12,894
Views
147
CrossRef citations to date
0
Altmetric
Review Article

Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives

, , , , &
Pages 138-153 | Published online: 01 Nov 2016

References

  • Afkhami, A.; Sarlak, N. A Novel Cyanide Sensing Phase Based on Immobilization of Methyl Violet on A Triacetylcellulose Membrane. Sens. Actuators B: Chem. 2007, 122, 437–441. doi:10.1016/j.snb.2006.06.012
  • Alkasir, R. S. J.; Rossner, A.; Andreescu, S. Portable Colorimetric Paper-Based Biosensing Device for the Assessment of Bisphenol A in Indoor Dust. Environ. Sci. Technol. 2015, 49, 9889–9897. doi:10.1021/acs.est.5b01588
  • Amani, M.; Chu, Y.; Waterman, K. L.; Hurley, C. M.; Platek, M. J.; Gregory, O. J. Detection of Triacetone Triperoxide (TATP) Using a Thermodynamic Based Gas Sensor. Sens. Actuators B: Chem. 2012, 162, 7–13. doi:10.1016/j.snb.2011.11.019
  • Ariza-Avidad, M.; Salinas-Castillo, A.; Cuéllar, M. P.; Agudo-Acemel, M.; Pegalajar, M. C.; Capitán-Vallvey, L. F. Printed Disposable Colorimetric Array for Metal Ion Discrimination. Anal. Chem. 2014, 86, 8634–8641. doi:10.1021/ac501670f
  • Arrayit Corporation. [WWW Document]. http://shop.arrayit.com/ Accessed on 06.17.16, 2016.
  • Askim, J. R.; Li, Z.; LaGasse, M. K.; Rankin, J. M.; Suslick, K. S. An Optoelectronic Nose for Identification of Explosives. Chem. Sci. 2016, 7, 199–206. doi:10.1039/C5SC02632F
  • Askim, J. R.; Mahmoudi, M.; Suslick, K. S. Optical Sensor Arrays for Chemical Sensing: The Optoelectronic Nose. Chem. Soc. Rev. 2013, 42, 8649–8682. doi:10.1039/C3CS60179J
  • Askim, J. R.; Suslick, K. S. Hand-Held Reader for Colorimetric Sensor Arrays. Anal. Chem. 2015, 87, 7810–7816. doi:10.1021/acs.analchem.5b01499
  • Asynchrony Labs. Mobile Field Kit (MFK) http://www.asynchrony.com/products/mobile-Field-Kit/ Accessed on 01.08.16
  • Bang, J. H.; Lim, S. H.; Park, E.; Suslick, K. S. Chemically Responsive Nanoporous Pigments: Colorimetric Sensor Arrays and the Identification of Aliphatic Amines. Langmuir. 2008, 24, 13168–13172. doi:10.1021/la802029m
  • Barker, J. Mass Spectrometry: Analytical Chemistry by Open Learning. John Wiley & Sons, Inc.: Chichester, 1999, 2nd ed.
  • Batista, É. F.; Augusto, A. dos S.; Pereira-Filho, E. R. Determination of Cd, Co, Cr, Cu, Ni and Pb in Cosmetic Samples Using a Simple Method for Sample Preparation. Anal. Methods 2015, 7, 329–335. doi:10.1039/C4AY02484B
  • Batres, G.; Jones, T.; Johnke, H.; Wilson, M.; Holmes, A. E.; Sikich, S. Reactive Arrays of Colorimetric Sensors for Metabolite and Steroid Identification. J. Sens. Technol. 2014, 4, 1–6. doi:10.4236/jst.2014.41001
  • Baumes, L. A.; Buaki Sogo, M.; Montes-Navajas, P.; Corma, A.; Garcia, H. A Colorimetric Sensor Array for the Detection of the Date-Rape Drug γ-Hydroxybutyric Acid (GHB): A Supramolecular Approach. Chem. Eur. J. 2010, 16, 4489–4495. doi:10.1002/chem.200903127
  • Berezow, A. How Chemists Plan to Sniff Out Bombs. BBC. http://www.bbc.com/news/science-environment-35022731, 2015.
  • Bernacka-Wojcik, I.; Senadeera, R.; Wojcik, P. J.; Silva, L. B.; Doria, G.; Baptista, P.; Aguas, H.; Fortunato, E.; Martins, R. Inkjet Printed and “Doctor Blade” TiO2 Photodetectors for DNA Biosensors. Biosens. Bioelectron. 2010, 25, 1229–1234. doi:10.1016/j.bios.2009.09.027
  • Bjella, K. L. Pre-Screening for Explosives Residues in Soil Prior to HPLC Analysis Utilizing Expray. Technical Report No. ERDC/CRREL TN-05-2. U.S. Army Engineer Research and Development Center: Hanover, NH, 2005.
  • Bueno, L.; Meloni, G. N.; Reddy, S.; Paixão, T. R. L. C. Use of Plastic-Based Analytical Device, Smartphone and Chemometric Tools to Discriminate Amines. RSC Adv. 2015, 5, 20148–20154. doi:10.1039/c5ra01822f
  • Burks, R. M.; Hage, D. S. Current Trends in the Detection of Peroxide-Based Explosives. Anal. Bioanal. Chem. 2009, 395, 301–313. doi:10.1007/s00216-009-2968-5
  • Burks, R. M.; Pacquette, S. E.; Guericke, M. A.; Wilson, M. V.; Symonsbergen, D. J.; Lucas, K. A.; Holmes, A. E. DETECHIP: A Sensor for Drugs of Abuse. J. Forensic Sci. 2010, 55, 723–727. doi:10.1111/j.1556-4029.2010.01323.x
  • Burstein, D. D. Fast Future: How the Millennial Generation is Shaping Our World. Beacon Press: Boston, 2014.
  • Cantrell, K.; Erenas, M. M.; Orbe-Payá, I. de; Capitán-Vallvey, L. F. Use of the Hue Parameter of the Hue, Saturation, Value Color Space As a Quantitative Analytical Parameter for Bitonal Optical Sensors. Anal. Chem. 2010, 82, 531–542. doi:10.1021/ac901753c
  • Capel-Cuevas, S.; Cuéllar, M. P.; Orbe-Payá, I. de; Pegalajar, M. C.; Capitán-Vallvey, L. F. Full-Range Optical pH Sensor Based on Imaging Techniques. Anal. Chim. Acta. 2010, 681, 71–81. doi:10.1016/j.aca.2010.09.033
  • Capitán-Vallvey, L. F.; López-Ruiz, N.; Martínez-Olmos, A.; Erena, M. M.; Palma, A. J. Recent Developments in Computer Vision-Based Analytical Chemistry: A Tutorial Review. Anal. Chim. Acta. 2015, 899, 23–56. doi:10.1016/j.aca.2015.10.009
  • Carey, J. R.; Suslick, K. S.; Hulkower, K. I.; Imlay, J. A.; Imlay, K. R. C.; Ingison, C. K.; Ponder, J. B.; Sen, A.; Wittrig, A. E. Rapid Identification of Bacteria with a Disposable Colorimetric Sensing Array. J. Am. Chem. Soc. 2011, 133, 7571–7576. doi:10.1021/ja201634d
  • Cate, D. M.; Noblitt, S. D.; Volckens, J.; Henry, C. S. Multiplexed Paper Analytical Device for Quantification of Metals using Distance-Based Detection. Lab Chip 2015, 15, 2808–2818. doi:10.1039/C5LC00364D
  • Caygill, J. S.; Davis, F.; Higson, S. P. J. Current Trends in Explosive Detection Techniques. Talanta 2012, 88, 14–29. doi:10.1016/j.talanta.2011.11.043
  • Chang, B.-Y. Smartphone-Based Chemistry Instrumentation: Digitization of Colorimetric Measurements. Bull. Korean Chem. Soc. 2012, 33, 549–552. doi:10.5012/bkcs.2012.33.2.549
  • Chemical, Biological, Radiological, & Nuclear Information Resource Center (CBRN IRC). Dismounted Reconnaissance Sets Kits and Outfits: DR SKO. https://jacks.jpeocbd.army.mil/Jacks/Public/FactSheetProvider.aspx?productId=447 Accessed on 06.21.16, 2014.
  • Cheng, J.; Kricka, L. J. (Eds.). Biochip Technology. Harwood Academic Publishers: Australia, 2003.
  • Chu, Y.; Mallin, D.; Amani, M.; Platek, M. J.; Gregory, O. J. Detection of Peroxides Using Pd/SnO2 Nanocomposite Catalysts. Sens. Actuators B: Chem. 2014, 197, 376–384. doi:10.1016/j.snb.2014.03.009
  • Chulvi, K.; Gaviña, P.; Costero, A. M.; Gil, S.; Parra, M.; Gotor, R.; Royo, S.; Martínez-Máñez, R.; Sancenóna, F.; Vivancos, J.-L. Discrimination of Nerve Gases Mimics and Other Organophosphorous Derivatives in Gas Phase Using a Colorimetric Probe Array. Chem. Commun. 2012, 48, 10105–10107. doi:10.1039/C2CC34662A
  • Costa, M. N.; Veigas, B.; Jacob, J. M.; Santos, D. S.; Gomes, J.; Baptista, P. V.; Martins, R.; Inácio, J.; Fortunato, E. A Low Cost, Safe, Disposable, Rapid and Self-Sustainable Paper-Based Platform for Diagnostic Testing: Lab-on-Paper. Nanotechnology 2014, 25, 94006. doi:10.1088/0957-4484/25/9/094006
  • Costero, A. M.; Gil, S.; Parra, M.; Mancini, P. M. E.; Martínez-Máñez, R.; Sancenón, F.; Royo, S. Chromogenic Detection of Nerve Agent Mimics. Chem. Commun. 2008, 6002–6004. doi:10.1039/B811247A
  • Cuéllar, M. P.; Capel-Cuevas, S.; Pegalajar, M. C.; de Orbe-Payá, I.; Capitán-Vallvey, L. F. Minimization of Sensing Elements for Full-Range Optical pH Device Formulation. New J. Chem., Cuéllar 2011, 35, 1042–1053. doi:10.1039/C0NJ00951B
  • Curto, V. F.; Fay, C.; Coyle, S.; Byrne, R.; O'Toole, C.; Barry, C.; Hughes, S.; Moyna, N.; Diamond, D.; Benito-Lopez, F. Real-Time Sweat pH Monitoring Based on a Wearable Chemical Barcode Micro-Fluidic Platform Incorporating Ionic Liquids. Sens. Actuators B: Chem. 2012, 171–172, 1327–1334. doi:10.1016/j.snb.2012.06.048
  • Deiner, A.; Vigus, E. S. The Analysis of B-1 Dye (1,P- Nitrophenylazo 2, Naphthylamine) by Ultraviolet-Visible Spectroscopy and Thin Layer Chromatography. Technical Report No. ARCSL-TR-81057. ARMY Armament Research and Development Command: Aberdeen Proving Ground, MD, 1981.
  • ECBC Public Affairs. Explosives Detection Kit Ready to Enter New Acquisition Phase. Official Homepage of U.S. Army. http://www.army.mil/article/125449/Explosives_detection_kit_ready_to_enter_new_acquisition_phase/ Accessed on 01.11.16, 2014.
  • Faulstich, K.; Haberstroh, K.; Gruler, R.; Eberhard, M.; Wiest, T.; Lentzsch, D. Handheld and Portable Test Systems for Immunodiagnostics, Nucleic Acid Detection and More. Proc. SPIE: Opt. Photon. Glob. Homeland Security IV 2008, 6945, p. 69450H, doi:10.1117/12.782171
  • Feng, L.; Li, H.; Li, X.; Chen, L.; Shen, Z.; Guan, Y. Colorimetric Sensing of Anions in Water Using Ratiometric Indicator-Displacement Assay. Anal. Chim. Acta. 2012, 743, 1–8. doi:10.1016/j.aca.2012.06.041
  • Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Suslick, K. S. A Colorimetric Sensor Array for Identification of Toxic Gases Below Permissible Exposure Limits. Chem. Commun. 2010a, 46, 2037–2039. doi:10.1039/B926848K
  • Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Zhong, W.; Suslick, K. S. Colorimetric Sensor Array for Determination and Identification of Toxic Industrial Chemicals. Anal. Chem. 2010b, 82, 9433–9440. doi:10.1021/ac1020886
  • Feng, L.; Musto, C. J.; Suslick, K. S. A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. J. Am. Chem. Soc. 2010c, 132, 4046–4047. doi:10.1021/ja910366p
  • Gan, S. D.; Patel, K. R. Enzyme Immunoassay and Enzyme-Linked Immunosorbent Assay. J. Invest. Dermatol. 2013, 133, e12. doi:10.1038/jid.2013.287
  • Germain, M. E.; Knapp, M. J. Optical Explosives Detection: From Color Changes to Fluorescence Turn-On. Chem. Soc. Rev. 2009, 38, 2543–2555. doi:10.1039/B809631G
  • GeSiM. Integrating Worlds Micro Macro Technol. About GeSiM. http://gesim-bioinstruments-microfluidics.com/about-us/ Accessed on 06.17.16, 2015.
  • Gotor, R.; Costero, A. M.; Gil, S.; Parra, M.; Martínez-Máñez, R.; Sancenón, F. A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chem. Eur. J. 2011, 17, 11994–11997. doi:10.1002/chem.201102241
  • Graham, R. C. Data Analysis for the Chemical Sciences: A Guide to Statistical Techniques. VCH Publishers, Inc.: New York, 1993.
  • Griffatini, K. Paper Diagnostic Tests. MIT Technol. Rev. 2009, 112, 44–46.
  • Harris, C. M. Product Review: GC to Go. Anal. Chem. 2002, 74, 585A–589A. doi:10.1021/ac0221536
  • Hill Jr., H. H.; Martin, S. J. Conventional Analytical Methods for Chemical Warfare Agents. Pure Appl. Chem. 2002, 74, 2281–2291. doi:10.1351/pac200274122281
  • Holmes, A. Detechip: Molecular Color and Fluorescent Sensor Arrays for Small Molecules. US Patent 2010/0197516 A1, 2010.
  • Hong, J. I.; Chang, B.-Y. Development of The Smartphone-Based Colorimetry for Multi-Analyte Sensing Arrays. Lab Chip 2014, 14, 1725–1732. doi:10.1039/c3lc51451j
  • Horn, L. Army Testing iOS, Android Tablets and Smartphones for Combat Use. http://www.pcmag.com/article2/0,2817,2386386,00.asp Accessed on 03.02.16, PC Mag, 2011.
  • Hossain, S. M. Z.; Luckham, R. E.; Smith, A. M.; Lebert, J. M.; Davies, L. M.; Pelton, R. H.; Filipe, C. D. M.; Brennan, J. D. Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Sol−Gel-Derived Bioinks. Anal. Chem. 2009, 81, 5474–5483. doi:10.1021/ac900660p
  • Hu, J.; Wang, S.; Wang, L.; Li, F.; Pingguan-Murphy, B.; Lu, T. J.; Xu, F. Advances in Paper-Based Point-of-Care Diagnostics. Biosens. Bioelectron. 2014, 54, 585–597. doi:10.1016/j.bios.2013.10.075
  • Huang, X.; Zou, X.; Shi, J.; Guo, Y.; Zhao, J.; Zhang, J.; Hao, L. Determination of Pork Spoilage by Colorimetric Gas Sensor Array Based on Natural Pigments. Food Chem. 2014, 145, 549–554. doi:10.1016/j.foodchem.2013.08.101
  • ICx Technologies. ICx Technologies Introduces Fido® Verdict. http://www.businesswire.com/news/home/20090608005149/en/ICx-Technologies-Introduces-Fido%C2%AE-Verdict%E2%84%A2. Accessed on 06.08.16, Business Wire, 2009.
  • InnovaPrep LLC. The Macro to Micro Interface. ACD-200 Bobcat. http://innovaprep.com/products/acd-200-bobcat-aerosol-collector/ Accessed on 04.08.16, 2013.
  • Institute of Medicine. Chemical and Biological Terrorism: Research and Development to Improve Civilian Medical Response. The National Academies Press: Washington, DC, 1999.
  • Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick, K. S. Colorimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 2006, 78, 3591–3600. doi:10.1021/ac052111s
  • Jenkins, T. F.; Walsh, M. E. Development of Field Screening Methods for TNT, 2,4-DNT and RDX in Soil. Talanta 1992, 39, 419–428. doi:10.1016/0039-9140(92)80158-A
  • Johnke, H.; Batres, G.; Wilson, M.; Holmes, A. E.; Sikich, S. Detecting Concentration of Analytes with DETECHIP: A Molecular Sensing Array. J. Sens. Technol. 2013, 3, 94–99. doi:10.4236/jst.2013.33015
  • Kannan, B.; Jahanshahi-Anbuhi, S.; Pelton, R. H.; Li, Y.; Filipe, C. D. M.; Brennan, J. D. Printed Paper Sensors for Serum Lactate Dehydrogenase using Pullulan-Based Inks to Immobilize Reagents. Anal. Chem. 2015, 87, 9288–9293. doi:10.1021/acs.analchem.5b01923
  • Kellogg, M. Detection of Biological Agents Used for Terrorism: Are We Ready? Clin. Chem. 2010, 56, 10–15. doi:10.1373/clinchem.2009.139493
  • Kelly, B. S.; Levy, J. G.; Sikora, L. The Use of the Enzyme-Linked Immunosorbent Assay (ELISA) for the Detection and Quantification of Specific Antibody from Cell Cultures. Immunology 1979, 37, 45–52.
  • Kemling, J.W.; Suslick, K. S. Nanoscale Porosity in Pigments for Chemical Sensing. Nanoscale 2011, 3, 1971–1973. doi:10.1039/C0NR00963F
  • Kemp, R. S. Environmental Detection of Clandestine Nuclear Weapon Programs. Annu. Rev. Earth Planet. Sci. 2016, 44. doi:10.1146/annurev-earth-060115-012526
  • Li, C.; Vandenberg, K.; Prabhulkar, S.; Zhu, X.; Schneper, L.; Methee, K.; Rosser, C. J.; Almeide, E. Paper Based Point-of-Care Testing Disc for Multiplex Whole Cell Bacteria Analysis. Biosens. Bioelectron. 2011, 26, 4342–4348. doi:10.1016/j.bios.2011.04.035
  • Li, Z.; Bassett, W. P.; Askim, J. R.; Suslick, K. S. Differentiation Among Peroxide Explosives with an Optoelectronic Nose. Chem. Commun. 2015a, 51, 15312–15315. doi:10.1039/C5CC06221G
  • Li, Z.; Jang, M.; Askim, J. R.; Suslick, K. S. Identification of Accelerants, Fuels and Post-Combustion Residues Using a Colorimetric Sensor Array. Analyst 2015b, 140, 5929–5935. doi:10.1039/C5AN00806A
  • Liana, D. D.; Raguse, B.; Gooding, J. J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors 2012, 12, 11505–11526. doi:10.3390/s120911505
  • Lim, S. H.; Feng, L.; Kemling, J. W.; Musto, C. J.; Suslick, K. S. An Optoelectronic Nose for the Detection of Toxic Gases. Nat. Chem. 2009, 1, 562–567. doi:10.1038/nchem.360
  • Lopez-Ruiz, N.; Curto, V. F.; Erenas, M. M.; Benito-Lopez, F.; Diamond, D.; Palma, A. J.; Capitan-Vallvey, L. F. Smartphone-Based Simultaneous pH and Nitrite Colorimetric Determination for Paper Microfluidic Devices. Anal. Chem. 2014, 86, 9554–9562. doi:10.1021/ac5019205
  • Lyon, M.; Groathouse, J.; Beaber, J.; Turner, L. M.; Rouhier, K. A.; Wilson, M. V.; Symonsbergen, D. J.; Sikich, S. M.; Holmes, A. E. DETECHIP®: An Improved Molecular Sensing Array. J. Forensic Res. 2011, 2, 1000126. doi:10.4172/2157-7145.1000126
  • Lyon, M.; Wilson, M. V.; Rouhier, K. A.; Symonsbergen, D. J.; Bastola, K.; Thapa, I.; Holmes, A. E.; Sikich, S. M.; Jackson, A. Digital Image Analysis for DETECHIP® Code Determination. Signal Image Process. 2012, 3, 51–63. doi:10.5121/sipij.2012.3405
  • Mach, P. M.; McBride, E. M.; Sasiene, Z. J.; Brigance, K. R.; Kennard, S. K.; Wright, K. C.; Verbeck, G. F. Vehicle-Mounted Portable Mass Spectrometry System for the Covert Detection via Spatial Analysis of Clandestine Methamphetamine Laboratories. Anal. Chem. 2015, 87, 11501–11508. doi:10.1021/acs.analchem.5b03269
  • Mahmoudi, M.; Lohse, S. E.; Murphy, C. J.; Suslick, K. S. Identification of Nanoparticles with a Colorimetric Sensor Array. ACS Sens. 2016, 1, 17–21. doi:10.1021/acssensors.5b00014
  • Martinez-Olmos, A.; Capel-Cuevas, S.; López-Ruiz, N.; Palma, A. J.; Orbe, I. de; Capitán-Vallvey, L. F. Sensor Array-Based Optical Portable Instrument for Determination of pH. Sens. Actuators B: Chem. 2011, 156, 840–848. doi:10.1016/j.snb.2011.02.052
  • Marvin, B.; Garabino, J. J. The Identification of Barbiturates, Narcotics, and Patented Specialties by X-Ray Defraction. J. Crim. Law Criminol. Police Sci. 1953, 44, 525–530. doi:10.2307/1140114
  • Matos, C. R. S.; Costa, Jr., N. B.; Gimenez, I. F. Principal Component Analysis of X-ray Diffraction Patterns to Yield Morphological Classification of Brucite Particles. Anal. Chem. 2007, 79, 2091–2095. doi:10.1021/ac061991n
  • Mazzone, P. J.; Wang, X.-F.; Xu, Y.; Mekhail, T.; Beukemann, M. C.; Na, J.; Kemling, J. W.; Suslick, K. S.; Sasidhar, M. Exhaled Breath Analysis with a Colorimetric Sensor Array for the Identification and Characterization of Lung Cancer. J. Thorac. Oncol. 2012, 7, 137–142. doi:10.1097/JTO.0b013e318233d80f
  • McKone, T. E.; Huey, B. M.; Downing, E.; Duffy, L. M. (Eds.). Appendix D: Detecting and Monitoring Chemical Agents. In Strategies to Protect the Health of Deployed U.S. Forces: Detecting, Characterizing, and Documenting Exposures. National Academy Press: Washington, DC, 2000.
  • Mei, Q.; Huarong, J.; Li, Y.; Yisibashaer, W.; Chen, J.; Li, B. N.; Zhang, Y. Smartphone Based Visual and Quantitative Assays on Upconversional Paper Sensor. Biosens. Bioelectron. 2016, 75, 427–432. doi:10.1016/j.bios.2015.08.054
  • Mei, Q.; Zhang, Z. Photoluminescent Graphene Oxide Ink to Print Sensors onto Microporous Membranes for Versatile Visualization Bioassays. Angew. Chem. Int. Ed. 2012, 51, 5602–5606. doi:10.1002/anie.201201389
  • Minami, T.; Esipenko, N. A.; Akdeniz, A.; Zhang, B.; Isaacs, L.; Anzenbacher, Jr., P. Multianalyte Sensing of Addictive Over-the-Counter (OTC) Drugs. J. Am. Chem. Soc. 2013, 135, 15238–15243. doi:10.1021/ja407722a
  • Morris, J. A. Modified Cobalt Thiocyanate Presumptive Color Test for Ketamine Hydrochloride. J. Forensic Sci. 2007, 52, 84–87. doi:10.1111/j.1556-4029.2006.00331.x
  • Musto, C. J.; Lim, S. H.; Suslick, K. S. Colorimetric Detection and Identification of Natural and Artificial Sweeteners. Anal. Chem. 2009, 81, 6526–6533. doi:10.1021/ac901019g
  • Musto, C. J.; Suslick, K. S. Differential Sensing of Sugars by Colorimetric Arrays. Curr. Opin. Chem. Biol. 2010, 14, 758–766. doi:10.1016/j.cbpa.2010.07.006
  • National Institute of Standards and Technology (NIST). Color Test Reagents/Kits for Preliminary Identification of Drugs of Abuse NIJ Standard-0604.01. Technical Report No. NCJ 183258. US Department of Justice: Washington, DC, 2000.
  • National Research Council. Human Exposure Assessment for Airborne Pollutants: Advances and Opportunities. The National Academies Press: Washington, DC, 1991.
  • National Research Council. Technical Assessment of the Man-in-Simulant Test Program. The National Academies Press: Washington, DC, 1997a.
  • National Research Council. Energy-Efficient Technologies for the Dismounted Soldier. The National Academies Press: Washington, DC, 1997b.
  • National Research Council. Tooele Chemical Agent Disposal Facility: Update on National Research Council Recommendations. The National Academies Press: Washington, DC, 1999.
  • Negrusz, A.; Moore, C.; Deitermann, D.; Lewis, D.; Kaleciak, K.; Kronstrand, R.; Feeley, B.; Niedbala, R. S. Highly Sensitive Micro-Plate Enzyme Immunoassay Screening and NCl-GC-MS Confirmation of Flunitrazepam and Its Major Metabolite 7-Aminoflunitrazepam in Hair. J. Anal. Toxicol. 1999, 23, 429–435. doi:10.1093/jat/23.6.429
  • O'Neal, C. L.; Crouch, D. J.; Fatah, A. A. Validation of Twelve Chemical Spot Tests for the Detection of Drugs of Abuse. Forensic Sci. Int. 2000, 109, 189–201. doi:10.1016/S0379-0738(99)00235-2
  • Okuom, M. O.; Holmes, A. E. Developing a Color-Based Molecular Sensing Device: DETECHIP®. Sens. Transducers, 2014, 183, 30–33.
  • Palacios, M. A.; Nishiyabu, R.; Marquez, M.; Anzenbacher Jr., P. Supramolecular Chemistry Approach to the Design of a High-Resolution Sensor Array for Multianion Detection in Water. J. Am. Chem. Soc. 2007, 129, 7538–7544. doi:10.1021/ja0704784
  • Parolo, C.; Merkoci, A. Paper-Based Nanobiosensors for Diagnostics. Chem. Soc. Rev. 2013, 42, 450–457. doi:10.1039/C2CS35255A
  • Patton, C. J.; Rawlinson, M. B.; Pappe, P. J. NanoLAB, an Automatic, Field Deployable Analyzer for Nutrient Determinations Using Discrete Sample Aliquots. In: Abstracts of Papers, 234th ACS National Meeting, Boston, MA, United States, August 19–23, 2007. American Chemical Society, 2007, p. ENVR–076.
  • Perkins, M. D.; Kessel, M. What Ebola Tells us About Outbreak Diagnostic Readiness. Nat. Biotechnol. 2015, 33, 464–469. doi:10.1038/nbt.3215
  • Peters, K. L.; Corbin, I.; Kaufman, L. M.; Zreibe, K.; Blanes, L.; McCord, B. R. Simultaneous Colorimetric Detection of Improvised Explosive Compounds Using Microfluidic Paper-Based Analytical Devices (μPADs). Anal. Methods 2015, 7, 63–70. doi:10.1039/C4AY01677G
  • Qian, S.; Leng, Y.; Lin, H. Strong Base Pre-Treatment for Colorimetric Sensor Array Detection and Identification of N-Methyl Carbamate Pesticides. RSC Adv. 2016, 6, 7902–7907. doi:10.1039/C5RA25805G
  • Qian, S.; Lin, H. Colorimetric Sensor Array for Detection and Identification of Organophosphorus and Carbamate Pesticides. Anal. Chem. 2015, 87, 5395–5400. doi:10.1021/acs.analchem.5b00738
  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2015.
  • Rakow, N. A.; Suslick, K. S. A Colorimetric Sensor Array for Odour Visualization. Nature 2000, 406, 710–713. doi:10.1038/35021028
  • Ranft, A.; Niekiel, F.; Pavlichenko, I.; Stock, N.; Lotsch, B.V. Tandem MOF-Based Photonic Crystals for Enhanced Analyte-Specific Optical Detection. Chem. Mater. 2015, 27, 1961–1970. doi:10.1021/cm503640c
  • Rankin, J. M.; Zhang, Q.; LaGasse, M. K.; Zhang, Y.; Askim, J. R.; Suslick, K. S. Solvatochromic Sensor Array for the Identification of Common Organic Solvents. Analyst. 2015, 140, 2613–2617. doi:10.1039/C4AN02253J
  • Safavi, A.; Maleki, N.; Rostamzadeh, A.; Maesum, S. CCD Camera Full Range pH Sensor Array. Talanta 2007, 71, 498–501. doi:10.1016/j.talanta.2006.04.030
  • Sajid, M.; Kawde, A.-N.; Daud, M. Designs, Formats and Applications of Lateral Flow Assay: A Literature Review. J. Saudi Chem. Soc. 2015, 19, 689–705. doi:10.1016/j.jscs.2014.09.001
  • Salinas, Y.; Martínez-Máñez, R.; Marcos, M. D.; Sancenón, F.; Costero, A. M.; Parra, M.; Gil, S. Optical Chemosensors and Reagents to Detect Explosives. Chem. Soc. Rev. 2012, 41, 1261–1296. doi:10.1039/C1CS15173H
  • Salinas, Y.; Ros-Lis, J. V.; Vivancos, J.-L.; Martínez-Máñez, R.; Aucejo, S.; Herranz, N.; Lorente, I.; Garcia, E. A Chromogenic Sensor Array for Boiled Marinated Turkey Freshness Monitoring. Sens. Actuators B: Chem. 2014a, 190, 326–333. doi:10.1016/j.snb.2013.08.075
  • Salinas, Y.; Ros-Lis, J. V.; Vivancos, J.-L.; Martínez-Máñez, R.; Marcos, M. D.; Aucejo, S.; Herranz, N.; Lorente, I.; Garcia, E. A Novel Colorimetric Sensor Array for Monitoring Fresh Pork Sausages Spoilage. Food Control 2014b, 35, 166–176. doi:10.1016/j.foodcont.2013.06.043
  • Salles, M. O.; Meloni, G. N.; de Aaujo, W. R.; Paixão, T. R. L. C. Explosive Colorimetric Discrimination Using a Smartphone, Paper Device and Chemometrical Approach. Anal. Methods 2014, 6, 2047–2052. doi:10.1039/c3ay41727a
  • SBIR. ARMY 15.1 Small Business Innovation Research (SBIR) Proposal Submission Instructions. http://www.acq.osd.mil/osbp/sbir/solicitations/sbir20151/army151.htm Accessed 04.08.16, 2015.
  • Schaefer, S. Colorimetric Water Quality Sensing with Mobile Smart Phones. The University of British Columbia: Okanagan, 2014.
  • Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. doi:10.1038/nmeth.2089
  • Schulte-Ladbeck, R.; Vogel, M.; Karst, U. Recent Methods for the Determination of Peroxide-Based Explosives. Anal. Bioanal. Chem. 2006, 386, 559–565. doi:10.1007/s00216-006-0579-y
  • Selby, Rachel C. DRSKO Project Ramping up Quickly to Production. US Army. https://www.army.mil/article/131773/DRSKO_project_ramping_up_quickly_to_production/ Accessed on 06.17.16. 2014.
  • Sener, G.; Uzun, L.; Denizli, A. Colorimetric Sensor Array Based on Gold Nanoparticles and AminoAcids for Identification of Toxic Metal Ions in Water. ACS Appl. Mater. Interfaces 2014, 6, 18395–18400. doi:10.1021/am5071283
  • Sharma, S. P.; Lahiri, S. C. A Rapid and Low Cost Sensitive Method of On- spot Detection of RDX (Cyclonite). J. Indian Chem. Soc. 2006, 83, 934–935.
  • Shen, L.; Hagen, J. A.; Papautsky, I. Point-of-Care Colorimetric Detection with a Smartphone. Lab Chip 2012, 12, 4240–4243. doi:10.1039/C2LC40741H
  • Sicard, C.; Glen, C.; Aubie, B.; Wallace, D.; Jahanshahi-Anbuhi, S.; Pennings, K.; Daigger, G. T.; Pelton, R.; Brennan, J. D.; Filipe, C. D. M. Tools for Water Quality Monitoring and Mapping Using Paper-Based Sensors and Cell Phones. Water Res. 2015, 70, 360–369. doi:10.1016/j.watres.2014.12.005
  • Sickles, J. War on Terror Taking a Toll on Bomb Dog Supply. Yahoo News. https://www.yahoo.com/news/bomb-dogs-shortage-us-homeland-security-airport-195929824.html Accessed on 03.25.16, 2016.
  • Sidell, F. R. Chemical Warfare Agents, In: Military Preventive Medicine: Mobilization and Deployment, Textbooks of Military Medicine; Kelley, P. W., Ed.; Borden Institute, Walter Reed Army Medical Center: Washington, DC, 2003; pp. 611–625.
  • Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. New Colorimetric Cytotoxicity Assay for Anticancer-Drug Screening. J. Natl. Cancer Inst. 1990, 82, 1107–1112. doi:10.1093/jnci/82.13.1107
  • Smith, A.; Jackson, A.; Wilson, M. V.; Trauernicht, M.; Holmes, A. E. Improved Image Analysis of DETECHIP® Allows for Increased Specificity in Drug Discrimination. J. Forensic Res. 2012, 3, 100161. doi:10.4172/2157-7145.1000161
  • Smith, J. E.; Griffin, D. K.; Leny, J. K.; Hagen, J. A.; Chávez, J. L.; Kelley-Loughnane, N. Colorimetric Detection with Aptamer-Gold Nanoparticle Conjugates Coupled to an Android-Based Color Analysis Application for Use in the Field. Talanta 2014, 121, 247–255. doi:10.1016/j.talanta.2013.12.062
  • Snyder, D. T.; Pulliam, C. J.; Ouyang, Z.; Cooks, R. G. Miniature and Fieldable Mass Spectrometers: Recent Advances. Anal. Chem. 2016, 88, 2–29. doi:10.1021/acs.analchem.5b03070
  • Soga, T.; Jimbo, Y.; Suzuki, K.; Citterio, D. Inkjet-Printed Paper-Based Colorimetric Sensor Array for the Discrimination of Volatile Primary Amines. Anal. Chem. 2013, 85, 8973–8978. doi:10.1021/ac402070z
  • Soldat, D. J.; Barak, P.; Lepore, B. J. Microscale Colorimetric Analysis Using a Desktop Scanner and Automated Digital Image Analysis Douglas. J. Chem. Educ. 2009, 86, 617–620. doi:10.1021/ed086p617
  • Sudweeks, W. B.; Clark, G. M.; Chen, F. M. Chemical Explosives and Rocket Propellants. In: Riegel's Handbook of Industrial Chemistry; Kent, J. A., Ed.; Springer Science+Business Media, LLC: New York, 1992.
  • Suslick, B. A.; Feng, L.; Suslick, K. S. Discrimination of Complex Mixtures by a Colorimetric Sensor Array: Coffee Aromas. Anal. Chem. 2010, 82, 2067–2073. doi:10.1021/ac902823w
  • Suslick, K. S. An Optoelectronic Nose:“Seeing” Smells by Means of Colorimetric Sensor Arrays. MRS Bull. 2004, 29, 720–725. doi:10.1557/mrs2004.209
  • Suslick, K. S.; Bailey, D. P.; Ingison, C. K.; Janzen, M.; Kosal, M. E.; McNamara III, W. B.; Rakow, N. A.; Sen, A.; Weaver, J. J.; Wilson, J. B.; Zhang, C.; Nakagaki, S. Seeing Smells: Development of an Optoelectronic Nose. Quím. Nova 2007, 30, 677–681. doi:10.1590/S0100-40422007000300029
  • Švábenská, E. Systems for Detection and Identification of Biological Aerosols. Def. Sci. J. 2012, 62, 404–411. doi:10.14429/dsj.62.1251
  • S2 Threat Detection Technologies. Dry Explosive Test Kit. http://iabs.com/dry-explosive-test-kits/ Accessed on 01.12.16, 2015.
  • Turner, R. B. Transitioning Analytical Instrumentation from the Laboratory to Harsh Environments. Pure Appl. Chem. 2002, 74, 2317–2322. doi:10.1351/pac200274122317
  • US Department of Defense. The Fox NBC Reconnaissance Vehicle. Information Paper. GULFLINK: Office of the Special Assistant for Gulf War Illnesses. http://www.gulflink.osd.mil/fox_vehicle_ii/index.html Accessed on 06.21.16, 2001.
  • Veerabuthiran, S.; Razdan, A. K. LIDAR for Detection of Chemical and Biological Warfare Agents. Def. Sci. J. 2011, 61, 241–250. doi:10.14429/dsj.61.556
  • Williams, P.; Pate, M. E.; Holmes, A.; Burks, R. Colorimetric Sensors for the Detection of Explosives and Explosive Residues. Presented at the CBRNe Convergence, Orlando, FL, 2015.
  • Wing, N. When Probable Cause Looks More Like “Meh, Maybe?” Cause. 2015.
  • Wold, S.; Johansson, E.; Jellum, E.; Bjørnson, I.; Nesbakken, R. Application of Simca Multivariate Data Analysis to the Classification of Gas Chromatographic Profiles of Human Brain Tissues. Anal. Chim. Acta 1981, 133, 251–259. doi:10.1016/S0003-2670(01)83199-8
  • Workman, Jr., J.; Koch, M.; Lavine, B.; Chrisman, R. Process Analytical Chemistry. Anal. Chem. 2009, 81, 4623–4643. doi:10.1021/ac900778y
  • Xu, S.; Lu, X.; Yao, C.; Huang, F.; Jiang, H.; Hua, W.; Na, N.; Liu, H.; Ouyang, J. A Visual Sensor Array for Pattern Recognition Analysis of Proteins Using Novel Blue-Emitting Fluorescent Gold Nanoclusters. Anal. Chem. 2014, 86, 11634–11639. doi:10.1021/ac502643s
  • Yetisen, A. K.; Akram, M. S.; Lowe, C. R. Paper-Based Microfluidic Point-of-Care Diagnostic Devices. Lab Chip 2013, 13, 2210–2251. doi:10.1039/C3LC50169H
  • Yetisen, A. K.; Martinez-Hurtado, J. L.; Garcia-Melendrez, A.; Vasconcellos, F. da C.; Lowe, C. R. A smartphone algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sens. Actuators B: Chem. 2014, 196, 156–160. doi:10.1016/j.snb.2014.01.077
  • Zhang, C.; Bailey, D. P.; Suslick, K. S. Colorimetric Sensor Arrays for the Analysis of Beers:  A Feasibility Study. J. Agric. Food Chem. 2006, 54, 4925–4931. doi:10.1021/jf060110a
  • Zhang, C.; Suslick, K. S. A Colorimetric Sensor Array for Organics in Water. J. Am. Chem. Soc. 2005, 127, 11548–11549. doi:10.1021/ja052606z
  • Zhang, C.; Suslick, K. S. Colorimetric Sensor Array for Soft Drink Analysis. J. Agric. Food Chem. 2007, 55, 237–242. doi:10.1021/jf0624695
  • Zhang, Y.; Askim, J. R.; Zhong, W.; Orlean, P.; Suslick, K. S. Identification of Pathogenic Fungi with an Optoelectronic Nose. Analyst 2014, 139, 1922–1928. doi:10.1039/C3AN02112B