685
Views
12
CrossRef citations to date
0
Altmetric
Review Article

Non-Enzymatic Electrochemistry in Characterization and Analysis of Steroid Compounds

, ORCID Icon, &
Pages 384-404 | Published online: 30 May 2017

References

  • Abell, L. L.; Levy, B. B.; Brodie, B. B.; Kendall, F. E. A Simplified Method for the Estimation of Total Cholesterol in Serum and Demonstration of its Specificity. J. Biol. Chem. 1952, 195, 357–366.
  • Aghaei, A.; Milani Hosseini, M. R.; Najafi, M. A Novel Capacitive Biosensor for Cholesterol Assay that Uses an Electropolymerized Molecularly Imprinted Polymer. Electrochim. Acta 2010, 55, 1503–1508. DOI: 10.1016/j.electacta.2009.09.033.
  • Agnihotri, N.; Chowdhury, A. D.; De, A. Non-Enzymatic Electrochemical Detection of Cholesterol Using β-cyclodextrin Functionalized Graphene. Biosens. Bioelectron. 2015, 63, 212–217. DOI: 10.1016/j.bios.2014.07.037.
  • Albery, W. J.; Lennox, R. B.; Magner, E.; Rao, G.; Armstrong, D.; Dowling, R. H.; Murphy, G. M. An Amperometric Enzyme Electrode for Bile Acids. Anal. Chim. Acta. 1993, 281, 655–661. DOI: 10.1016/0003-2670(93)85027-H.
  • Bartling, B.; Li, L.; Liu, C.-C. Determination of Total Bile Acid Levels Using a Thick-Film Screen-Printed Ir/C Sensor for the Detection of Liver Disease. Analyst 2009, 134, 973–979. DOI: 10.1039/b900266a.
  • Beato, M. Gene Regulation by Steroid Hormones. Cell 1989, 56, 335–344. DOI: 10.1016/0092-8674(89)90237-7.
  • Beato, M.; Chávez, S.; Truss, M. Transcriptional Regulation by Steroid Hormones. Steroids 1996, 61, 240–251. DOI: 10.1016/0039-128X(96)00030-X.
  • Benesova, L.; Hammer, P.; Vosahlova, J.; Zavazalova, J.; Peckova, K. Electrochemical Behavior of Oxygen-Terminated Boron-Doped Diamond Electrodes in Different Electrolyte Media. XXXIV. Modern Electrochemical Methods – Book of Proceedings, Jetrichovice, Czech Republic, May 19-23, 2014. Fojta, M.; Navrátil, T.; Pecková, K., Eds. BEST Servis: Ústí nad Labem, 2014; pp. 19–22.
  • Björkhem, I. Mechanism of Bile Acid Biosynthesis in Mammalian Liver. In Sterols and Bile Acids; Danielsson, H.; Sjövall, J., Eds.; Elsevier: Amsterdam, Netherlands, 1985; Vol. 12; p. 231.
  • Brycht, M.; Lochyński, P.; Barek, J.; Skrzypek, S.; Kuczewski, K. Schwarzova-Peckova, K. Electrochemical Study of 4-chloro-3-methylphenol on Anodically Pretreated Boron-Doped Diamond Electrode in the Absence and Presence of a Cationic Surfactant. J. Electroanal. Chem. 2016, 771, 1–9. DOI: 10.1016/j.jelechem.2016.03.031.
  • Carey, M. C. Physical-Chemical Properties of Bile Acids and Their Salts. In Sterols and Bile Acids; Danielsson, H.; Sjövall, J., Eds.; Elsevier: Amsterdam, Netherlands, 1985; Vol. 12; p. 345.
  • Cesarino, I.; Hümmelgen, I. A. An Additional Tool Towards Overcoming Absence of Specificity of Carbon Nanostructure-Based Electrochemical Sensors—Application to Estriol and Estradiol Detection and Distinction. J. Solid State Electrochem. 2015, 19, 3045–3050. DOI: 10.1007/s10008-015-2923-7.
  • Chaplin, M. F. Analysis of Bile Acids and Their Conjugates Using High-pH Anion-Exchange Chromatography With Pulsed Amperometric Detection. J. Chromatogr. B 1995, 664, 431–434. DOI: 10.1016/0378-4347(94)00488-Q.
  • Chiang, W.-H.; Chen, P.-Y.; Nien, P.-C.; Ho, K.-C. Amperometric Detection of Cholesterol Using an Indirect Electrochemical Oxidation Method. Steroids 2011, 76, 1535–1540. DOI: 10.1016/j.steroids.2011.09.003.
  • Chou, L. C. S.; Liu, C. C. Development of a Molecular Imprinting Thick Film Electrochemical Sensor for Cholesterol Detection. Sens. Actuators B 2005, 110, 204–208. DOI: 10.1016/j.snb.2005.01.031.
  • Coetzee, J. F.; Kolthoff, I. M. Polarography in Acetonitrile. III. Brønsted Acids. Amperometric Titration of Amines with Perchloric Acid. Oxygen. J. Am. Chem. Soc. 1957, 79, 6110–6115. DOI: 10.1021/ja01580a003.
  • Cohen, A.; Hertz, H. S.; Mandel, J.; Paule, R. C.; Welch, M. J.; White, E.; Sniegoski, L. T. Total Serum Cholesterol by Isotope Dilution/Mass Spectrometry: A Candidate Definitive Method. Clin. Chem. 1980, 26, 854–860.
  • Cook, C. J. Real-Time Measurements of Corticosteroids in Conscious Animals Using an Antibody-Based Electrode. Nat. Biotechnol. 1997, 15, 467–471. DOI: 10.1038/nbt0597-467.
  • Council of Europe, European Directorate for the Quality of Medicines and Healthcare. Ursodeoxycholic acid assay. European Pharmacopoeia 5th Edition 2004c, 2662–2663.
  • Council of Europe, European Directorate for the Quality of Medicines and Healthcare. Chenodeoxycholic acid assay. European Pharmacopoeia 5th Edition 2004b, 1247–1248.
  • Council of Europe, European Directorate for the Quality of Medicines and Healthcare. Cholesterol assay, European Pharmacopoeia 5th Edition. 2004a, 1279–1280.
  • Daneshfar, A.; Khezeli, T.; Lotfi, H. J. Determination of Cholesterol in Food Samples Using Dispersive Liquid-Liquid Microextraction Followed by HPLC-UV. J. Chromatogr. B 2009, 877, 456–460. DOI: 10.1016/j.jchromb.2008.12.050.
  • de Boer, H. S.; Den Hartigh, J.; Ploegmakers, H. H. J. L.; Van Oort, W. J. Polarographic Analysis for Corticosteroids: Part 1. The Electroanalytical Properties of Corticosteroids. Anal. Chim. Acta 1978, 102, 141–155. DOI: 10.1016/S0003-2670(01)93468-3.
  • de Boer, H. S.; Lansaat, P. H.; Kooistra, K. R.; Van Oort, W. J. Polarographic Analysis for Corticosteroids: Part 3. Determination of Corticosteroids in Single-Component Tablets. Anal. Chim. Acta 1979, 111, 275–279. DOI: 10.1016/S0003-2670(01)93271-4.
  • de Boer, H. S.; Lansaat, P. H.; van Oort, W. J. Polarographic Analysis for Corticosteroids: Part 2. Determination of Corticosteroids in Single-Component Solutions, Suspensions, Ointments and Creams. Anal. Chim. Acta 1979, 11, 275–279. DOI: 10.1016/S0003-2670(01)93083-1.
  • de Boer, H. S.; Lansaat, P. H.; van Oort, W. J. Polarographic Analysis for Corticosteroids: Part 4. Determination of Corticosteroids in Multicomponent and Complex Pharmaceutical Preparations. Anal. Chim. Acta 1980a, 116, 69–76. DOI: 10.1016/S0003-2670(01)84315-4.
  • de Boer, H. S.; van Oort, W. J.; Zuman, P. Polarographic Analysis for Corticosteroids: Part 5. Reduction Mechanism of Halogen-Containing Corticosteroids and Analysis of Some Preparations. Anal. Chim. Acta 1980b, 120, 31–39. DOI: 10.1016/S0003-2670(01)84345-2.
  • de Boer, H. S.; van Oort, W. J.; Zuman, P. Polarographic Analysis of Corticosteroids: Part 6. Mechanism of Polarographic Electroreduction of Some Δ4-3-ketosteroids and Δ1,4-3-ketosteroids. Anal. Chim. Acta 1981, 130, 111–132. DOI: 10.1016/S0003-2670(01)84156-8.
  • Dekker, R.; van der Meer, R.; Olieman, C. Sensitive Pulsed Amperometric Detection of Free and Conjugated Bile Acids in Combination with Gradient Reversed-Phase HPLC. Chromatographia 1991, 31, 549–553. DOI: 10.1007/BF02279474.
  • Duncan, I. W.; Mather, A.; Cooper, G. R. The Procedure for the Proposed Cholesterol Reference Method; Clinical Chemistry Division, Center for Environmental Health, Centers for Disease Control, Public Health Service, U.S. Department of Health and Human Services: Atlanta, 1982.
  • Egawa, Y.; Ishida, Y.; Yamauchi, A.; Anzai, J.; Suzuki, I. Recognition of Bile Acids at Cyclodextrin-Modified Gold Electrodes. Anal. Sci. 2005, 21, 361–366. DOI: 10.2116/analsci.21.361.
  • Einaga, Y.; Foord, J. S.; Swain, G. M. Diamond Electrodes: Diversity and Maturity. MRS Bull. 2014, 39, 525–532. DOI: 10.1557/mrs.2014.94.
  • Erkkola, R. Recent Advances in Hormonal Contraception. Curr. Opin. Obstet. Gynecol. 2007, 19, 547–53. DOI: 10.1097/GCO.0b013e3282f1e7b6.
  • Espenshade, P. J.; Hughes, A. L. Regulation of Sterol Synthesis in Eukaryotes. Annu. Rev. Genet. 2007, 41, 401–427. DOI: 10.1146/annurev.genet.41.110306.130315.
  • European Commission Regulation of the European Parliament and of the Council 2016/0023 on Mercury, 2016. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM:2016:0039:FIN Accessed on [Sep 9, 2016].
  • Feroci, G.; Fazio, G.; Fini, A.; Zuman, P. Interaction Between Cu2+ Ions and Cholic-Acid Derivatives Followed By Polarography. J. Pharm. Sci. 1995, 84, 119–125. DOI: 10.1002/jps.2600840127.
  • Feroci, G.; Fini, A.; Fazio, G.; Roda, A.; Zuman, P. Reactions of Small Aggregates of Taurine Conjugates of Dihydroxy Bile Salts with Divalent Transition Metal Ions. Microchem. J. 1997, 55, 382–391. DOI: 10.1006/mchj.1996.1402.
  • Feroci, G.; Fini, A.; Fazio, G.; Zuman, P. The Role of Reaction Conditions in the Interaction of Cadmium(II) Ions with Cholate Anions. J. Colloid Interfac. Sci. 1994, 166, 180–190. DOI: 10.1006/jcis.1994.1284.
  • Feroci, G.; Fini, A.; Fazio, G.; Zuman, P. Interaction Between Dihydroxy Bile Salts and Divalent Heavy Metal Ions Studied by Polarography. Anal. Chem. 1995, 67, 4077–4085. DOI: 10.1021/ac00118a008.
  • Feroci, G.; Fini, A.; Fazio, G.; Zuman, P. Effect of Divalent Transition Metal Ions on the Aggregation of Trihydroxy Bile Salts. J. Colloid Interfac. Sci. 1996, 178, 339–347. DOI: 10.1006/jcis.1996.0122.
  • Feroci, G.; Fini, A.; Zuman, P. Polarographic Study of the Interaction of Cholate Aggregates With Cu2+, Pb2+ and Cd2+ Ions. Bioelectrochem. Bioenerg. 1992, 29, 91–102. DOI: 10.1016/0302-4598(92)80056-M.
  • Feroci, G.; Roda, A.; Fini, A. Study of the Interaction Between Oxygen and Bile Salts. Bioelectrochemistry 2007, 70, 524–531. DOI: 10.1016/j.bioelechem.2006.12.002.
  • Ferri, T.; Campanella, L.; De Angelis, G. Differential-Pulse Polarographic Determination of Cholic Acids. Analyst 1984, 109, 923–925. DOI: 10.1039/AN9840900923.
  • Fini, A.; Feroci, G.; Fazio, G.; Zuman, P. Interaction of Iron(II) With Bile Salts. J. Inorg. Biochem. 1997, 68, 251–256. DOI: 10.1016/S0162-0134(97)00093-7.
  • Fragkaki, A. G.; Angelis, Y. S.; Koupparis, M.; Tsantili-Kakoulidou, A.; Kokotos, G.; Georgakopoulos, C. Structural Characteristics of Anabolic Androgenic Steroids Contributing to Binding to the Androgen Receptor and to Their Anabolic and Androgenic Activities. Applied Modifications in the Steroidal Structure. Steroids 2009, 74, 172–197. DOI: 10.1016/j.steroids.2008.10.016.
  • Gatti, R.; Roda, A.; Cerre, C.; Bonazzi, D.; Cavrini, V. HPLC-Fluorescence Determination of Individual Free and Conjugated Bile Acids in Human Serum. Biomed. Chromatogr. 1997, 11, 11–15. DOI: 10.1002/(SICI)1099-0801(199701)11:1<11::AID-BMC608>3.0.CO;2-2.
  • Gill, J. F.; Kennelly, P. J.; Rodwell, V. W. Control Mechanisms in Sterol Uptake and Biosynthesis. In Sterols and Bile Acids; Danielsson, H.; Sjövall, J., Eds.; Elsevier: Amsterdam, Netherlands, 1985; Vol. 12; p. 41.
  • Gong, J. L.; Gong, F. C.; Zeng, G. M.; Shen, G. L.; Yu, R. Q. A Novel Electrosynthesized Polymer Applied to Molecular Imprinting Technology. Talanta 2003, 61, 447–453. DOI: 10.1016/S0039-9140(03)00317-5.
  • Görög, S. Quantitative Analysis of Steroids; Elsevier: Amsterdam, 1983.
  • Goyal, R. N.; Agrawal, B. Carbon Nanotube-Based Electrochemical Sensor for the Determination of Halobetasol Propionate, a Topical Corticosteroid. J. Appl. Electrochem. 2012, 42, 31–39. DOI: 10.1007/s10800-011-0368-y.
  • Goyal, R. N.; Gupta, V. K.; Chatterjee, S. Electrochemical Investigations of Corticosteroid Isomers - Testosterone and Epitestosterone and their Simultaneous Determination in Human Urine. Anal. Chim. Acta 2010, 657, 147–153. DOI: 10.1016/j.aca.2009.10.035.
  • Goyal, R. N.; Kaur, D.; Agrawal, B.; Yadav, S. K. Electrochemical Investigations of Mometasone Furoate, a Topical Corticosteroid, in Micellar Medium. J. Electroanal. Chem. 2013, 695, 17–23. DOI: 10.1016/j.jelechem.2013.02.022.
  • Goyal, R. N.; Oyama, M.; Umar, A. A.; Tyagi, A.; Bachheti, N. Determination of Methylprednisolone Acetate in Biological Fluids at Gold Nanoparticles Modified ITO Electrode. J. Pharm. Biomed. Anal. 2007, 44, 1147–1153. DOI: 10.1016/j.jpba.2007.05.033.
  • Griffiths, W. J.; Sjövall, J. Bile Acids: Analysis in Biological Fluids and Tissues. J. Lipid Res. 2010, 51, 23–41. DOI: 10.1194/jlr.R001941-JLR200.
  • Groves, J. T.; Neumann, R. Enzymic Regioselectivity in the Hydroxylation of Cholesterol Catalyzed by a Membrane-Spanning Metalloporphyrin. J. Org. Chem. 1988, 53, 3891–3893. DOI: 10.1021/jo00251a054.
  • Hammes, S. R. The Further Redefining of Steroid-Mediated Signaling. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 2168–70. DOI: 10.1073/pnas.0530224100.
  • He, P.; Ye, J.; Fang, Y.; Suzuki, I.; Osa, T. Voltammetric Responsive Sensors for Organic Compounds Based on Organized Self-Assembled lipoyl-β-Cyclodextrin Derivative Monolayer on a Gold Electrode. Anal. Chim. Acta 1997, 337, 217–223. DOI: 10.1016/S0003-2670(96)00410-2.
  • Heubi, J. E.; Setchell, K. D. R.; Bove, K. E. Inborn Errors of Bile acid Metabolism. Semin. Liver Dis. 2007, 27, 282–294. DOI: 10.1055/s-2007-985073.
  • Heyns, K.; Blazejewicz, L. Katalytische Oxydation von Primären und Sekundären Hydroxylverbindungen mit Sauerstoff am Platinkontakt in Flüssiger Phase. Tetrahedron 1960, 9, 67–75. DOI: 10.1016/0040-4020(60)80054-3.
  • Hirano, Y.; Miyazaki, H.; Higashidate, S.; Nakayama, F. Analysis of 3-sulfated and Nonsulfated Bile Acids by One-Step Solvolysis and High Performance Liquid Chromatography. J. Lipid Res. 1987, 28, 1524–1529.
  • Hofmann, A. F. Bile Acids: The Good, the Bad, and the Ugly. News Physiol Sci. 1999a, 14, 24–29.
  • Hofmann, A. F. The Continuing Importance of Bile Acids in Liver and Intestinal Disease. Arch. Intern. Med. 1999b, 159, 2647–58. DOI: 10.1001/archinte.159.22.2647.
  • Hofmann, A. F.; Hagey, L. R. Bile Acids: Chemistry, Pathochemistry, Biology, Pathobiology, and Therapeutics. Cell. Mol. Life Sci. 2008, 65, 2461–2483. DOI: 10.1007/s00018-008-7568-6.
  • Hofmann, A. F.; Roda, A. Physicochemical Properties of Bile Acids and Their Relationship to Biological Properties: An Overview of the Problem. J. Lipid Res. 1984, 25, 1477–1489.
  • Hojo, K.; Hakamata, H.; Ito, A.; Kotani, A.; Furukawa, C.; Hosokawa, Y. Y.; Kusu, F. Determination of Total Cholesterol in Serum by High-Performance Liquid Chromatography With Electrochemical Detection. J. Chromatogr. A 2007, 1166, 135–141. DOI: 10.1016/j.chroma.2007.08.020.
  • Hojo, K.; Hakamata, H.; Kusu, F. Simultaneous Determination of Serum Lathosterol and Cholesterol by Semi-Micro High-Performance Liquid Chromatography with Electrochemical Detection. J. Chromatogr. B 2011, 879, 751–755. DOI: 10.1016/j.jchromb.2011.02.017.
  • Hojo, K.; Hakamata, H.; Takahashi, A.; Hosokawa, Y.-Y.; Kusu, F. Determination of Serum Cholestanol by Semi-Micro High-Performance Liquid Chromatography with Electrochemical Detection. Biomed. Chromatogr. 2010, 24, 600–605. DOI: 10.1002/bmc.1332.
  • Hosokawa, Y. Y.; Hakamata, H.; Murakami, T.; Aoyagi, S.; Kuroda, M.; Mimaki, Y.; Ito, A.; Morosawa, S.; Kusu, F. Electrochemical Oxidation of Cholesterol in Acetonitrile Leads to the Formation of Cholesta-4,6-dien-3-one. Electrochim. Acta 2009, 54, 6412–6416. DOI: 10.1016/j.electacta.2009.06.005.
  • Hoving, E. B. Chromatographic Methods in the Analysis of Cholesterol and Related Lipids. J. Chromatogr. B 1995, 671, 341–362. DOI: 10.1016/0378-4347(95)00223-6.
  • Hu, S.; Chen, Z.; Zhang, T. Adsorptive Stripping Voltammetry of Testosterone Propionate in Pharmaceutical Preparations. Fresenius J. Anal. Chem. 1993, 346, 1008–1010. DOI: 10.1007/BF00322768.
  • Ito, N.; Hakamata, H.; Kusu, F. Simultaneous Determination of β-sitosterol, Campesterol, Stigmasterol, and Brassicasterol in Serum by High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Methods 2010, 2, 174. DOI: 10.1039/B9AY00195F.
  • Ji, J.; Zhou, Z.; Zhao, X.; Sun, J.; Sun, X. Electrochemical Sensor Based on Molecularly Imprinted Film at Au Nanoparticles-Carbon Nanotubes Modified Electrode for Determination of Cholesterol. Biosens. Bioelectron. 2015, 66, 590–595. DOI: 10.1016/j.bios.2014.12.014.
  • Ji, R.; Wang, L.; Wang, G.; Zhang, X. Synthesize Thickness Copper(I) Sulfide Nanoplates on Copper Rod and Its Application as Nonenzymatic Cholesterol Sensor. Electrochim. Acta 2014, 130, 239–244. DOI: 10.1016/j.electacta.2014.02.155.
  • Johnson, D. C.; LaCourse, W. R. Liquid Chromatography with Pulsed Electrochemical Detection at Gold and Platinum Electrodes. Anal. Chem. 1990, 62, 589A–597A. DOI: 10.1021/ac00209a001.
  • Kakiyama, G.; Muto, A.; Takei, H.; Nittono, H.; Murai, T.; Kurosawa, T.; Hofmann, A. F.; Pandak, W. M.; Bajaj, J. S. A Simple and Accurate HPLC Method for Fecal Bile Acid Profile in Healthy and Cirrhotic Subjects: Validation by GC-MS and LC-MS. J. Lipid Res. 2014, 55, 978–990. DOI: 10.1194/jlr.D047506.
  • Kemula, W.; Kutner, W. Alternating Voltage Polarographic Detection for High-Performance Liquid Chromatography and Its Evaluation for the Analysis of Bile Acids. J. Chromatogr. 1981, 204, 131–134. DOI: 10.1016/S0021-9673(00)81648-9.
  • Kim, J. B.; Park, J. W.; Lee, S. J.; Lee, Y. P. CMOS-Integrable Enzyme-Free Amperometric Cholesterol Nano-Biosensor for U-Health and POC Applications. J. Korean Phys. Soc. 2009, 54, 1779–1773. DOI: 10.3938/jkps.54.1769.
  • Klouda, J.; Nesměrák, K.; Schwarzová-Pecková, K. Bile Acids: Possibilities of Anodic Oxidation in Non-aqueous and Mixed Media at Selected Electrode Materials. XXXVI. Modern Electrochemical Methods – Book of Proceedings, Jetrichovice, Czech Republic, May 23-27, 2016. Fojta, M.; Navrátil, T.; Schwarzová, K., Eds. BEST Servis: Ústí nad Labem, 2016; pp. 100–104.
  • Kobayashi, N.; Oiwa, H.; Goto, J. Production and Characterization of Group-Specific Monoclonal Antibodies Recognizing Nonamidated, Glycine- and Taurine-Amidated Ursodeoxycholic Acid 7-N-acetylglucosaminides. J. Steroid Biochem. Mol. Biol. 1998, 64, 171–177. DOI: 10.1016/S0960-0760(97)00162-3.
  • Koide, S.; Ito, N.; Karube, I. Development of a Micro-Planar Amperometric Bile Acid Biosensor for Urinalysis. Biosens. Bioelectron. 2007, 22, 2079–2085. DOI: 10.1016/j.bios.2006.09.009.
  • Korshunov, I. A.; Kuznetsova, Z. B. Shchennikova Vosstanovlenie Slabykh Kislot na Rtutnom Kapelniom Katode. M. K. Zhur. Fiz. Khim. 1949, 1292–1298.
  • Kotani, A.; Hakamata, H.; Nakayama, N.; Kusu, F. Picomole Level Determination of Cholesterol by HPLC with Electrochemical Detection Using Boron-Doped Diamond Electrode After Performance Assessment Based on the FUMI Theory. Electroanalysis 2011, 23, 2709–2715. DOI: 10.1002/elan.201100223.
  • Kowalski, J.; Łotowski, Z.; Morzycki, J. W.; Płoszyńska, J.; Sobkowiak, A.; Wilczewska, A. Z. Unusual Electrochemical Oxidation of Cholesterol. Steroids 2008, 73, 543–548. DOI: 10.1016/j.steroids.2008.01.014.
  • Kowalski, J.; Płoszyńska, J.; Sobkowiak, A.; Morzycki, J. W.; Wilczewska, A. Z. Direct Electrochemical Acetoxylation of Cholesterol at the Allylic Position. J. Electroanal. Chem. 2005, 585, 275–280. DOI: 10.1016/j.jelechem.2005.09.003.
  • Kritchevsky, D. Chemistry of Bile Acids. In The Bile Acids: Chemistry, Physiology and Metabolism; Nair, P. P.; Kritchevsky, D., Eds.; Springer: New York, USA, 1971; vol. 1; pp. 1–10.
  • Kritchevsky, D.; Chen, S. C. Phytosterols—Health Benefits and Potential Concerns: A Review. Nutr. Res. 2005, 25, 413–428. DOI: 10.1016/j.nutres.2005.02.003.
  • Kushnir, M. M.; Rockwood, A. L.; Roberts, W. L.; Yue, B.; Bergquist, J.; Meikle, A. W. Liquid Chromatography Tandem Mass Spectrometry for Analysis of Steroids in Clinical Laboratories. Clin. Biochem. 2011, 44, 77–88. DOI: 10.1016/j.clinbiochem.2010.07.008.
  • LaCourse, W. R.; Johnson, D. C.; Rey, M. A.; Slingsby, R. W. Pulsed Amperometric Detection of Aliphatic Alcohols in Liquid Chromatography. Anal. Chem. 1991, 63, 134–139. DOI: 10.1021/ac00002a009.
  • Lawrance, D.; Williamson, C.; Boutelle, M. G.; Cass, A. E. G. Development of a Disposable Bile Acid Biosensor for Use in the Management of Cholestasis. Anal. Methods 2015, 7, 3714–3719. DOI: 10.1039/C5AY00372E.
  • Lee, Y. J.; Park, J. Y. Nonenzymatic Free-Cholesterol Detection via a Modified Highly Sensitive Macroporous Gold Electrode with Platinum Nanoparticles. Biosens. Bioelectron. 2010, 26, 1353–1358. DOI: 10.1016/j.bios.2010.07.048.
  • Levent, A.; Altun, A.; Yardım, Y.; Şentürk, Z. Sensitive Voltammetric Determination of Testosterone in Pharmaceuticals and Human Urine Using a Glassy Carbon Electrode in the Presence of Cationic Surfactant. Electrochim. Acta 2014, 128, 54–60. DOI: 10.1016/j.electacta.2013.10.024.
  • Li, J.; Peng, T.; Peng, Y. A Cholesterol Biosensor Based on Entrapment of Cholesterol Oxidase in a Silicic Sol-Gel Matrix at a Prussian Blue Modified Electrode. Electroanalysis 2003, 15, 1031–1037. DOI: 10.1002/elan.200390124.
  • Li, Y.; Bai, H.; Liu, Q.; Bao, J.; Han, M.; Dai, Z. A Nonenzymatic Cholesterol Sensor Constructed by Using Porous Tubular Silver Nanoparticles. Biosens. Bioelectron. 2010, 25, 2356–2360. DOI: 10.1016/j.bios.2010.03.036.
  • Liu, X.; Wang, L.; Zhang, S.; Deng, X.; Tang, X.; Huang, X. Electrochemical Behavior of Deoxycholic Acid on Multiwalled Carbon Nanotubes Modified Electrode. Electroanalysis 2006, 18, 2385–2388. DOI: 10.1002/elan.200603665.
  • Lubanda, H.; Vecka, M. Cholesterol: A Friend or Foe? Chem. Listy 2009, 103, 40–51.
  • Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Investigation of the Electrochemical and Electrocatalytic Behavior of Single-Wall Carbon Nanotube Film on a Glassy Carbon Electrode. Anal. Chem. 2001, 73, 915–920. DOI: 10.1021/ac000967l
  • Luo, L.; Li, F.; Zhu, L.; Ding, Y.; Deng, D. Electrochemical Sensing Platform of Natural Estrogens Based on the Poly(L-proline)-ordered Mesoporous Carbon Composite Modified Glassy Carbon Electrode. Sens. Actuators B 2013, 187, 78–83. DOI: 10.1016/j.snb.2012.09.056.
  • Lusis, A. J. Atherosclerosis. Nature 2000, 407, 233–241. DOI: 10.1038/35025203.
  • Macpherson, J. V. A Practical Guide to Using Boron Doped Diamond in Electrochemical Research. Phys. Chem. Chem. Phys. 2015, 17, 2935–49. DOI: 10.1039/c4cp04022h.
  • Maki, S.; Konno, K.; Takayama, H. Selective Oxidation of Terminal Isopropyl Groups to Tertiary Alcohols by Electrochemical Methodology. Tetrahedron Lett. 1997, 38, 7067–7070. DOI: 10.1016/S0040-4039(97)01650-X.
  • Makin, H. L. J.; Honour, J. W.; Shackleton, C. H. L. Extraction, Purification and Measurement of Steroids by High-Performance Liquid Chromatography, Gas-Liquid Chromatography and Mass Spectrometry. In Steroid Analysis; Makin, H. L. J.; Gower, D. B., Eds.; Springer: New York, USA, 2010; pp. 137–141.
  • Matsumoto, H. S. H.; Ota, I.; Nagaoka, T. Detection of Skin Cholesterol by a Molecularly Imprinted Electrode. J. Flow Injection Anal. 2008, 25, 81–84.
  • Matsunaga, I.; Hakamata, H.; Sadohara, K.; Kakiuchi, K.; Kusu, F. Determination of Oxysterols in Oxidatively Modified Low-Density Lipoprotein by Semi-Micro High-Performance Liquid Chromatography with Electrochemical Detection. Anal. Biochem. 2009, 393, 222–228. DOI: 10.1016/j.ab.2009.06.032.
  • Mckillop, A.; Young, D. W. Organic Synthesis Using Supported Reagents - Part I. J. Synthesis 1979, 6, 401–422. DOI: 10.1055/s-1979-28699.
  • Medici, A.; Pedrini, P.; De Battisti, A.; Fantin, G.; Fogagnolo, M.; Guerrini, A. Anodic Electrochemical Oxidation of Cholic Acid. Steroids 2001, 66, 63–69. DOI: 10.1016/S0039-128X(00)00185-9.
  • Milberg, C.; Kratohvil, J. P.; Zuman, P. Surface Orientation of Cholanoic Acids From Suppression of Polarographic Maxima. J. Colloid Interfac. Sci., 1988, 126, 63–68. DOI: 10.1016/0021-9797(88)90099-9.
  • Miller, W. L. Molecular Biology of Steroid Hormone Synthesis. Endocr. Rev. 1988, 9, 295–318. DOI: 10.1210/edrv-9-3-295.
  • Miyata, M.; Tohnai, N.; Hisaki, I. Supramolecular Chirality in Crystalline Assemblies of Bile Acids and Their Derivatives; Three-Axial, Tilt, Helical, and Bundle Chirality. Molecules 2007, 12, 1973–2000. DOI: 10.3390/12081973.
  • Morzycki, J. W.; Sobkowiak, A. Electrochemical Oxidation of Cholesterol. Beilstein J. Org. Chem. 2015, 11, 392–402. DOI: 10.3762/bjoc.11.45.
  • Munyentwali, A.; Zhu, L. Electrochemical Determination of Prednisolone at Ordered Mesoporous Carbon Modified Electrode: Application to Doping Monitoring. J. Electrochem. Soc. 2015, 162, H278–H282. DOI: 10.1149/2.0861504jes.
  • Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-Potential Stable NADH Detection at Carbon Nanotube Modified Glassy Carbon Electrodes. Electrochem. Commun. 2002, 4, 743–746. DOI: 10.1016/S1388-2481(02)00451-4.
  • Nagaoka, T.; Tokonami, S.; Shiigi, H.; Matsumoto, H.; Takagi, Y.; Takahashi, Y. Development of an Electrochemical Cholesterol Sensor System for Food Analysis. Anal. Sci. 2012, 28, 187–191. DOI: 10.2116/analsci.28.187.
  • Navrátil, T.; Švancara, I.; Mrázová, K.; Nováková, K. Mercury and Mercury Electrodes: The Ultimate Battle for the Naked Existence. In Sensing in Electroanalysis; Kalcher, K.; Metelka, R.; Švancara, I.; Vytřas, K., Eds.; University of Pardubice: Pardubice, Czech Republic 2011; vol. 6; p. 23.
  • Oppenauer, R. V. Eine Methode der Dehydrierung von Sekundären Alkoholen zu Ketonen. I. Zur Herstellung von Sterinketonen und Sexualhormonen. Recl. Trav. Chim. Pays-Bas 1937, 56, 137–144. DOI: 10.1002/recl.19370560206.
  • Patel, M. D.; Thompson, P. D. Phytosterols and Vascular Disease. Atherosclerosis 2006, 186, 12–19. DOI: 10.1016/j.atherosclerosis.2005.10.026.
  • Payne, A. H.; Hales, D. B. Overview of Steroidogenic Enzymes in the Pathway from Cholesterol to Active Steroid Hormones. Endocr. Rev. 2004, 25, 947–970. DOI: 10.1210/er.2003-0030.
  • Peckova, K.; Barek, J. Boron Doped Diamond Microelectrodes and Microelectrode Arrays in Organic Electrochemistry. Curr. Org. Chem. 2011, 15, 3014–3028. DOI: 10.2174/138527211798357164.
  • Peckova, K.; Musilova, J.; Barek, J. Boron-Doped Diamond Film Electrodes—New Tool for Voltammetric Determination of Organic Substances. Crit. Rev. Anal. Chem. 2009, 39, 148–172. DOI: 10.1080/10408340903011812.
  • Peng, T.; Li, H.; Lu, R. Direct Measurement of Cholesterol Based on Anodic Stripping Voltammetry. Anal. Chim. Acta 1992, 257, 15–19. DOI: 10.1016/0003-2670(92)80144-V.
  • Piletsky, S. A.; Piletskaya, E. V.; Sergeyeva, T. A.; Panasyuk, T. L.; El'Skaya, A. V. Molecularly Imprinted Self-Assembled Films with Specificity to Cholesterol. Sens. Actuators B 1999, 60, 216–220. DOI: 10.1016/S0925-4005(99)00273-7.
  • Pollak, O. J.; Kritchevsky, D. Sitosterol. Monogr. Atheroscler. 1981, 10, 1–219.
  • Rahier, A.; Benveniste, P. Mass Spectral Identification of Phytosterols. In Analysis of Sterols and Other Biologically Significant Steroids; Nes, W. D.; Parish, E. J., Eds.; Academic Press: San Diego, USA, 1989; p. 223.
  • Roda, A.; Hofmann, A.; Mysels, K. The Influence of Bile-Salt Structure on Self Association in Aqueous Solutions. J. Biol. Chem. 1983, 258, 6362–6370.
  • Santos, K. D.; Braga, O. C.; Vieira, I. C.; Spinelli, A. Electroanalytical Determination of Estriol Hormone Using a Boron-Doped Diamond Electrode. Talanta 2010, 80, 1999–2006. DOI: 10.1016/j.talanta.2009.10.058.
  • Saxena, U.; Chakraborty, M.; Goswami, P. Covalent Immobilization of Cholesterol Oxidase on Self-Assembled Gold Nanoparticles for Highly Sensitive Amperometric Detection of Cholesterol in Real Samples. Biosens. Bioelectron. 2011, 26, 3037–3043. DOI: 10.1016/j.bios.2010.12.009.
  • Saxena, U.; Das, A. B. Nanomaterials towards Fabrication of Cholesterol Biosensors: Key Roles and Design Approaches. Biosens. Bioelectron. 2016, 75, 196–205. DOI: 10.1016/j.bios.2015.08.042.
  • Scalia, S.; Tirendi, S.; Pazzi, P.; Bousquet, E. Assay of Free Bile Acids in Pharmaceutical Preparations by HPLC with Electrochemical Detection. Int. J. Pharm. 1995, 115, 249–253. DOI: 10.1016/0378-5173(94)00307-Q.
  • Schäffer, H.-J. Oxidation of Organic Compounds at the Nickel Hydroxide Electrode. Top. Curr. Chem. 1987, 142, 112–113. DOI: 10.1007/3-540-17871-6_13.
  • Shono, T.; Matsumura, Y.; Inoue, K. Indirect Electrooxidation of Amines to Nitriles Using Halogen Ions as Mediators. J. Amer. Chem. Soc. 1984, 106, 6075–6076.
  • Štěpánek, P.; Šimák, O.; Nováková, Z.; Wimmer, Z.; Drašar, P. Asymmetrically Substituted Calix[4]pyrrole With Chiral Substituents. Org. Biomol. Chem. 2011, 9, 682–683. DOI: 10.1039/C0OB00712A.
  • Suryanarayanan, V.; Noel, M. A Comparative Evaluation on the Voltammetric Behavior of Boron-Doped Diamond (BDD) and Glassy Carbon (GC) Electrodes in Different Electrolyte Media. J. Electroanal. Chem. 2010, 642, 69–74. DOI: 10.1016/j.jelechem.2010.02.007.
  • Szterk, A.; Pakuła, L. New Method to Determine Free Sterols/Oxysterols in Food Matrices Using Gas Chromatography and Ion Trap Mass Spectrometry (GC-IT-MS). Talanta 2016, 152, 54–75. DOI: 10.1016/j.talanta.2016.01.049.
  • Talafant, E. The Estimation of Cholesterol by Suppressing the Polarographic Maximum. Collect. Czech. Chem. Commun. 1950, 15, 232–235. DOI: 10.1135/cccc19500232.
  • Tamminen, J.; Kolehmainen, E. Bile Acids as Building Blocks of Supramolecular Hosts. Molecules 2001, 6, 21–46. DOI: 10.3390/60100021.
  • Tiribilli, C.; Sokolová, R.; Giannarelli, S.; Valášek, M. On Reduction of the Drug Diflunisal in Non-Aqueous Media. Monatsh. Chem. 2015, 146, 807–812. DOI: 10.1007/s00706-014-1390-7.
  • Tong, Y.; Li, H.; Guan, H.; Zhao, J.; Majeed, S.; Anjum, S.; Liang, F.; Xu, G. Electrochemical Cholesterol Sensor Based on Carbon Nanotube@molecularly Imprinted Polymer Modified Ceramic Carbon Electrode. Biosens. Bioelectron. 2013, 47, 553–558. DOI: 10.1016/j.bios.2013.03.072.
  • Tsierkezos, N. G.; Ritter, U. Non-Enzymatic Analysis of Cholesterol in Acetonitrile Solutions. Phys. Chem. Liq. 2014, 52, 601–607. DOI: 10.1080/00319104.2014.890895.
  • Tyszczuk, K. Application of an In Situ Plated Lead Film Electrode to the Analysis of Testosterone by Adsorptive Stripping Voltammetry. Anal. Bioanal. Chem. 2008, 390, 1951–1956. DOI: 10.1007/s00216-008-1928-9.
  • Van Veldhoven, P. P. Biochemistry and Genetics of Inherited Disorders of Peroxisomal Fatty Acid Metabolism. J. Lipid Res. 2010, 51, 2863–2895. DOI: 10.1194/jlr.R005959.
  • Warnick, G. R. Measurement of Cholesterol and Other Lipoprotein Constituents in the Clinical Laboratory. Clin. Chem. Lab. Med. 2000, 38, 287–300. DOI: 10.1515/CCLM.2000.041.
  • Wolfe, J. K. Polarographic Determination of Dehydroisoandrosterone and Other 3-Hydroxy-Δ5-Steroids. J. Biol. Chem. 1941, 140, 215–232.
  • Wu, X.; Song, C.; Cheng, F.; Zhang, W. Studies of the Indirect Electrochemical Oxidation of Cholesterol. J. Electroanal. Chem. 1992, 327, 321–325. DOI: 10.1016/0022-0728(92)80156-X.
  • Xu, X. H.; Li, R. K.; Chen, J.; Chen, P.; Ling, X. Y.; Rao, P. F. Quantification of Cholesterol in Foods Using Non-Aqueous Capillary Electrophoresis. J. Chromatogr. B 2002, 768, 369–373. DOI: 10.1016/S0378-4347(01)00539-4.
  • Yang, J.; Lee, H.; Cho, M.; Nam, J.; Lee, Y. Nonenzymatic Cholesterol Sensor Based on Spontaneous Deposition of Platinum Nanoparticles on Layer-by-Layer Assembled CNT Thin Film. Sens. Actuators B 2012, 171–172, 374–379. DOI: 10.1016/j.snb.2012.04.070.
  • Yardim, Y.; Levent, A.; Keskin, E.; Şentürk, Z. Voltammetric Behavior of Benzo[a]pyrene at Boron-Doped Diamond Electrode: A Study of Its Determination by Adsorptive Transfer Stripping Voltammetry Based on the Enhancement Effect of Anionic Surfactant, Sodium Dodecylsulfate. Talanta 2011, 85, 441–448. DOI: 10.1016/j.talanta.2011.04.005.
  • Yeagle, P. L. Cholesterol and the Cell Membrane. Biochim. Biophys. Acta 1985, 822, 267–287. DOI: 10.1016/0304-4157(85)90011-5.
  • Yilmaz, U. T.; Uzun, D.; Yilmaz, H. A New Method for Rapid and Sensitive Determination of Cholic Acid in Gallbladder Bile Using Voltammetric Techniques. Microchem. J. 2015, 122, 159–163. DOI: 10.1016/j.microc.2015.05.002.
  • Zavazalova, J.; Prochazkova, K.; Schwarzova-Peckova, K. Boron-Doped Diamond Electrodes for Voltammetric Determination of Benzophenone-3. Anal. Lett. 2016, 49, 80–91. DOI: 10.1080/00032719.2014.1003425.
  • Zhu, Y.; Liu, X.; Jia, J. Electrochemical Detection of Natural Estrogens Using a Graphene/Ordered Mesoporous Carbon Modified Carbon Paste Electrode. Anal. Methods 2015, 7, 8626–8631. DOI: 10.1039/C5AY01833A.
  • Zuman, P. Role of Mercury Electrodes in Contemporary Analytical Chemistry. Electroanalysis 2000, 12, 1187–1194. DOI: 10.1002/1521-4109(200010)12:15<1187::AID-ELAN1187>3.0.CO;2-S

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.