; Kim, D. P. Ultrafast and Continuous Synthesis of Unaccommodating Inorganic Nanomaterials in Droplet and Ionic Liquid-Assisted Microfluidic System. Am. Chem. Soc. 2011, 133, 14765–14770.
  • Hong, J.; Edel, J. B.; deMello, A. J. Micro and Nanofluidic Systems for High-throughput Biological Screening. Drug Discov. Today. 2009, 14, 134–146.
  • Hong, J. S.; Stavis, S. M.; Lacerda, S. H. D.; Locascio, L. E.; Raghavan, S. R.; Gaitan, M. Microfluidic Directed Self-assembly of Liposome−hydrogel Hybrid Nanoparticles. Langmuir. 2010, 26, 11581–11588.
  • Horak, D.; Svobodova, Z.; Autebert, J.; Coudert, B.; Plichta, Z.; Kralovec, K.; Bilkova, Z.; Viovy, J. L. Albumin-coated Monodisperse Magnetic Poly (Glycidyl Methacrylate) Microspheres with Immobilized Antibodies: Application to the Capture of Epithelial Cancer Cells. Biomed. Mater. Res. Part A. 2013, 10A, 23–32.
  • Hou, C.; Ji, L.; Zhang, Q.; Li, Y.; Wang, H. Environment-sensitive Carbon Nanotube/polymer Composite Microhydrogels Synthesized Via a Microfluidic Reactor. Appl. Poly. Sci. 2013, 127, 2422–2426.
  • Houng, B.; Kai, J.; Ren, Y.; Han, J.; Zou, Z.; Ahn, C. H.; Kang, K. A. Highly Sensitive Rapid, Reliable and Automatic Cardiovascular Disease Diagnosis with Nanoparticle Fluorescence Enhancer and Mems. Adv. Exp. Med. Biol. 2008, 614, 265–273.
  • Hu, M.; Yan, J.; He, Y.; Lu, H.; Weng, L.; Song, S.; Fan, C.; Wang, L. Ultrasensitive, Multiplexed Detection of Cancer Biomarkers Directly in Serum by Using a Quantum Dot-based Microfluidic Protein Chip. ACS Nano. 2010, 4, 488–494.
  • Hung, L. H.; Lee, A. P. Microfluidic Devices for the Synthesis of Nanoparticles and Biomaterials. J. Med. Bio. Eng. 2006, 27, 1–6.
  • Hung, L. H.; Lee, A. P. Microfluidic Devices for the Synthesis of Nanoparticles and Biomaterials. Med. Bio. Eng. 2007, 27, 1–6.
  • Hutter, H.; Elliott, S. R.; Mahajan, S. Interaction of Metallic Nanoparticles with Dielectric Substrates: Effect of Optical Constants. Nanotechnology. 2013, 24, 035201.
  • Hwang, D. K.; Dendukuri, D.; Doyle, P. S. Microfluidic-based Synthesis of Non-spherical Magnetic Hydrogel Microparticles. Lab. Chip. 2008, 8, 1640–1670.
  • Insepov, Z.; Wolf, D.; Hassanein, A. Nanopumping Using Carbon Nanotubes. Nano Lett. 2006, 6, 1893–1895.
  • Jahan, S.; Mansoor, F.; Kanwal, S. Polymers Effects on Synthesis of AuNPs, and Au/Ag Nanoalloys: Indirectly Generated AuNPs and Versatile Sensing Applications Including Anti-leukemic Agent. Biosens. Bioelectron. 2014, 53, 51–57.
  • Jahn, A.; Reiner, J. E.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Preparation of Nanoparticles by Continuous-flow Microfluidics. Nanopart. Res. 2008, 10, 925–934.
  • Jahn, A.; Stavis, S. M.; Hong, J. S.; Vreeland, W. N.; DeVoe, D. L.; Gaitan, M. Microfluidic Mixing and the Formation of Nanoscale Lipid Vesicles. ACS Nano. 2010, 4, 2077–2087.
  • Jahn, A.; Vreeland, W. N.; DeVoe, D. L.; Locascio, L. E.; Gaitan, M. Microfluidic Directed Formation of Liposomes of Controlled Size. Langmuir. 2007, 23, 6289–6293.
  • Janasek, D.; Franzke, J.; Manz, A. Scaling and the Design of Miniaturized Chemical-analysis Systems. Nature. 2006, 442, 374–380.
  • Jeevarathinam, D.; Gupta, A. K.; Pitchumani, B.; Mohan, R. Effect of Gas and Liquid Flowrates on the Size Distribution of Barium Sulfate Nanoparticles Precipitated in a Two Phase Flow Capillary Microreactor. Chem. Eng. J. 2011, 173, 607–611.
  • Jensen, K. F. Microreaction Engineering is Small Better?. Chem. Eng. Sci. 2001, 56, 293–303.
  • Jing, H.; Zhang, Q.; Large, N.; Yu, C.; Blom, D. A.; Nordlander, P.; Wang, H. Tunable Plasmonic Nanoparticles with Catalytically Active High-index Facets. Nano Lett. 2014, 14, 3674–3682.
  • John, A.; deMello, A. Microscale Reactors: Nanoscale Products. Lab. Chip. 2004, 4, 11N–15N.
  • Jun, Y.; Choi, J.; Cheon, J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angew Chem. Int. Ed. 2006, 45, 3414–3439.
  • Kamat, P. V. Quantum Dot Solar Cells: Semiconductor Nanocrystals as Light Harvesters. Phys. Chem. C. 2008, 112, 18737–18753.
  • Kang, H. W.; Leem, J.; Yoon, S. Y.; Sung, H. J. Continuous Synthesis of Zinc Oxide Nanoparticles in a Microfluidic System for Photovoltaic Application. Nanoscale. 2014, 6, 2840–2846.
  • Kang, L.; Chung, B. G.; Langer, R.; Khademhosseini, A. Microfluidics for Drug Discovery and Development: From Target Selection to Product Lifecycle Management. Drug Discov. Today. 2008, 13, 1–13.
  • Karim, A. M.; Hasan, N. A.; Ivanov, S.; Siefert, S.; Kelly, R. T.; Hallfors, N. G.; Benavidez, A.; Kovarik, L.; Jenkins, A.; Winans, R. E.; Datye, A. K. Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X-ray Absorption Fine Structure Spectroscopy and Small-angle X-ray Scattering. J. Phys. Chem. C. 2015, 119, 13257–13267.
  • Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O. C. Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles. Nano Lett. 2008, 8, 2901–2912.
  • Kazdin, A. E.; Rabbitt, S. M. Novel Models for Delivering Mental Health Services and Reducing the Burdens of Mental Illness. Clin. Psyc. Sci. 2013, 1, 170–191.
  • Kelly, B. T.; Baret, J. C.; Taly, V.; Griffiths, A. D. Miniaturizing Chemistry and Biology in Microdroplets. Chem. Commun. 2007, 1773–1788.
  • Kenis, P. J. A.; Stroock, A. D. Materials for Microand Nanofluidics. MRS Bulletin. 2011, 31, 87–94.
  • Kern, J. A.; Davis, R. H. Application of a Fed-batch System to Produce RNA by in Vitro Transcription. Biotechnol. Prog. 1999, 15, 174–184.
  • Khan, I. U.; Serra, C. A.; Anton, N.; Vandamme, T. F. Production of Nanoparticle Drug Delivery Systems with Microfluidics Tools. Expert Opin. Drug Deliv. 2015, 12, 547–562.
  • Khandurina, J.; Guttman, A. Bioanalysis in Microfluidic Devices. Chromatography A. 2002, 943, 159–183.
  • Khvostichenko, D. S.; Kondrashkina, E.; Perry, S. L.; Pawate, A. S.; Brister, K.; Kenis, P. J. A. An X-ray Transparent Microfluidic Platform for Screening of the Phase Behavior of Lipidic Mesophases. Analyst. 2013, 138, 5384–5395.
  • Kiechle, F. L.; Holland, C. A. Point-of-care Testing and Molecular Diagnostics: Miniaturization Required. Clin. Lab. Med. 2009, 29, 555–560.
  • Kikkeri, R.; Laurino, P.; Odedra, A.; Seeberger, P. H. Synthesis of Carbohydrate Functionalized Quantum Dots in Microreactors. Angew Chem. Int. Ed. 2010, 49, 2054–2057.
  • Kim, J. W.; Utada, A. S.; Fernandez-Nieves, A.; Hu, Z.; Weitz, D. A. Fabrication of Monodisperse Gel Shells and Functional Microgels in Microfluidic Devices. Angew Chem. Ind. Ed. 2007a, 46, 1819–1822.
  • Kim, S. H.; Jeon, S. J.; Yang, S. M. Optofluidic Encapsulation of Crystalline Colloidal Arrays into Spherical Membrane. Am. Chem. Soc. 2008b, 130, 6040–6046.
  • Kim, S. H.; Jeon, S. J.; Yi, G. R.; Heo, C. J.; Choi, J. H.; Yang, S. M. Optofluidic Assembly of Colloidal Photonic Crystals with Controlled Sizes, Shapes, and Structures. Adv. Mater. 2008c, 20, 1649–1655.
  • Kim, Y. H.; Zhang, L.; Yu, T.; Jin, M.; Qin, D.; Xia, Y. Droplet-Based Microreactors for Continuous Production of Palladium Nanocrystals with Controlled Sizes and Shapes. Small. 2013, 9, 3462–3467.
  • Kitching, H.; Shiers, M. J.; Kenyon, A. J.; Parkin, I. P. Self-assembly of Metallic Nanoparticles into One Dimensional Arrays. Mater. Chem. A. 2013, 1, 6985–6999.
  • Knauer, A.; Thete, A.; Li, S.; Romanus, H.; Csaki, A.; Fritzsche, W.; Kohler, J. M. Au/Ag/Au Double Shell Nanoparticles with Narrow Size Distribution Obtained by Continuous Micro Segmented Flow Synthesis. Chem. Eng. J. 2011, 166, 1164–1169.
  • Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. A Microfluidic Device for Conducting Gas-Liquid-Solid Hydrogenation Reactions. Science. 2004, 304, 1305–1308.
  • Kohler, J. M.; Wagner, J.; Albert, J. Formation of Isolated and Clustered Au Nanoparticles in the Presence of Polyelectrolyte Molecules using a Flow-Through Si Chip Reactor. Mater. Chem. 2005, 15, 1924–1930.
  • Kohler, M.; Marz, A.; Popp, J.; Knauer, A.; Kraus, I.; Faerber, J.; Serra, C. Polyacrylamid/Silver Composite Particles Produced Via Microfluidic Photopolymerization for Single Particle-Based Sers Microsensorics. Anal Chem. 2013, 85, 313–318.
  • Koster, S.; Leach, J. B.; Struth, B.; Pfohl, T.; Wong, J. Y. Visualization of Flow-aligned Type I Collagen Self-Assembly in Tunable Ph Gradients. Langmuir. 2007, 23, 357–359.
  • Kotz, K. T.; Noble, K. A.; Faris, G. W. Optical Microfluidics. Appl. Phys. Lett. 2004, 85, 2658–2660.
  • Kreutzer, M. T.; Kapteijn, F.; Moulijn, J. A.; Heiszwolf, J. J. Multiphase Monolith Reactors: Chemical Reaction Engineering of Segmented Flow in Microchannels. Chem. Eng. Sci. 2005, 60, 5895–5916.
  • Krishna, K. S; Li, Y; Li, S; Kumar, C. S. Lab-on-a-chip Synthesis of Inorganic Nanomaterials and Quantum Dots for Biomedical Applications. Adv. Drug. Deliv. Rev. 2013, 65, 1470–1495.
  • Krishnadasan, S.; Brown, R. J. C.; deMello, A. J.; deMello, J. C. Intelligent Routes to the Controlled Synthesis of Nanoparticles. Lab. Chip. 2007, 7, 1434–1441.
  • Kumar, A.; Hens, A.; Arun, R. K.; Chatterjee, M.; Mahato, K.; Layeka, K.; Chanda, N. A Paper Based Microfluidic Device for Easy Detection of Uric Acid Using Positively Charged Gold Nanoparticles. Analyst. 2015, 140, 1817–1821.
  • Kumar, S.; Ali, M. A.; Anand, P.; Agrawal, V. V.; John, R.; Malhotra, Maji S. Microfluidic-integrated Biosensors: Prospects for Point-of-care Diagnostics. Biotech. J. 2015, 8, 1267–1279.
  • Kumbhar, A.; Spinu, L.; Agnoli, F.; Wang, K. Y.; Zhou, W.; O'Connor, C. J. Magnetic Properties of Cobalt and Cobalt-platinum Alloy Nanoparticles Synthesized Via Microemulsion Technique. IEEE Trans. Magn. 2001, 37, 2216–2218.
  • Kuo, J. S.; Spicar-Mihalic, P.; Rodriguez, I.; Chiu, D. T. Electrowetting-induced Droplet Movement in an Immiscible Medium. Langmuir. 2003, 19, 250–255.
  • Lan, W.; Li, S.; Wang, Y.; Luo, G. CFD Simulation of Droplet Formation in Microchannels by a Modified Level Set Method. Ind. Eng. Chem. Res. 2014, 53, 4913–4921.
  • Laocharoensuk, R.; Palaniappan, K.; Smith, N. A.; Dickerson, R. M.; Werder, D. J.; Baldwin, J. K.; Hollingsworth, J. A. Flow-based Solution-liquid-solid Nanowire Synthesis. Nature Nanotech. 2013, 8, 660–666.
  • Lazarus, L. L.; Riche, C. T.; Marin, B. C.; Gupta, M.; Malmstadt, N.; Brutchey, R. L. Two-phase Microfluidic Droplet Flows of Ionic Liquids for the Synthesis of Gold and Silver Nanoparticles. ACS Appl. Mater. Interfaces. 2012, 4, 3077–3083.
  • Lee, C. C.; Sui, G.; Elizarov, A.; Shu, C. J.; Shin, Y. S.; Dooley, A. N.; Huang, J.; Daridon, A.; Wyatt, P.; Stout, D.; Kolb, H. C.; Witte, O. N.; Satyamurthy, N.; Heath, J. R.; Phelps, M. E.; Quake, S. R.; Tseng, H. R. Multistep Synthesis of a Radiolabeled Imaging Probe Using Integrated Microfluidics. Science. 2005, 310, 1793–1796.
  • Lee, C. S.; Lee, S. H.; Kim, Y. G.; Choi, C. H.; Kim, Y. K.; Kim, B. G. Biochemical Reactions on a Microfluidic Chip Based on a Precise Fluidic Handling Method at the Nanoliter Scale. Biotechnol. Bioproc. Eng. 2006, 11, 146–153.
  • Lee, H.; Xu, L.; Ahu, B.; Lee, K.; Oh, K. W. Continuous-flow in-droplet Magnetic Particle Separation in a Droplet-based Microfluidic Platform. Microfluid. Nanofluid. 2012, 13, 613–623.
  • Lee, J. H.; Cosgrove, B. D.; Lauffenburger, D. A.; Han, J. Microfluidic Concentration-enhanced Cellular Kinase Activity Assay. Am. Chem. Soc. 2009, 131, 10340–10341.
  • Lee, S. K.; Baek, J.; Jensen, K. F. High Throughput Synthesis of Uniform Biocompatible Polymer Beads with High Quantum Dot Loading Using Microfluidic Jet-mode Breakup. Langmuir. 2014, 30, 2216–2222.
  • Lee, W. G.; Kim, Y. G.; Chung, B. G.; Demirci, U.; Khademhosseini, A. Nano/Microfluidics for Diagnosis of Infectious Diseases in Developing Countries. Adv. Drug. Delvery Rev. 2010, 62, 449–457.
  • Lefebure, S.; Dubois, E.; Cabuli, V.; Neveu, S.; Massart, R. Monodisperse Magnetic Nanoparticles: Preparation and Dispersion in Water and Oils. Mater. Res. 1998, 13, 2975–2981.
  • Lepinay, S.; Staff, A.; Lanoul, A.; Albert, J. Improved Detection Limits of Protein Optical Fiber Biosensors Coated with Gold Nanoparticles. Biosens. Bioelectron. 2014, 52, 337–344.
  • Leung, A. K.; Tam, Y. Y.; Chen, S.; Hafez, I. M.; Cullis, P. R. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. J. Phys. Chem. B. 2015, 119, 8698–8706.
  • Li, M.; Humayun, M.; Kozinski, J. A.; Hwang, D. K. Functional Polymer Sheet Patterning Using Microfluidics. Langmuir. 2014, 30, 8637–8644.
  • Li, Y.; Zhang, X.; Deng, C. Functionalized Magnetic Nanoparticles for Sample Preparation in Proteomics and Peptidomics Analysis. Chem. Soc. Rev. 2013, 42, 8517–8539.
  • Lim, J. M.; Bertrand, N.; Valencia, P. M.; Rhee, M.; Langer, R.; Jon, S.; Farokhzad, O. C.; Karnik, R. Parallel Microfluidic Synthesis of Size-Tunable Polymeric Nanoparticles Using 3d Flow Focusing Towards in Vivo Study. Nanomed. Nanotech. Biol. Med. 2014, 10, 401–409.
  • Lim, J. M.; Swami, A.; Gilson, L. M.; Chopra, S.; Choi, S.; Wu, J.; Langer, R.; Karnik, R.; Farokhzad, O. C. Ultra-high Throughput Synthesis of Nanoparticles with Homogeneous Size. ACS Nano. 2014, 6, 6056–6065.
  • Lin, G.; Makarov, D.; Sánchez, M. M.; Guix, M.; Baraban, L.; Cuniberti, G.; Schmidt, O. G. Magnetofluidic Platform for Multidimensional Magnetic and Optical Barcoding of Droplets. Lab. Chip. 2015, 15, 216–224.
  • Lin, L.; Rong, M.; Luo, F.; Chen, D.; Wang, Y.; Chen, X. Luminescent Graphene Quantum Dots as New Fluorescent Materials for Environmental and Biological Applications. TrAc. Trends. Anal Chem. 2014, 54, 83–102.
  • Lin, S.; Zhu, W.; Jin, Y.; Crozier, K. B. Surface-enhanced Raman Scattering with Ag Nanoparticles Optically Trapped by a Photonic Crystal Cavity. Nano Lett. 2013, 13, 559–563.
  • Lin, X. M.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. Temperature Dependence of Morphology and Magnetic Properties of Cobalt Nanoparticles Prepared by an Inverse Micelle Technique. Langmuir. 1998, 14, 7140–7146.
  • Lin, X. Z.; Terepka, A. D.; Yang, H. Synthesis of Silver Nanoparticles in a Continuous Flow Tubular Microreactor. Nano Lett. 2004, 4, 2227–2232.
  • Link, D. R.; Grasland-Mongrain, E.; Duri, A.; Sarrazin, F.; Cheng, Z.; Cristobal, G.; Marquez, M.; Weitz, D. A. Electric Control of Droplets in Microfluidic Devices. Angew Chem. Int. Ed. 2006, 118, 2618–2622.
  • Liu, B.; Wei, W.; Qu, X.; Yang, Z. Janus Colloids Formed by Biphasic Grafting at a Pickering Emulsion Interface. Angew Chem. Int. Ed. 2008, 47, 3973–3975.
  • Liu, D.; Cito, S.; Zhang, Y.; Wang, C-Fang.; Sikanen, T. M.; Santos, H. A. A Versatile and Robust Microfluidic Platform Toward High Throughput Synthesis of Homogeneous Nanoparticles with Tunable Properties. Adv. Mater. 2015, 27, 2298–2304.
  • Liu, K.; Deng, Y.; Zhang, N.; Li, S.; Ding, H.; Guo, F.; Liu, W.; Guo, S.; Zhao, X. Z. Generation of Disk-Like Hydrogel Beads for Cell Encapsulation and Manipulation Using a Droplet-Based Microfluidic Device. Microfluid. Nanofluid. 2012, 13, 761–767.
  • Liu, K.; Ding, H. J.; Liu, J.; Chen, Y.; Zhao, X. Z. Shape-controlled Production of Biodegradable Calcium Alginate Gel Microparticles Using a Novel Microfluidic Device. Langmuir. 2006b, 22, 9453–9457.
  • Liu, K. K.; Wu, R. G.; Chuang, Y. J.; Khoo, H. S.; Huang, S. H.; Tseng, F. G. Microfluidic Systems for Biosensing. Sensors. 2010, 10, 6623–6661.
  • Liu, W. T. Nanoparticles and Their Biological and Environmental Applications. Biosci. Bioeng. 2006a, 102, 1–7.
  • Liu, Z.; Wakihara, T.; Nishioka, D.; Oshima, K.; Takewaki, T.; Okubo,   Ultrafast Continuous-Flow Synthesis of Crystalline Microporous Aluminophosphate AlPO4-5. Chem. Mater. 2014, 26, 2327–2331.
  • Lochovsky, C.; Yasotharan, S.; Gunther, A. Bubbles no More: In-plane Trapping and Removal of Bubbles in Microfluidic Devices. Lab. Chip. 2012, 12, 595–601.
  • Longuet, C.; Yamada, A.; Chen, Y.; Baigl, D.; Fattaccioli, J. Spatially-controlled Protein Crystallization in Microfluidic Chambers. Crystal Growth. 2014, 386, 179–182.
  • Lopez-Lorente, A. I.; Valcarcel, M.; Mizaikoff, B. Continuous Flow Synthesis and Characterization of Tailor-Made Bare Gold Nanoparticles for Use in SERS. Microchim. Acta. 2014, 181, 1101–1108.
  • Loscertales, I. G.; Barrero, A.; Guerrero, I.; Cortijo, R.; Marquez, M.; Ganan-Calvo, A. M. Micro/nano Encapsulation Via Electrified Coaxial Liquid Jets. Science. 2002, 295, 1695–1698.
  • Lu, Y.; Chen, J. J.; Mu, L.; Xue, Q.; Wu, Y.; Wu, P. H.; Li, J.; Vortmeyer, A. O.; Miller-Jensen, K.; Wirtz, D.; Fan, R. High-throughput Secretomic Analysis of Single Cells to Assess Functional Cellular Heterogeneity. Anal Chem. 2013, 85, 2548–2556.
  • Luka, G.; Ahmadi, A.; Najjaran, H.; Alocilja, E.; DeRosa, M.; Wolthers, K.; Malki, A.; Aziz, H.; Althani, A.; Hoorfar, M. Microfluidics Integrated Biosensors: A Leading Technology Towards Lab-On-A-Chip and Sensing Applications. Sensors. 2015, 15, 30011–30031.
  • Luo, G.; Du, L.; Wang, Y.; Lu, Y.; Xu, J. Controllable Preparation of Particles with Microfluidics. Particuology. 2011, 9, 545–558.
  • Luppa, P. B.; Bietenbeck, A.; Beaudoin, C.; Giannetti, A. Clinically Relevant Analytical Techniques, Organizational Concepts for Application and Future Perspectives of Point-Of-Care-Testing. 2016, DOI:10.1016/j.biotechadv.2016.01.003
  • Lyuksyutov, I. F.; Naugle, D. G.; Rathnayaka, K. D. D. On-chip Manipulation of Levitated Femtodroplets. Appl. Phys. Lett. 2004, 85, 1817–1819.
  • Maeki, M.; Teshima, Y.; Yoshizuka, S.; Yamaguchi, H.; Yamashita, K.; Miyazaki, M. Controlling Protein Crystal Nucleation by Droplet-Based Microfluidics. Chem. Eur. J. 2014, 20, 1049–1056.
  • Maestro, L. M.; Haro-Gonzalez, P.; Sanchez-Lglesias, A.; Liz-Marzan, L. M.; Sole, J. G.; Jaque, D. Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles. Langmuir. 2014, 30, 1650–1658.
  • Mahalanabis, M.; Do, J.; AlMuayad, H.; Zhang, J. Y.; Klapperich, C. M. An Intergrated Disposable Device for DNA Extraction and Helicase Dependent Amplification. Biomed. Microdevices. 2010, 12, 353–359.
  • Mao, H.; Li, C.; Zhang, Y.; Furyk, S.; Cremer, P.; Bergbreiter, D. High-throughput Studies of the Effects of Polymer Structure and Solution Components on the Phase Separation of Thermoresponsive Polymers. Macromolecules. 2004, 37, 1031–1036.
  • Marmiroli, B.; Grenci, G.; Cacho-Nerin, F.; Sartori, B.; Ferrari, E.; Laggner, P.; Businaro, L.; Amenitsch, H. Free Jet Micromixer to Study Fast Chemical Reactions by Small Angle X-Ray Scattering. Lab. Chip. 2009, 9, 2063–2069.
  • Marre, S.; Adamo, A.; Basak, S.; Aymonier, C.; Jensen, K. F. Design and Packaging of Microreactors for High Pressure and High Temperature Applications. Ind. Eng. Chem. Res. 2010, 49, 11310–11320.
  • Marre, S.; Jensen, K. F. Synthesis of Micro and Nanostructures in Microfluidic Systems. Chem. Soc. Rev. 2010, 39, 1183–1202.
  • Mattia, D.; Calabro, F. Explaining High Flow Rate of Water in Carbon Nanotubes Via Solid-liquid Molecular Interactions. Microfluid. Nanofluid. 2012, 13, 125–130.
  • Mazutis, L.; Gilbert, J.; Ung, W. L.; Weitz, D. A.; Griffiths, A. D.; Heyman, J. A. Single-cell Analysis and Sorting Using Droplet-Based Microfluidics. Nature Protocol. 2013, 8, 870–891.
  • McBain, S. C.; Yiu, H. H. P.; Dobson, J. Magnetic Nanoparticles for Gene and Drug Delivery. Int. J. Nanomed. 2008, 3, 168–180.
  • McCalla, S. E.; Tripathi, A. Microfluidics Reactors for Diagnostics Applications. Annu. Rev. Biomed. Eng. 2011, 13, 321–343.
  • McDonald, J. C.; Whitesides, G. M. Poly (dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Acc. Chem. Res. 2002, 35, 491–499.
  • McQuade, D. T.; Seeberger, P. H. Applying Flow Chemistry: Methods, Materials, and Multistep Synthesis. J. Org. Chem. 2013, 78, 6384–6389.
  • Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Biocongugates for Imaging, Labeling and Sensing. Nature Mater. 2005, 4, 435–446.
  • Mejia-Ariza, R.; Huskens, J. Formation of Hybrid Gold Nanoparticle Network Aggregates by Specific Host-Guest Interactions in a Turbulent Flow Reactor. Mater. Chem. B 2014, 2, 210–216.
  • Merket, T. J.; Herlihy, K. P.; Nunes, J.; Orgel, R. M.; Rolland, J. P.; DeSimone, J. M. Scalable, Shape-Specific, Top-Down Fabrication Methods for the Synthesis of Engineered Colloidal Particles. Langmuir. 2010, 26, 13086–13096.
  • Merlen, A.; Gadenne, V.; Romann, J.; Chevallier, V.; Patrone, L.; Valmalette, J. C. Surface Enhanced Raman Spectroscopy of Organic Molecules Deposited on Gold Sputtered Substrates. Nanotechnology. 2009, 20, 215705.
  • Mirza, I.; O'Connell, G.; Wang, J. J.; Lunney, J. G. Comparison of Nanosecond and Femtosecond Pulsed Laser Deposition of Silver Nanoparticle Films. Nanotechnology. 2014, 25, 265301.
  • Miyazaki, M.; Yamaguchi, H.; Honda, T.; Briones-Nagata, M. P. P.; Yamashita, K.; Maeda, H. Polymer Chemistry in Microfluidic Reaction System. Micro. Nanosystems. 2009, 1, 193–204.
  • Moghaddam, M. M.; Baghbanzadeh, M.; Sadeghpour, A.; Glatter, O.; Kappe, C. O. Continuous-flow Synthesis of Cdse Quantum Dots: A Size-Tunable and Scalable Approach. Chem. Eur. J. 2013, 19, 11629–11636.
  • Moon, H.; Cho, S. K.; Garrell, R. L. Low Voltage Electrowetting-On-Dielectric. Appl. Phys. 2002, 92, 4080–4087.
  • Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse Cde (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites. Am. Chem. Soc. 1993, 115, 8706–8715.
  • Murray, C. B.; Sun, S.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Colloidal Synthesis of Nanocrystals and Nanocrystal Superlattices. J. Rev. Dev. 2001, 45, 47–56.
  • Nie, Z. H.; Xu, S. Q.; Seo, M.; Lewis, P. C.; Kumacheva, E. Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors. Am. Chem. Soc. 2005, 127, 8058–8063.
  • Nie, Z. H.; Park, J. I.; Li, W.; Bon, S. A. F.; Kumacheva, E. “Inside-Out” Microfluidic Approach to Producing Monodisperse Emulsion Droplets Stabilized by Solid Particles. Am. Chem. Soc. 2008, 130, 16508–16509.
  • Nightingale, A. M.; Bannock, J. H.; Krishnadasan, S. H.; O'Mahony, F. T. F.; Haque, S. A.; Sloan, J.; Drury, C.; McIntyre, R.; deMello, J. C. Large-scale Synthesis of Nanocrystals in a Multichannel Droplet Reactor. Mater. Chem. 2013, 1, 4067–4076.
  • Nikacevic, N. M.; Huesman, A. E. M.; van denHof, P. M. J.; Stankiewicz, A. I. Opportunities and Challenges for Process Control in Process Intensification. Chem. Eng. Proc: Proc. Intensification. 2012, 52, 1–15.
  • Nishioka, M.; Miyakawa, M.; Daino, Y.; Kataoka, H.; Koda, H.; Sato, K.; Suzuki, T. M. Single-mode Microwave Reactor Used for Continuous Flow Reactions Under Elevated Pressure. Ind. Eng. Chem. Res. 2013, 52, 4683–4687.
  • Nisisako, T.; Torii, T. Formation of Biphasic Janus Droplets in a Microfabricated Channel for the Synthesis of Shape-Controlled Polymer Microparticles. Adv. Mater. 2007, 19, 1489–1493.
  • Nitta, S. K.; Numata, K. Biopolymer-based Nanoparticles for Drug/Gene Delivery and Tissue Engineering. Int. J. Mol. Sci. 2013, 14, 1629–1654.
  • Noireaux, V.; Libchaber, A. A Vesicle Bioreactor as a Step Toward an Artificial Cell Assembly. Proc. Natl. Acad. Sci. USA. 2004, 101, 17669–17674.
  • Nozik, A. J.; Beard, M. C.; Luther, J. M.; Law, M.; Ellingson, R. J.; Johnson, J. C. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chem. Rev. 2010, 110, 6873–6890.
  • Okushima, S.; Nisisako, T.; Torii, T.; Higuchi, T. Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices. Langmuir. 2004, 20, 9905–9908.
  • Ono, T.; Yamada, M.; Suzuki, Y.; Taniguchi, T.; Seki, M. One-step Synthesis of Spherical/Nonspherical Polymeric Microparticles Using Non-equilibrium Microfluidic Droplets. RSC Adv. 2014, 4, 13557–13564.
  • Otten, A.; Koster, S.; Struth, B.; Snigirev, A.; Pfohl, T. Microfluidics of Soft Matter Investigated by Small-Angle X-Ray Scattering. J. Synchrotron. Rad. 2005, 12, 745–750.
  • Pan, J.; El-Ballouli, A. O.; Rollny, L.; Voznyy, O.; Burlakov, V. M.; Goriely, A.; Sargent, E. H.; Bakr, O. M. Automated Synthesis of Photovoltaic-Quality Colloidal Quantum Dots Using Separate Nucleation and Growth Stages. ACS Nano. 2013, 7, 10158–10166.
  • Pan, Y.; Yao, J.; Zhang, L.; Xu, N. Preparation of Ultrafine Zeolite a Crystals with Narrow Particle Size Distribution Using a Two-Phase Liquid Segmented Microfluidic Reactor. Ind. Eng. Chem. Res. 2009, 48, 8471–8477.
  • Parisi, J.; Dong, Q.; Lei, Y. In Situ Microfluidic Fabrication of Sers Nanostructures for Highly Sensitive Fingerprint Microfluidic-Sers Sensing. RSC Adv. 2015, 5, 14081–14089.
  • Park, I. W.; Yoon, M.; Kim, Y. M.; Kim, Y.; Yoon, H.; Song, H. J.; Volkov, V.; Avilov, A.; Park, Y. J. Magnetic Properties and Microstructure of Cobalt Nanoparticles in a Polymer Film. Solid State Commun. 2003, 126, 385–389.
  • Park, J. I.; Saffari, A.; Kumar, S.; Gunther, A.; Kumacheva, K. Microfluidic Synthesis of Polymer and Inorganic Particulate Material. Annu. Rev. Mater. Res. 2010, 40, 415–443.
  • Pathmamanoharan, C.; Philipse, A. P. Preparation and Properties of Monodisperse Magnetic Cobalt Colloids Grafted with Polyisobutene. Colloid Interface Sci. 1998, 205, 340–353.
  • Patil, Y. P.; Jadhav, S. Novel Methods for Liposome Preparation. Chem. Phys. Lipids. 2014, 177, 8–18.
  • Pekas, N.; Porter, M. D.; Tondra, M.; Popple, A.; Jander, A. Giant Magnetoresistance Monitoring of Magnetic Picodroplets in an Integrated Microfluidic System. Appl. Phys. Lett. 2004, 45, 4783–4785.
  • Peng, X.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions. Am. Chem. Soc. 1998, 120, 5343–5344.
  • Peng, Z.; Young, B.; Baird, A. E.; Soper, S. A. Single-pair Fluorescence Resonance Energy Transfer Analysis of mRNA Transcripts for Highly Sensitive Gene Expression Profiling in Near Real Time. Anal. Chem. 2013, 85, 7851–7858.
  • Peterson, D. A.; Padmavathi, C.; Paul, B. K. High Production Rate Synthesis of Cds Nanoparticles Using a Reverse Oscillatory Flow Method. J. Micro. Nano.-Manuf. 2014, 2, 031004.
  • Petric, M.; Comanor, L.; Petti, C. A. Role of the Laboratory in Diagnosis of Influenza During Seasonal Epidemics and Potential Pandemics. J. Infect. Dis. 2006, 194, S98–S110.
  • Peyratout, C. S.; Dahne, L. Tailor-made Polyelectrolyte Microcapsules: From Multilayers to Smart Containers. Angew Chem. Int. Ed. Engl. 2004, 43, 3762–3783.
  • Pfohl, T.; Otten, A.; Koster, S.; Dootz, R.; Struth, B.; Evans, H. M. Highly Packed and Oriented DNA Mesophases Identified Using in Situ Microfluidic X-Ray Microdiffraction. Biomacromolecules. 2007, 8, 2167–2172.
  • Pham, H. H.; Gourevich, I.; Oh, J. K.; Jonkman, J. E. N.; Kumacheva, E. A. A Multidye Nanostructured Material for Optical Data Storage and Security Data Encryption. Adv. Mater. 2004, 16, 516–520.
  • Ploschner, M.; Cizmar, T.; Mazilu, M.; Falco, A. D.; Dholakia, K. Bidirectional Optical Sorting of Gold Nanoparticles. Nano Lett. 2012, 12, 1923–1927.
  • Plouffe, P.; Macchi Roberge, D. M. From Batch to Continuous Chemical Synthesis-A Toolbox Approach. Org. Process. Res. Dev. 2015, 18, 1286–1294.
  • Polte, J.; Tuaev, X.; Wuithschick, M.; Fischer, A.; Thuenemann, A. F.; Rademann, K.; Kraehnert, R.; Emmerling, F. Formation Mechanism of Colloidal Silver Nanoparticles: Analogies and Differences to the Growth of Gold Nanoparticles. ACS Nano. 2012, 6, 5791–5802.
  • Prakash, M.; Gershenfeld, N. Microfluidic Bubble Logic. Science. 2007, 315, 832–835.
  • Probst, C. E.; Zrazhevskiy, P.; Bagalkot, V.; Gao, X. Quantum Dots as a Platform for Nanoparticle Drug Delivery Vehicle Design. Adv. Drug Delivery Rev. 2013, 65, 703–718.
  • Psaltis, D.; Quake, S. R.; Yang, C. Developing Optofluidic Technology Through the Fusion of Microfluidics and Optics. Nature. 2006, 442, 381–386.
  • Puigmarti-Luis, J. Microfluidic Platforms: A Mainstream Technology for the Preparation of Crystals. Chem. Soc. Rev. 2014, 43, 2253–2271.
  • Puntes, V. F.; Krishnan, K. M.; Alivisator, A. P. Synthesis, Self-assembly and Magnetic Behavior of a Two-dimensional Superlattice of Single-crystal ε-Co Nanoparticles. Appl. Phys. Lett. 2001a, 78, 2187–2189.
  • Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science. 2001b, 291, 2115–2117.
  • Qu, L.; Peng, Z. A.; Peng, X. G. Alternative Routes Toward High Quality Cdse Nanocrystals. Nano Lett. 2001, 1, 333–337.
  • Quinsaat, J. E. Q.; Testino, A.; Pin, S.; Huthwelker, T.; Nuesch, F. A.; Bowen, P.; Hofmann, H.; Ludwig, C.; Opris, D. M. Continuous Production of Tailored Silver Nanoparticles by Polyol Synthesis and Reaction Yield Measured by X-Ray Absorption Spectroscopy: Toward a Growth Mechanism. Phys. Chem. C. 2014, 118, 11093–11103.
  • Ram, S. Self-confined Dimension of Thermodynamic Stability in Co-Nanoparticles in Fcc and Bcc Allotropes with a Thin Amorphous Al2o3 Surface Layer. Acta. Mater. 2001, 49, 2297–2307.
  • Ran, G.; Fu, Q.; Xu, W. Microfluidic-based Controllable Synthesis of Pt Nanocatalysts Supported on Carbon for Fuel Cells. RSC Adv. 2015, 5, 14740–14746.
  • Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Metal Nanoparticles and their Assemblies. Chem. Soc. Rev. 2000, 29, 27–35.
  • Raza, A.; Saha, B. In Situ Silver Nanoparticles Synthesis in Agarose Film Supported on Filter Paper and its Application as Highly Efficient Sers Test Stripes. Forensci. Sci. Int. 2014, 237, e42-e46.
  • Ren, K.; Chen, Y.; Wu, H. New Materials for Microfluidics in Biology. Curr. Opin. Biotech. 2014, 25, 78–85.
  • Rida, A.; Gijs, M. A. M. Manipulation of Self-assembled Structures of Magnetic Beads for Microfluidic Mixing and Assaying. Anal Chem. 2004, 76, 6239–6246.
  • Rio, E.; Daerr, A.; Andreotti, B.; Limat, L. Boundary Conditions in the Vicinity of a Dynamic Contact Line: Experimental Investigation of Viscous Drops Sliding Down an Inclined Plane. Phys. Rev. Lett. 2005, 94, 024503.
  • Rodd, L. E.; Scott, T. P.; Boger, D. V.; Copper-White, J. J.; Mckinley, G. H. The Inertio-elastic Planar Entry Flow of Low-viscosity Elastic Fluids in Micro-fabricated Geometries. Non- Newtonian Fluid Mech. 2005, 129, 1–22.
  • Ryan, J.; Dave, K.; Emmerich, E.; Fernandez, B.; Turell, M.; Johnson, J.; Gottfried, K.; Burkhalter, K.; Kerst, A.; Hunt, A.; Wirtz, R.; Nasci, R. Wicking Assays for the Rapid Detection of West Nile and St. Louis Encephalitis Viral Antigens in Mosquitoes (Diptera: Culicidae). Med. Entomol. 2003, 40, 95–99.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779.
  • Salmon, L.; Yang, S.; Al-Hashimi, H. M. Advances in the Determination of Nucleic Acid Conformational Ensembles. Annu. Rev. Phys. Chem. 2014, 65, 293–316.
  • Sanchez, M. M.; Miserere, S.; Merkoci, A. Nanomaterials and Lab-on-a-chip Technologies. Lab. Chip. 2012, 12, 1932–1943.
  • Sarrazin, F.; Prat, L.; Di Miceli, N.; Cristobal, G.; Link, D. R.; Weitz, D. A. Mixing Characterization Inside Microdroplets Engineered on a Microcoalescer. Chem. Eng. Sci. 2007, 62, 1042–1048.
  • Sato, K.; Mawatari, K.; Kitamori, T. Microchip-based Cell Analysis and Clinical Diagnosis System. Lab. Chip. 2008, 8, 1992–1998.
  • Schabas, G.; Wang, C. W.; Oskooei, A.; Yusuf, H.; Moffitt, M. G.; Sinton, D. Formation and Shear-induced Processing of Quantum Dot Colloidal Assemblies in a Multiphase Microfluidic Chip. Langmuir. 2008, 24, 10596–10603.
  • Schafer, C. G.; Gallei, M.; Zahn, J. T.; Engelhardt, J.; Hellmann, G. P.; Rehahn, M. Reversible Light, Thermo and Mechano-responsive Elastomeric Polymer Opal Films. Chem. Mater. 2013, 25, 2309–2318.
  • Scheuer, L.; Kauff, N.; Robson, M.; Kelly, B.; Barakat, R.; Satagopan, J.; Ellis, N.; Hensley, M.; Boyd, J.; Borgen, P.; Norton, L.; Offit, K. Outcome of Preventive Surgery and Screening for Breast and Ovarian Cancer in BRCA Mutation Carriers. J. Clin. Oncol. 2002, 20, 1260–1268.
  • Schulte, T. H.; Bardell, R. L.; Weigl, B. H. Microfluidic Technologies in Clinical Diagnostics. Clin. Chim. Acta. 2002, 321, 1–10.
  • Sebastian, V.; Arruebo, M. Reaction Engineering Strategies for the Production of Inorganic Nanomaterials. Small. 2014, 10, 835–853.
  • Seo, M.; Nie, Z.; Xu, S.; Mok, M.; Lewis, P. C.; Graham, R.; Kumacheva, E. Continuous Microfluidic Reactors for Polymer Particles. Langmuir. 2005, 21, 11614–11622.
  • Seo, M.; Paquet, C.; Nie, Z. H.; Xu, S. Q.; Kumacheva, E. Microfluidic Consecutive Flow-focusing Droplet Generators. Soft. Mater. 2007, 3, 986–992.
  • Sesen, M.; Alan, T.; Neild, A. Microfluidic on-demand Droplet Merging Using Surface Acoustic Waves. Lab. Chip. 2014, 14, 3325–3333.
  • Seyler, H.; Wong, W. W. H.; Jones, D. J.; Holmes, A. B. Continuous Flow Synthesis of Fullerence Derivatives. J. Org. Chem. 2011, 76, 3551–3556.
  • Shahbazali, E.; Hessel, V.; Noel, T.; Wang, Q. Metallic Nanoparticles Made in Flow and their Catalytic Applications in Organic Synthesis. Nanotechnology Rev. 2013, 3, 65–85.
  • Shangguan, Y.; Guo, D.; Feng, H.; Li, Y.; Gong, X.; Chen, Q.; Zheng, B.; Wu, C. Mapping Phase Diagrams of Polymer Solutions by a Combination of Microfluidic Solution Droplets and Laser Light-Scattering Detection. Macromolecules. 2014, 47, 2496–2502.
  • Shepherd, R. F.; Conrad, J. C.; Rhodes, S. K.; Link, D. R.; Marquez, M.; Weitz, D. A.; Lewis, J. A. Microfluidic Assembly of Homogeneous and Janus Colloid-filled Hydrogel Granules. Langmuir. 2006, 22, 8618–8622.
  • Shestopalov, I.; Tice, J. D.; Ismagilov, R. F. Multi-step Synthesis of Nanoparticles Performed on Millisecond Time Scale in a Microfluidic Droplet-based System. Lab. Chip. 2004, 4, 316–321.
  • Shi, L.; Naik, A. J. T.; Goodall, J. B. M.; Tighe, C.; Gruar, R.; Binions, R.; Parkin, I.; Darr, J. Highly Sensitive ZnO Nanorod and Nanoprism-based NO2Gas Sensors: Size and Shape Control Using a Continuous Hydrothermal Pilot Plant. Langmuir. 2013, 29, 10603–10609.
  • Shui, L.; van den Berg, A.; Eijkel, J. C. T. Scalable Attoliter Monodisperse Droplet Formation Using Multiphase Nano-microfluidics. Microfluid Nanofluid. 2011, 11, 87–92.
  • Shum, H. C.; Bandyopadhyay, A.; Bose, S.; Weitz, D. A. Double Emulsion Droplets as Microreactors for Synthesis of Mesoporous Hydroxyapatite. Chem. Mater. 2009, 21, 5548–5555.
  • Si, Y.; Tang, X.; Ge, J.; Yang, S.; El-Newehy, M.; Al-Deyab, S. S.; Yu, J.; Ding, B. In Situ Synthesis of Flexible Magnetic γ-Fe2O3@SiO2 Nanofibrous Membranes. Nanoscale. 2014, 6, 2102–2105.
  • Singh, R.; Gutch, P. K.; Mazumder, A. N, N-Dichlorourethane: An Efficient Decontaminating Reagent for Sulfur Custard, a Chemical Warfare Agent, Ind. Eng. Chem. Res. 2013, 52, 4689–4694.
  • Siwick, B. J.; Kalinina, O.; Kumacheva, E.; Miller, R. J. D.; Noolandi, J. Polymeric Nanostructured Materials for High-density Three-dimensional Optical Memory. Appl. Phys. 2001, 90, 5328–5334.
  • Skrabalak, S. E.; Brutchey, R. L. Going with the Flow: Continuous Flow Routes to Colloidal Nanoparticles. Chem. Mater. 2016, 28, 1003–1005.
  • Solvas, X. C.; deMello, A. J. Droplet Microfluidics: Recent Developments and Future Applications. Chem Commun. 2011, 47, 1936–1942.
  • Song, H.; Chen, D. L.; Ismagilov, R. F. Reactions in Droplets in Microfluidic Channels. Angew Chem. Int. Ed. 2006a, 45, 7336–7356.
  • Song, S.; Singh, A. K. On-chip Sample Preconcentration for Integrated Microfluidic Analysis. Anal. Bioanal. Chem. 2006c, 384, 41–43.
  • Song, Y.; Henry, L. L.; Yang, W. Stable Amorphous Cobalt Nanoparticles Formed by an in Situ Rapidly Cooling Microfluidic Process. Langmuir. 2009, 25, 10209–10217.
  • Song, Y.; Hormes, J.; Kumar, C. S. S. R. Microfluidic Synthesis of Nanomaterials. Small. 2008, 4, 698–711.
  • Song, Y.; Kumar, C. S. S. R.; Hormes, J. Synthesis of Palladium Nanoparticles using a Continuous Flow Polymeric Micro reactor. Nanosci Nanotechnol. 2004, 4, 788–793.
  • Song, Y.; Modrow, H.; Henry, L. L.; Saw, C. K.; Doomes, E. E; Palshin, V.; Hormes, J.; Kumar, C. S. S. R. Microfluidic Synthesis of Cobalt Nanoparticles. Chem Mater. 2006b, 18, 2817–2827.
  • Sozzi, G.; Conte, D.; Leon, M. E.; Cirincione, R.; Roz, L.; Ratcliffe, C.; Roz, E.; Cirenei, N.; Bellomi, M.; Pelosi, G.; Pierotti, M. A.; Pastorino, U. Quantification of Free Circulating DNA as a Diagnostic Marker in Lung Cancer. J Clin Oncol. 2003, 21, 3902–3908.
  • Squires, T. M.; Quake, S. R. Microfluidics: Fluid Physics at the Nanoliter Scale. Rev Mod Phys. 2005, 77, 977–1026.
  • Srisa-Art, M.; deMello, A. J.; Edel, J. B. High-throughput DNA Droplet Assays using Picoliter Reactor Volumes. Anal Chem. 2007, 79, 6682–6689.
  • Stehle, R.; Goerigk, G.; Wallacher, D.; Ballauff, M.; Seiffert, S. Small-angle X-ray Scattering in Droplet-based Microfluidics. Lab. Chip. 2013, 13, 1529–1537.
  • Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A. Lattice-strain Control of the Activity in Dealloyed Core-shell Fuel Cell Catalysts. Nat. Chem. 2010, 2, 454–460.
  • Stratakis, E.; Kymakis, E. Nanoparticle-based Plasmonic Organic Photovoltaic Devices. Mater Today. 2013, 16, 133–146.
  • Streets, A. M.; Huang, Y. Microfluidics for Biological Measurements with Single-molecule Resolution. Curr. Opin. Biotech. 2014, 25, 69–77.
  • Su, S.; Fan, J.; Xue, B.; Yuwen, L.; Liu, X.; Pan, D.; Fan, C.; Wang, L. DNA-conjugated Quantum Dot Nanoprobe for High-sensitivity Fluorescent Detection of DNA and Micro-RNA. ACS Appl. Mater Interfaces. 2014, 6, 1152–1157.
  • Su, W.; Gao, X.; Jiang, L.; Qin, J. Microfluidic Platform Towards Point-of-care Diagnostics in Infectious Diseases. J. Chromatogr A. 2015, 1377, 13–26.
  • Sun, S. Recent Advances in Chemical Synthesis, Self-assembly and Applications of FePt Nanoparticles. Adv Mater. 2006, 18, 393–403.
  • Sun, S.; Murray, C. B. Synthesis of Monodisperse Cobalt Nanocrystals and Their Assembly Into Magnetic Superlattices. Appl. Phys. 1999, 85, 4325–4330.
  • Suss, M. E.; Biesheuvel, P. M.; Baumann, T. F.; Stadermann, M.; Santiago, J. G. In Situ Spatially and Temporally Resolved Measurements of Salt Concentration Between Charging Porous Electrodes for Desalination by Capacitive Deionization. Environ Sci Technol. 2014, 48, 2008–2015.
  • Takeuchi, S.; Garstecki, P.; Weibel, D. B.; Whitesides, G. M. An Axisymmetric Flow-focusing Microfluidic Device. Adv. Mater. 2005, 17, 1067–1072.
  • Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chem. Rev. 2010, 110, 389–458.
  • Talapin, D. V.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-trioctylphosphine Oxide-Trioctylphospine mixture. Nano Lett. 2001, 1, 207–211.
  • Tan, J.; Lu, Y. C.; Xu, J. H.; Luo, G. S. Mass Transfer Performance of Gas-liquid Segmented Flow in Microchannels. Chem. Eng. J. 2012, (181-182), 229–235.
  • Tarn, M. D.; Lopez-Martinez, M. J.; Pamme, N. On-chip Processing of Particles and Cells Via Multilaminar flow Streams. Anal. Bioanal. Chem. 2014, 406, 139–161.
  • Teh, S. Y.; Lin, R.; Hung, L. H.; Lee, A. P. Droplet Microfluidics. Lab. Chip. 2008, 8, 198–220.
  • Testouri, A.; Arriaga, L. R.; Honorez, C.; Ranft, M.; Radrigues, J.; van deNet, A.; Lecchi, A.; Salonen, A.; Rio, E.; Guillermic, R. M.; Langevin, D.; Drenkhan, W. Generation of Porous Solids with Well-Controlled Morphologies by Combining Foaming and Flow Chemistry on a Lab-on-a-chip. Colloid Surf A. 2012, 413, 17–24.
  • Toft, K. N.; Vestergaard, B.; Nielsen, S. S.; Snakenborg, D.; Jeppesen, M. G.; Jacobsen, J. K.; Arleth, L.; Kutter, J. P. High-Throughput Small Angle X-ray Scattering From Proteins in Solution Using a Microfluidic Front-end. Anal. Chem. 2008, 80, 3648–3654.
  • Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H.; Kitamori, T. Continuous-flow Chemical Processing on a Microchip by Combining Microunit Operations and a Multiphase Flow Network. Anal. Chem. 2002, 74, 1565–1571.
  • Tsai, T. T; Shen, S. W.; Cheng, C. M.; Chen, C. F. Paper-based Tuberculosis Diagnostic Devices with Colorimetric Gold Nanoparticles. Sci. Technol. Adv. Mater. 2013, 14, 044404.
  • Tsaoulidis, D.; Angeli, P. Effect of Channel Size on Mass Transfer During Liquid-liquid Plug Flow in Small Scale Extractors. Chem Eng J. 2015, 262, 785–793.
  • Tse, C.; Brault, D.; Gligorov, J.; Antoine, M.; Neumann, R.; Lotz, J. P.; Capeau, J. Evaluation of the Quantitative Analytical Methods Real-time PCR for HER-2 Gene Quantification and ELISA of Serum HER-2 Protein and Comparison with Fluorescence in Situ Hybridization and Immunohistochemistry for Determining HER-2 Status in Breast Cancer Patients. Clin. Chem. 2005, 51, 1093–1101.
  • Tu, S. T.; Yu, X.; Luan, W.; Lowe, H. Development of Micro Chemical, Biological and Thermal Systems in China: A Review. Chem. Eng. 2010, 163, 165–179.
  • Tweedie, M.; Subramanian, R.; Lemoine, P.; Craig, I.; McAdams, E. T.; McLaughlin, J. A.; MacCraith, B.; Kent, N. Fabrication of Impedimetric Sensors for Label-free Point-of-care Immunoassay Cardiac Marker Systems, with Passive Microfluidic Delivery. Conf Proc IEEE Eng Med Bio Soc. 2006, 1, 4610–4614.
  • Uehara, M.; Nakamura, H.; Maeda, H. Preparation of ZnS/CdSe/ZnS Quantum Dot Quantum Well by Using a Microfluidic Reactor. J Nanosci Nanotechnol. 2009, 9, 577–583.
  • Valencia, P. M.; Farokhzad, O. C.; Karnik, R.; Langer, R. Microfluidic Technologies for Accelerating the Clinical Translation of Nanoparticles. Nat. Nanotechnol. 2012, 7, 623–629.
  • Valencia, P. M; Pridgen, E. M.; Rhee, M.; Langer, R.; Farokhzad, O. C.; Karnik, R. Microfluidic Platform for Combinatorial Synthesis and Optimization of Targeted Nanoparticles for Cancer Therapy. ACS Nano. 2013, 7, 10671–10680.
  • Valencia, P. M.; Farokhzad, O. C.; Langer, R. Microfluidic Technologies for Accelerating the Clinical Translation of Nanoparticles. Nat. Nanotechnol. 2012, 7, 623–629.
  • Visaveliya, N.; Kohler, J. M. Single-step Microfluidic Synthesis of Various Nonspherical Polymer Nanoparticles Via in Situ Assembling: Dominating Role of Polyelectrolytes Molecules. ACS Appl Mater Interfaces. 2014, 6, 11254–11264.
  • Vladisavljevic, G. T.; Khalid, N.; Neves, M. A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial Lab-on-a-chip: Design, Applications and Scale-Up for Drug Discovery and Delivery. Adv. Drug. Deliv. Rev. 2013, 65, 1626–1663.
  • Wagner, J.; Kohler, J. M. Continuous Synthesis of Gold Nanoparticles in a Microreactor. Nano. Lett. 2005, 5, 685–691.
  • Wagner, J.; Tshikhudo, T. R.; Kohler, J. M. Microfluidic Generation of Metal Nanoparticles by Borohydride Reduction. Chem. Eng. 2008, 135, S104–S109.
  • Wan, J.; Bick, A.; Sullivan, M.; Stone, H. A. Controllable Microfluidic Production of Microbubbles in Water-in-oil Emulsions and the Formation of Porous Microparticles. Adv. Mater. 2008, 20, 3314–3318.
  • Wan, Z.; Yang, H.; Luan, W.; Tu, S. T.; Zhou, X. Facile Synthesis of Monodisperse CdS Nanocrystals Via Microreaction. Nanoscale Res. Lett. 2009, 5, 130–137.
  • Wang, B.; Shum, H. C.; Weitz, D. A. Fabrication of Monodisperse Toroidal Particles by Polymer Solidification in Microfluidics. Chem Phys Chem. 2009, 10, 641–645.
  • Wang, C. W.; Bains, A.; Sinton, D.; Moffitt, M. G. Flow-directed Assembly of Block Copolymer Vesicles in the Lab-on-a-chip. Langmuir. 2012, 28, 15756–15761.
  • Wang, C. W.; Bains, A.; Sinton, D.; Moffitt, M. G. Flow-Directed Loading of Block Copolymer Micelles with Hydrophobic Probes in a gas-Liquid Microreactor. Langmuir. 2013d, 29, 8385–8394.
  • Wang, C. W.; Oskooei, S. A. K.; Sinton, D.; Moffitt, M. G. Controlled Self-assembly of Quantum Dot-block Copolymer Colloidsin Multiphase Microfluidic Reactors. Langmuir. 2010, 26, 716–723.
  • Wang, C. W.; Sinton, D.; Moffitt, M. G. Flow-directed Block Copolymer Micelle Morphologies Via Microfluidic Self-assembly. Am. Chem. Soc. 2011c, 133, 18853–18864.
  • Wang, H.; Li, X.; Uehara, M.; Yamaguchi, Y.; Nakamura, H.; Miyazaki, M.; Shimizu, H.; Maeda, H. Continuous Synthesis of CdSe-ZnS Composite Nanoparticles in a Microfluidic Reactor. Chem. Commun. 2004, 1, 48–49.
  • Wang, H.; Nakamura, H.; Uehara, U.; Yamaguchi, Y.; Maeda, H. Highly Luminescent CdSe/ZnS Nanocrystals Synthesized Using a Single-molecular ZnS Source in a Microfluidic Reactor. Adv. Funct. Mater. 2005, 15, 603–608.
  • Wang, J. T.; Wang, J.; Han, J. J. Fabrication of Advanced Particles and Particle-based Materials Assisted by Droplet-based Microfluidics. Small. 2011b, 7, 1728–1754.
  • Wang, Q.; Zhang, D.; Yang, X.; Xu, H.; Shen, A. Q.; Yang, Y. Atom-economical in Situ Synthesis of BaSO4 as Imaging Contrast Agents within poly (N-isopropylacrylamide) Microgels Using One-step Droplet Microfluidics. Green. Chem. 2013a, 15, 2222–2229.
  • Wang, Y.; Zhang, X.; Wang, A; Li, X; Wang, G; Zhao, L Synthesis of ZnO Nanoparticles From Microemulsions in a Flow Type Microreactor. Chem. Eng. J. 2014, 235, 191–197.
  • Wang, Y; Zheng, Y; Huang, C. Z.; Xia, Y. Synthesis of Ag Nanocubes 18-32 nm in Edge Length: The Effects of Polyol on Reduction Kinetics, Size Control and Reproducibility. Am. Chem. Soc. 2013, 135, 1941–1951.
  • Watts, P; Haswell, S. J. The Application of Micro Reactors for Organic Synthesis. Chem. Soc. Rev. 2005, 34, 235–246.
  • Watts, P.; Haswell, S. J.; Pombo-Villar, E. Electrochemical Effects Related to Synthesis in Micro Reactors Operating Under Electrokinetic Flow. Chem. Eng. 2004, 101, 237–240.
  • Weibel, D. B.; Whitesides, G. M. Applications of Microfluidics in Chemical Biology. Curr. Opin. Chem. Biol. 2006, 10, 584–591.
  • Whitby, M; Quirke, N. Fluid Flow in Carbon Nanotubes and Nanopipes. Nature Nanotech 2007, 2, 87–94.
  • Whitesides, G. M. The Origins and the Future of Microfluidics. Nature. 2006, 442, 368–373.
  • Wilcoxon, J. P.; Provencio, P. P. Chemical and Optical Properties of CdSe and CdSe/ZnS Nanocrystals Investigated Using High-performance Liquid Chromatography. Phys. Chem. B. 2005, 109, 13461–13471.
  • Wiles, C; Watts, P. Continuous Process Technology: A Tool for Sustainable Production. Green Chem. 2014, 16, 55–62.
  • Willets, K. A. Plasmon Point Spread Functions: How Do We Model Plasmon-mediated Emission Processes? Front Phys. 2014, 9, 3–16.
  • Wixforth, A.; Strobl, C.; Gauer, C.; Toegl, A.; Scriba, J.; Guttenberg, Z. V. Acoustic Manipulation of Small Droplets. Anal. Bio. Anal. Chem. 2004, 379, 982–991.
  • Woitalka, A; Kuhn, S.; Jensen, K. F. Scalability of Mass Transfer in Liquid-liquid Flow. Chem. Eng. Sci. 2014, 116, 1–8.
  • Wu, T; Mei, Y; Cabral, J. T.; Xu, C.; Beers, K. L. A New Synthetic Method for Controlled Polymerization Using a Microfluidic System. Am. Chem. Soc. 2004, 126, 9880–9881.
  • Wunscher, S.; Seise, B.; Pretzel, D.; Pollok, S.; Perelaer, J.; Weber, K.; Popp, J.; Schubert, U. S. Chip-on-foil Devices for DNA Analysis Based on Inkjet-printed Silver Electrodes. Lab. Chip. 2014, 14, 392–401.
  • Xia, H. M.; Wang, Z. P.; Koh, Y. X.; May, K. T. A Microfluidic Mixer with Self-excited ‘Turbulent’ Fluid Motion for Wide Viscosity Ratio Applications. Lab Chip. 2010, 10, 1712–1716.
  • Xu, B.; Ye, W.; Zhang, Y.; Shi, J. Y.; Chan, C. Y.; Yao, X. Q.; Yang, M. A Hydrophilic Polymer Based Microfluidic System with Planar Patch Clamp Electrode Array for Electrophysiological Measurement from Cells. Biosens. Bioelectron. 2014, 53, 187–192.
  • Xu, S.; Nie, Z.; Seo, M.; Lewis, P.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Generation of Monodisperse Particles by Using Microfluidics: Control Over Size, Shape, and Composition. Angew. Chem. Int. Ed. 2005, 117, 734–738.
  • Xu, S. Q.; Nie, Z. H.; Seo, M.; Lewis, P. C.; Kumacheva, E.; Stone, H. A.; Garstecki, P.; Weibel, D. B.; Gitlin, I.; Whitesides, G. M. Generation of Monodisperse Particles by Using Microfluidics: Control Over Size, Shape and Composition. Angew. Chem. Int. Ed. 2005, 44, 724–728.
  • Yaghoubi, Z.; Motevalli, K. The Optimum Production of Nanoparticles and Catalysts in an Industrial Center by Using the Mathematical Modeling. Basic Appl. Sci. Res. 2013, 3, 141–144.
  • Yamashita, K.; Yamaguchi, Y.; Miyazaki, M.; Nakamura, H.; Shimizu, H.; Maeda, H. Direct Observation of Long-strand DNA Conformational Changing in Microchannel Flow and Microfluidic Hybridization Assay. Anal. Biochem. Chem. 2004, 332, 274–279.
  • Yang, A.; Zheng, Y.; Long, C; Chen, H.; Liu, B.; Li, X.; Yuan, J.; Cheng, F. Fluorescent Immunosorbent Assay for the Detection of Alpha Lactalbumin in Dairy Products with Monoclonal Antibody Bioconjugated with CdSe/ZnS Quantum Dots. Food Chem. 2014, 150, 73–79.
  • Yang, Q.; Wang, J. X.; Shao, L.; Wang, Q. A.; Guo, F.; Chen, J. F.; Gu, L.; An, Y. T. High Throughput Methodology for Continuous Preparation of Hydroxyapatite Nanoparticles in a Microporous Tube-in-tube Microchannel Reactor. Ind. Eng. Chem. Res. 2010, 49, 140–147.
  • Yang, T. Y.; Uhlinger, D. J.; Ayers, S. A.; O'Hara, D. M.; Joyce, A. P. Challenges in Selectivity, Specificity and Quantitation Range of Ligand-binding Assays: Case Studies Using a Microfluidics Platform. Bioanalysis. 2014, 6, 1049–1057.
  • Yeo, L. Y.; Chang, H. C.; Chen, P. P. Y.; Friend, J. R. Microfluidic Devices for Bioapplications. Small. 2011, 7, 12–48.
  • Yeon, J. H.; Ryu, H. R.; Chung,M.; Hu, Q. P.; Jeon, N. J. In Vitro Formation and Characterization of a Perfusable Three-dimensional Tubular Capillary Network in Microfluidic Devices. Lab. Chip 2012, 12, 2815–2822.
  • Yin, Y.; Alivisatos, A. P. Colloidal Nanocrystal Synthesis and the Organic-inorganic Interface. Nature. 2005, 437, 664–670.
  • Yu, L.; Pan, Y.; Wang, C.; Zhang, L. A Two-phase Segmented Microfluidic Technique for One-step Continuous Versatile Preparation of Zeolites. Chem. Eng. J. 2013, 219, 78–85.
  • Yun, H. J.; Paik, T.; Edley, M. E.; Baxter, J. B.; Murray, C. B. Enhanced Charge Transfer Kinetics of CdSe Quantum Dot-sensitized Solar Cell by Inorganic Ligand Exchange Treatments. ACS Appl. Mater. Interfaces. 2014, 6, 3721–3728.
  • Zakaria, R.; Hamdan, K. S.; Khudus, M. I. M. A.; Penny, R. Optical Field Enhancement Effects on Sapphire Particles for Different Wavelengths and Substrate Media. Laser Phys. 2014, 24, 016001.
  • Zhang, L.; Wang, Y.; Tong, L; Xia, Y. Seed-Mediated Synthesis of Silver Nanocrystals with Controlled Sizes and Shapes in Droplet Microreactors Separated by Air. Langmuir. 2013, 29, 15719–15725.
  • Zhang, L.; Wang, Y.; Tong, L.; Xia, Y. Synthesis of Colloidal Metal Nanocrystals in Droplet Reactors: The Pros and Cons of Interfacial Adsorption. Nano. Lett. 2014, 14, 4189–4194.
  • Zhang, Q. X.; Xu, L. M.; Zhou, Y.; Wang, J. X.; Chen, J. F. Preparation of Drug Nanoparticles Using a T-junction Microchannel System. Ind. Eng. Chem. Res. 2011, 50, 13805–13812.
  • Zhang, W.; Zhou, X.; Zhong, X. One-not Noninjection Synthesis of Cu-doped ZnxCd1-xS Nanocrystals with Emission Color Tunable Over Entire Visible Spectrum. Inorg Chem. 2012, 51, 3579–3587.
  • Zhao, B.; Moore, J. S.; Beebe, D. J. Surface-directed Liquid Flow Inside Microchannels. Science. 2001, 291, 1023–1026.
  • Zhao, C. X.; Middelberg, A. P. J. Microfluidic Synthesis of Monodisperse Hierarchical Silica Particles with Raspberry-like Morphology. RSC Adv. 2013, 3, 21227–21230.
  • Zhao, Y.; Shum, H. C.; Chen, H.; Adams, L. L. A.; Gu, Z.; Weitz, D. A. Microfluidic Generation of Multifunctional Quantum Dot Barcode Particles. Am. Chem. Soc. 2011, 133, 8790–8793.
  • Zheng, B.; Tice, J. D.; Roach, L. S.; Ismagilov, R. F. A Droplet-based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-diffusion Methods with On-Chip X-Ray Diffraction. Angew. Chem. Int. Ed. 2004, 43, 2508–2511.
  • Zhu, Y.; Fang, Q. Analytical Detection Techniques for Droplet Microfluidics: A Review. Anal. Chim. Acta. 2013, 787, 24–35.
  • Ziegler, J.; Merkulov, A.; Grabolle, M.; Resch-Genger, U.; Nann, T. High-quality ZnS Shells for CdSe Nanoparticles: Rapid Microwave Synthesis. Langmuir 2007, 23, 7751–7759.
  • Zook, J. M.; Vreeland, W. N. Effects of Temperature, Acyl Chain Length and Flow-rate Ratio on Liposome Formation and Size in a Microfluidic Hydrodynamic Focusing device. Soft Mater. 2010, 6, 1352–1360.
  • Zou, R.; Fattach, A. I. A.; Xu, H.; Zhao, Y.; Hickmott, D. D. Storage and Separation Applications of Nanoporous Metal-organic Frameworks. Cryst. Eng. Comm.. 2010, 12, 1337–1353.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.