654
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Review of Sample Preparation Techniques for the Analysis of Selected Classes of Pesticides in Plant Matrices

, , &
Pages 467-491 | Published online: 05 Apr 2018

References

  • Simpson, N. J. K. Solid-Phase Extraction: Principles, Techniques, and Applications; CRC Press: New York, United States, 2000.
  • Zhang, F.; Li, Y.; Yu, C.; Pan, C. Determination of Six Neonicotinoid Insecticides Residues in Spinach, Cucumber, Apple and Pomelo by QuEChERS Method and LC–MS/MS. Bull. Environ. Contam. Toxicol. 2012, 88, 885–890. DOI: 10.1007/s00128-012-0579-x.
  • Arias, J. L. O.; Rombaldi, C.; Caldas, S. S.; Primel, E. G. Alternative Sorbents for the Dispersive Solid-Phase Extraction Step in Quick, Easy, Cheap, Effective, Rugged and Safe Method for Extraction of Pesticides from Rice Paddy Soils with Determination by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1360, 66–75. DOI: 10.1016/j.chroma.2014.07.082.
  • Gonzalez-Curbelo, M. A.; Socas-Rodriguez, B.; Herrera-Herrera, A. V.; Gonzalez-Salamo, J.; Hernandez-Borges, J.; Rodriguez-Delgado, M. A. Evolution and Applications of the QuEChERS Method. Trends Anal. Chem. 2015, 71, 169–185. DOI: 10.1016/j.trac.2015.04.012.
  • Wierucka, M.; Biziuk, M. Application of Magnetic Nanoparticles for Magnetic Solid-Phase Extraction in Preparing Biological, Environmental and Samples. Trends Anal. Chem. 2014, 59, 50–58. DOI: 10.1016/j.trac.2014.04.007.
  • Vázquez, P.; Parrilla, A.; Mughari, R.; Martínez Galera, M. Solid-Phase Microextraction (SPME) for the Determination of Pyrethroids in Cucumber and Watermelon Using Liquid Chromatography Combined with Post-Column Photochemically Induced Fluorimetry Derivatization and Fluorescence Detection. Anal. Chim. Acta 2008, 607, 74–82. DOI: 10.1016/j.aca.2007.11.027.
  • Souza-Silva, É. A.; Lopez-Avila, V.; Pawliszyn, J. Fast and Robust Direct Immersion Solid Phase Microextraction Coupled with Gas Chromatography–Time-of-Flight Mass Spectrometry Method Employing a Matrix Compatible Fiber for Determination of Triazole Fungicides in Fruits. J. Chromatogr. A. 2013, 1313, 139–146. DOI: 10.1016/j.chroma.2013.07.071.
  • Naccarato, A.; Pawliszyn, J. Matrix Compatible Solid Phase Microextraction Coating, a Greener Approach to Sample Preparation in Vegetable Matrices. Food Chem. 2016, 206, 67–73. DOI: 10.1016/j.foodchem.2016.03.036.
  • Souza-Silva, É. A.; Gionfriddo, E.; Pawliszyn, J. A. Critical Review of the State of the Art of Solid-Phase Microextraction of Complex Matrices II. Food Analysis. Trends Anal. Chem. 2015, 7, 236–248. DOI: 10.1016/j.trac.2015.04.018.
  • Abdel-Rehim, M. Microextraction by Packed Sorbent (MEPS): A Tutorial. Anal. Chim. Acta 2011, 701, 119–128. DOI: 10.1016/j.aca.2011.05.037.
  • Gomez-Caballero, A.; Guerreiro, A.; Karim, K.; Piletsky, S.; Goicole, M. A.; Barrio, R. J. Chiral Imprinted Polymers as Enantiospecific Coatings of Stir Bar Sorptive Extraction Devices. Biosens. Bioelectron. 2011, 28, 25–32. DOI: 10.1016/j.bios.2011.06.048.
  • Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Modern Trends in Solid Phase Extraction: New Sorbent Media. Trends Anal. Chem. 2016, 77, 23–43. DOI: 10.1016/j.trac.2015.10.010.
  • Kickelbick, G. Hybrid Materials, 1st ed.; Wiley-VCH: Weinheim, 2006.
  • Kloskowski, A.; Pilarczyk, M.; Chrzanowski, W.; Namiesnik, J. Sol-Gel Technique-a Versatile Tool for Adsorbent Preparation. Crit. Rev. Anal. Chem. 2010, 40, 172–186. DOI: 10.1080/10408347.2010.490486.
  • Han, L.; Sapozhnikova, Y.; Lehotay, S. J. Method Validation for 243 Pesticides and Environmental Contaminants in Meats and Poultry by Tandem Mass Spectrometry Coupled to Low-Pressure Gas Chromatography and Ultrahigh Performance Liquid Chromatography. Food Cont. 2016, 66, 270–282. DOI: 10.1016/j.foodcont.2016.02.019.
  • Augusto, F.; Hantao, L. W.; Mogollon, N. G. A.; Braga, S.C.G.N. New Materials and Trends in Sorbents for Solid-Phase Extraction. Trends Anal. Chem. 2013, 43, 14–23. DOI: 10.1016/j.trac.2012.08.012.
  • Han, L.; Matarrita, J.; Sapozhnikova, Y.; Lehotay, S. J. Evaluation of a Recent Product to Remove Lipids and Other Matrix co – Extractives in the Analysis of Pesticide Residues and Environmental Contaminants in Foods. J. Chromatogr. A. 2016, 1449, 17–29. DOI: 10.1016/j.chroma.2016.04.052.
  • Lim, C. W.; Lai, K. Y.; Yeo, J. F.; Tai, S. H.; Chan, S. H. Quantitative Assessment of Moniliformin in Cereals via Alternative Precipitation Pathways, Aided by LC-LIT-MS and LC-Q-TOF-MS. Food Chem. 2015, 174, 372–379. DOI: 10.1016/j.foodchem.2014.11.069.
  • Reinholds, S.; Pugajeva, I.; Perkons, I.; Bartkevics, V. The Application of Phospholipid Removal Columns and Ultra-High-Performance Liquid Chromatography—Tandem Quadrupole Mass Spectrometry for Quantification of Multi-Class Antibiotics in Aqua Culture Samples. J. Pharm. Biomed. Anal. 2016, 128, 126–131. DOI: 10.1016/j.jpba.2016.05.002.
  • Fumes, B. H.; Silva, M. R.; Andrade, F. N.; Nazario, C. E. D.; Lancas, F. M. Recent Advances and Future Trends in New Materials for Sample Preparation. Trends Anal. Chem. 2015, 71, 9–25. DOI: 10.1016/j.trac.2015.04.011.
  • Ferrer, I.; Barcelo, D. Validation of New Solid-Phase Extraction Materials for the Selective Enrichment of Organic Contaminants from Environmental Samples. Trends Anal. Chem. 1999, 18, 180–192. DOI: 10.1016/S0165-9936(98)00108-3.
  • Ho, T. D.; Cole, W. T. S.; Augusto, F.; Anderson, J. L. Insight into the Extraction Mechanism of Polymeric Ionic Liquid Sorbent Coatings in Solid-Phase Microextraction. J. Chromatogr. A 2013, 1298, 146–151. DOI: 10.1016/j.chroma.2013.05.009.
  • Gañan, J.; Silva, M.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Sierra, I. Application of Hybrid Mesoporous Silica for Extraction of Hormones in Milk by Matrix Solid Phase Dispersion. Mater. Lett. 2014, 119, 56–59. DOI: 10.1016/j.matlet.2013.12.107.
  • He, H.; Yuan, D.; Gao, Z.; Xiao, D.; He, H.; Dai, H. Mixed Hemimicelles Solid-Phase Extraction Based on Ionic Liquid-Coated Fe3O4/SiO2 Nanoparticles for the Determination of Flavonoids in Bio-Matrix Samples Coupled with High Performance Liquid Chromatography. J. Chromatogr. A 2014, 1324, 78–85. DOI: 10.1016/j.chroma.2013.11.021.
  • Wang, Z.; Sun, R.; Wang, Y.; Li, N.; Lei, L.; Yang, X.; Yu, A.; Qiu, F.; Zhang, H. Determination of Phenolic Acids and Flavonoids in Raw Propolis by Silica-Supported Ionic Liquid-Based Matrix Solid Phase Dispersion Extraction High Performance Liquid Chromatography-Diode Array Detection. J. Chromatogr. B 2014, 969, 205–212. DOI: 10.1016/j.jchromb.2014.08.022.
  • Carpinteiro, I.; Ramil, M.; Rodríguez, I.; Cela, R. Determination of Fungicides in Wine by Mixed-Mode Solid Phase Extraction and Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 7484–7492. DOI: 10.1016/j.chroma.2010.09.080.
  • Zhu, Y.; Yang, S.; Chen, G.; Xing, J. Single “Click” Synthesis of a Mixed-Mode Silica Sorbent and Application in Matrix Solid-Phase Dispersion Extraction of Agonists from Porcine Liver. J. Chromatogr. A 2014, 1354, 101–108. DOI: 10.1016/j.chroma.2014.05.068.
  • Moreno-González, D.; Hamed, A. M.; Gilbert-López, B.; Gámiz-Gracia, L.; García-Campana, A. M. Evaluation of a Multiresidue Capillary Electrophoresis-Quadrupole-Time-of-Flight Mass Spectrometry Method for the Determination of Antibiotics in Milk Samples. J. Chromatogr. A 2017, 1510, 100–107. DOI: 10.1016/j.chroma.2017.06.055.
  • Wojnicz, A.; Belmonte, C.; Koller, D.; Ruiz-Nuno, A.; Román, M.; Ochoa, D.; Abad Santos, F. Effective Phospholipids Removing Microelution-Solid Phase Extraction LC-MS/MS Method for Simultaneous Plasma Quantification of Aripiprazole and Dehydro-aripiprazole: Application to Human Pharmacokinetic Studies. J. Pharm. Biomed. Anal. 2018, 151, 116–125. DOI: 10.1016/j.jpba.2017.12.049.
  • Li, X.; Guo, P.; Shan, Y.; Ke, Y.; Li, H.; Fu, Q.; Wang, Y.; Liu, T.; Xia, X. Determination of 82 Veterinary Drugs in Swine Waste Lagoon Sludge by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2017, 1499, 57–64. DOI: 10.1016/j.chroma.2017.03.055.
  • Seethapathy, S.; Górecki, T. Applications of Polydimethylsiloxane in Analytical Chemistry: A Review. Anal. Chim. Acta 2012, 750, 48–62. DOI: 10.1016/j.aca.2012.05.004.
  • Amiri, A. Solid-Phase Microextraction-Based Sol–Gel Technique. Trends Anal. Chem. 2016, 75, 57–74. DOI: 10.1016/j.trac.2015.10.003.
  • Kueseng, P.; Pawliszyn, J. Carboxylated Multiwalled Carbon Nanotubes/Polydimethylsiloxane, a New Coating for 96-blade Solid-Phase Microextraction for Determination of Phenolic Compounds in Water. J. Chromatogr. A 2013, 1317, 199–202. DOI: 10.1016/j.chroma.2013.08.038.
  • Nogueira, J. M. F. Stir-Bar Sorptive Extraction: 15 Years Making Sample Preparation More Environment-Friendly. Trends Anal. Chem. 2015, 71, 214–223. DOI: 10.1016/j.trac.2015.05.002.
  • Souza-Silva, É. A.; Gionfriddo, E.; Shirey, R.; Sidisky, L.; Pawliszyn, J. Methodical Evaluation and Improvement of Matrix Compatible PDMS over Coated Coating for Direct Immersion Solid Phase Microextraction Gas Chromatography (DI-SPME-GC)-Based Applications. Anal. Chim. Acta 2016, 920, 54–62. DOI: 10.1016/j.aca.2016.03.015.
  • Walorczyk, S.; Drożdżyński, D.; Kierzek, R. Two-step Dispersive-Solid Phase Extraction Strategy for Pesticide Multiresidue Analysis in a Chlorophyll-Containing Matrix by Gas Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2015a, 1412, 22–32. DOI: 10.1016/j.chroma.2015.08.022.
  • Walorczyk, S.; Drożdżyński, D.; Kierzek, R. Determination of Pesticide Residues in Samples of Green Minor Crops by Gas Chromatography and Ultra Performance Liquid Chromatography Coupled to Tandem Quadrupole Mass Spectrometry. Talanta 2015b, 132, 197–204. DOI: 10.1016/j.talanta.2014.08.073.
  • Zhang, B. T.; Zheng, X.; Li, H. F.; Lin, J. M. Application of Carbon-Based Nanomaterials in Sample Preparation: A Review. Anal. Chim. Acta 2013, 784, 1–17. DOI: 10.1016/j.aca.2013.03.054.
  • Wen, Y.; Chen, L.; Li, J.; Liu, D.; Chen, L. Recent Advances in Solid-Phase Sorbents for Sample Preparation Prior to Chromatographic Analysis. Trends Anal. Chem. 2014, 59, 26–41. DOI: 10.1016/j.trac.2014.03.011.
  • Li, C.; Shi, G. Three-Dimensional Graphene Architectures. Nanoscale 2012, 21, 5549–5563. DOI: 10.1039/c2nr31467c.
  • Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 27, 4324–30. DOI: 10.1021/nn101187z.
  • Liu, Q.; Shi, J.; Jiang, G. Application of Graphene in Analytical Sample Preparation. Trends Anal. Chem. 2012, 37, 1–11. DOI: 10.1016/j.trac.2012.03.011.
  • Wang, F.; Liu, S.; Yang, H.; Zheng, J.; Qiu, J.; Xu, J.; Tong, Y.; Zhu, F.; Ouyang, G. Hierarchical Graphene Coating for Highly Sensitive Solid Phase Microextraction of Organochlorine Pesticides. Talanta 2016, 160, 217–224. DOI: 10.1016/j.talanta.2016.07.013.
  • Ke, Y.; Zhu, F.; Zeng, F.; Luan, T.; Su, C.; Ouyang, G. Preparation of Graphene-Coated Solid-Phase Microextraction fiber and its Application on Organochlorine Pesticides Determination. J. Chromatogr. A 2013, 1300, 187–192. DOI: 10.1016/j.chroma.2012.11.072.
  • Gonzalez-Salamo, J.; Socas-Rodriguez, B.; Hernandez-Borges, J.; Rodríguez-Delgato, M. A. Nanomaterials as Sorbents for Food Sample Analysis. Trends Anal. Chem. 2016, 85, 203–220. DOI: 10.1016/j.trac.2016.09.009.
  • Herrera-Herrera, A. V.; Gonzalez-Curbelo, M. A.; Hernandez-Borges, J.; Rodriguez-Delgato, M. A. Carbon Nanotubes Applications in Separation Science: A Review. Anal. Chim. Acta 2012, 734, 1–30. DOI: 10.1016/j.aca.2012.04.035.
  • Ravelo-Perez, L. M.; Herrera-Herrera, A. V.; Hernandez-Borges, J.; Rodriguez-Delgado, M. A. Carbon Nanotubes: Solid-Phase Extraction. J. Chromatogr. A 2010, 1217, 2618–2641. DOI: 10.1016/j.chroma.2009.10.083.
  • Gama, M. R.; Bottoli, C. B. G. Molecularly Imprinted Polymers for Bioanalytical Sample Preparation. J. Chromatogr. B 2016, 1043, 107–121. DOI: 10.1016/j.jchromb.2016.09.045.
  • Jiang, X.; Jiang, N.; Zhang, H.; Liu, M. Small Organic Molecular Imprinted Materials: Their Preparation and Application. Anal. Bioanal. Chem. 2007, 398, 355–368. DOI: 10.1007/s00216-007-1336-6.
  • Vasapollo, G.; Sole, R. D.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Socrrane, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. DOI: 10.3390/ijms12095908.
  • Chen, S.; Dong, Y. H.; Chang, C.; Deng, Y.; Zhang, X. F.; Zhong, G.; Song, H.; Hu, M.; Zhang, L. H. Characterization of a Novel Cyfluthrin-Degrading Bacterial Strain Brevibacterium aureum and its Biochemical Degradation Pathway. Bioresour. Technol. 2013, 132, 16–23. DOI: 10.1016/j.biortech.2013.01.002.
  • Gao, L.; Wang, J.; Li, X.; Yan, Y.; Li, C.; Pan, J. A. Core–Shell Surface Magnetic Molecularly Imprinted Polymer with Fluorescence for λ-Cyhalothrin Selective Recognition. Anal. Bioanal. Chem. 2014, 406, 7213–7220. DOI: 10.1007/s00216-014-8126-8.
  • Ge, S.; Zhang, C.; Yu, F.; Yan, M.; Yu, J. Layer-by-Layer Self-Assembly CdTe Quantum Dots and Molecularly Imprinted Polymers Modified Chemiluminescence Sensor for Deltamethrin Detection. Sens. Actuators B 2011, 156, 222–227. DOI: 10.1016/j.snb.2011.04.024.
  • Ma, G.; Chen, L. Development of Magnetic Molecularly Imprinted Polymers Based on Carbon nanotubes – Application for Trace Analysis of Pyrethroids in Fruit Matrices. J. Chromatogr. A. 2014, 1329, 1–9. DOI: 10.1016/j.chroma.2013.12.079.
  • Hang, H.; Li, C.; Pan, J.; Li, L.; Dai, J.; Yu, P.; Feng, Y. Selective Separation of λ-Cyhalohrin by Porous/Magnetic Molecularly Imprinted Polymers Prepared by Pickiering Emulsion Polymerization. J. Sep. Sci. 2013, 36, 3285–3294.
  • Nelson, M. A.; Moser, A.; Hage, D. S. Biointeraction Analysis by High-Performance Affinity Chromatography: Kinetic Studies of Immobilized Antibodies. J. Chromatogr. B 2010, 878, 165–171. DOI: 10.1016/j.jchromb.2009.04.004.
  • Turiel, E.; Martin-Esteban, A. Molecularly Imprinted Polymers for Sample Preparation: A Review. Anal. Chim. Acta 2010, 668, 87–99. DOI: 10.1016/j.aca.2010.04.019.
  • Queiroz, S. C. N.; Ferracini, V. L.; Rosa, M. A. Multiresidue Method Validation for Determination of Pesticides in Food Using QuEChERS and UPLC–MS/MS. Quim. Nova. 2012, 35, 185–192. DOI: 10.1590/S0100-40422012000100032.
  • Baggiani, C.; Baravalle, P.; Giraudi, G.; Tozzi, C. Molecularly Imprinted Solid-Phase Extraction Method for the High-Performance Liquid Chromatographic Analysis of Fungicide Pyrimethanil in Wine. J. Chromatogr. A 2007, 1141, 158–164. DOI: 10.1016/j.chroma.2006.12.016.
  • Kmellár, B.; Fodor, P.; Pareja, L.; Ferrer, C.; Martínez-Uroz, M. A.; Valverde, A.; Fernandez-Alba, A. R. Validation and Uncertainty Study of a Comprehensive List of 160 Pesticide Residues in Multi-Class Vegetables by Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2008, 1215, 37–50. DOI: 10.1016/j.chroma.2008.10.121.
  • Jovanov, P.; Guzsvány, V.; Franko, M.; Lazić, S.; Sakač, M.; Milovanović, I.; Nedeljković, N. Development of Multiresidue DLLME and QuEChERS Based LC–MS/MS Method for Determination of Selected Neonicotinoid Insecticides in Honey Liqueur. Food Res. Int. 2014, 55, 11–19. DOI: 10.1016/j.foodres.2013.10.031.
  • Wu, Q.; Li, L. Z.; Wang, C.; Wu, C.; Wang, W.; Wang, Z. Dispersive Solid-Phase Extraction Clean-up Combined with Dispersive Liquid–Liquid Microextraction for the Determination of Neonicotinoid Insecticides in Vegetable Samples by High-Performance Liquid Chromatography. Food Anal. Methods 2011, 4, 559–566. DOI: 10.1007/s12161-011-9200-x.
  • Wu, Y.; Liu, X.; Dong, F.; Xu, J.; Zheng, Y. Dissipation and Residues of Rimsulfuron in Potato and Soil under Field Conditions. Bull. Environ. Contam. Toxicol. 2012, 89, 1264–1267. DOI: 10.1007/s00128-012-0850-1.
  • Chen, M.; Collins, E. M.; Tao, L.; Chensheng, L. Simultaneous Determination of Residues in Pollen and High-Fructose Corn Syrup from Eight Neonicotinoid Insecticides by Liquid Chromatography–Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2013, 405, 9251–9264. DOI: 10.1007/s00216-013-7338-7.
  • Zheng, S.; Wu, H.; Li, Z.; Wang, J.; Zhang, H.; Qian, M. Ultrasound/Microwave-Assisted Solid–Liquid–Solid Dispersive Extraction with High-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry for the Determination of Neonicotinoid Insecticides in Dendrobium Officinal. J. Sep. Sci. 2015, 38, 121–127. DOI: 10.1002/jssc.201400872.
  • Cunha, S. C.; Fernandes, J. O. Multipesticide Residue Analysis in Maize Combining Acetonitrile-Based Extraction with Dispersive Liquid–Liquid Microextraction Followed by Gas Chromatography–Mass Spectrometry. J. Chromatogr. A 2011, 1218, 7748–7757. DOI: 10.1016/j.chroma.2011.08.066.
  • Kanrar, B.; Mandal, S.; Bhattacharyya, A. Validation and Uncertainty Analysis of a Multiresidue Method for 42 Pesticides in Made Tea, Tea Infusion and Spent Leaves Using Ethyl Acetate Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 2010, 1217, 1926–1933. DOI: 10.1016/j.chroma.2010.01.062.
  • Jovanov, P.; Guzsvany, V.; Lazic, S.; Franko, M.; Sakac, M.; Saric, L.; Kos, J. Development of HPLC-DAD Method for Determination of Neonicotinoids in Honey. J. Food Comp. Anal. 2015, 40, 106–113. DOI: 10.1016/j.jfca.2014.12.021.
  • Lacina, O.; Urbanova, J.; Poustka, J.; Hajslova, J. Identification/Quantification of Multiple Pesticide Residues in Food Plants by Ultra-High-Performance Liquid Chromatography Time-of-Flight Mass Spectrometry. J Chromatogr. A 2010, 1217, 648–659. DOI: 10.1016/j.chroma.2009.11.098.
  • Eda Costa Morais, E. H.; Rodrigues, A. A. Z.; Lopes Ribeiro de Queiroz, M. E.; Neves, A. A.; Morais, P. H. D. Determination of Thiamethoxam, Tiadimenol and Deltamethrin in Pineapple Using SLE-LTP Extraction and Gas Chromatography. Food Control 2014, 42, 9–17. DOI: 10.1016/j.foodcont.2014.01.024.
  • Wang, P.; Yang, X.; Wang, J.; Cui, J.; Dong, A. J.; Zhao, H. T.; Zhang, H.; Jing, J. Multi-Residue Method for Determination of Seven Neonicotinoid Insecticides in Grains Using Dispersive Solid-Phase Extraction and Dispersive Liquid–Liquid Micro-Extraction by High Performance Liquid Chromatography. Food Chem. 2012, 134, 1691–1698. DOI: 10.1016/j.foodchem.2012.03.103.
  • Liang, W.; Wang, J.; Zang, X.; Dong, W.; Wang, C.; Wang, Z. Barley Husk Carbon as the Fiber Coating for the Solid-Phase Microextraction of Twelve Pesticides in Vegetables Prior to Gas Chromatography–Mass Spectrometric Detection. J. Chromatogr. A 2017, 1491, 9–15. DOI: 10.1016/j.chroma.2017.02.034.
  • Cervera, M. I.; Portolés, T.; López, F. J.; Beltrán, J.; Hernández, F. Screening and Quantification of Pesticide Residues in Fruits and Vegetables Making Use of Gas Chromatography–Quadrupole Time-of-Flight Mass Spectrometry with Atmospheric Pressure Chemical Ionization. Anal. Bioanal. Chem. 2014, 406, 6843–6855. DOI: 10.1007/s00216-014-7853-1.
  • Camino-Sánchez, F. J.; Zafra-Gómez, A.; Ruiz-García, J.; Bermúdez-Peinado, R.; Ballesteros, O.; Navalon, A.; Vilchez, J. L. UNE-EN ISO/IEC 17025:2005 Accredited Method for the Determination of 121 Pesticide Residues in Fruits and Vegetables by Gas Chromatography–Tandem Mass Spectrometry. J. Food Compos. Anal. 2011, 24, 427–440. DOI: 10.1016/j.jfca.2010.11.009.
  • Koesukwiwat, U.; Lehotay, S. J.; Leepipatpiboon, N. Fast, Low-Pressure Gas Chromatography Triple Quadrupole Tandem Mass Spectrometry for Analysis of 150 Pesticide Residues in Fruits and Vegetables. J Chromatogr. A 2011, 1218, 7039–7050. DOI: 10.1016/j.chroma.2011.07.094.
  • Moreno, J. L. F.; Frenich, A. G.; Bolaños, P. P.; Vidal, J. L. M. Multiresidue Method for the Analysis of More than 140 Pesticide Residues in Fruits and Vegetables by Gas Chromatography Coupled to Triple Quadrupole Mass Spectrometry. J. Mass Spectrom. 2008, 43, 1235–1254. DOI: 10.1002/jms.1400.
  • Dong, J.; Pan, Y. X.; Lv, J. X.; Sun, J.; Gong, X. M.; Li, K. Multiresidue Method for the Determination of Pesticides in Fruits and Vegetables Using Gas Chromatography-Negative Chemical Ionization-Triple Quadrupole Tandem Mass Spectrometry. Chromatographia 2001, 74, 109–119, 2011. DOI: 10.1007/s10337-011-2055-x.
  • Gonzales-Curbelo, M. Á.; Lehotay, S. J.; Hernández-Borges, J.; Rodríguez-Delgado, M. A. Use of Ammonium Formate in QuEChERS for High-Throughput Analysis of Pesticides in Food by Fast, Low-Pressure Gas Chromatography and Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr. A 2014, 1358, 75–84. DOI: 10.1016/j.chroma.2014.06.104.
  • Koesukwiwat, U.; Lehotay, S. J.; Miao, S.; Leepipatpiboon, N. High Throughput Analysis of 150 Pesticides in Fruits and Vegetables Using QuEChERS and Low-Pressure Gas Chromatography–Time-of-Flight Mass Spectrometry. J. Chromatogr. A. 2010, 1217, 6692–6703. DOI: 10.1016/j.chroma.2010.05.012.
  • Beltran, J.; Peruga, A.; Pitarch, E.; López, F. J.; Hernández, F. Application of Solid-Phase Microextraction for the Determination of Pyrethroid Residues in Vegetable Samples by GC-MS. Anal. Bioanal. Chem. 2003, 376, 502–51. DOI: 10.1007/s00216-003-1916-z.
  • Campillo, N.; Penalver, R.; Hernández-Córdoba, M. Pesticide Analysis in Herbal Infusions by Solid-Phase Microextraction and Gas Chromatography with Atomic Emission Detection. Talanta 2007, 71, 1417–1423. DOI: 10.1016/j.talanta.2006.07.014.
  • Wu, F.; Lu, W.; Chen, J.; Liu, W.; Zhang, L. Single-Walled Carbon Nanotubes Coated Fibers for Solid-Phase Microextraction and Gas Chromatography–Mass Spectrometric Determination of Pesticides in Tea Samples. Talanta 2010, 82, 1038–1043. DOI: 10.1016/j.talanta.2010.06.016.
  • Zhang, S.; Yang, Q.; Yang, X.; Wang, W.; Li, Z.; Zhang, L.; Wang, C.; Wang, Z. A Zeolitic Imidazolate Framework Based Nanoporous Carbon as a Novel Fiber Coating for Solid-Phase Microextraction of Pyrethroid Pesticides. Talanta 2017, 166, 46–53.
  • Wu, M.; Chen, G.; Liu, P.; Zhou, W.; Jia, Q. Polydopamine-Based Immobilization of a Hydrazone Covalent Organic Framework for Headspace Solid-Phase Microextraction of Pyrethroids in Vegetables and Fruits. J. Chromatogr. A 2016, 1456, 34–41. DOI: 10.1016/j.talanta.2017.01.042. DOI: 10.1016/j.chroma.2016.05.100.
  • Filho, A. M.; Neves dos Santosa, F.; de Paula Pereira, P. A. Development, Validation and Application of a Methodology Based on Solid-Phase Micro Extraction Followed by Gas Chromatography Coupled to Mass Spectrometry (SPME/GC–MS) for the Determination of Pesticide Residues in Mangoes. Talanta 2010, 81, 346–354. DOI: 10.1016/j.talanta.2009.12.008.
  • Columé, A.; Cárdenas, S.; Gallego, M.; Valcárcel, M. Semiautomatic Multiresidue Gas Chromatographic Method for the Screening of Vegetables for 25 Organochlorines and Pyrethroid Pesticides. Anal. Chim. Acta 2001, 436, 153–162. DOI: 10.1016/S0003-2670(01)00901-1.
  • Balinova, A.; Mladenova, R.; Shtereva, D. Solid-Phase Extraction on Sorbents of Different Retention Mechanisms Followed by Determination by Gas Chromatography–Mass Spectrometric and Gas Chromatography–Electron Capture Detection of Pesticide Residues in Crops. J. Chromatogr. A 2007, 1150, 136–144. DOI: 10.1016/j.chroma.2007.02.002.
  • Sharif, Z.; Man, Y. B. C.; Hamid, N. S. A.; Keat, C. C. Determination of Organochlorine and Pyrethroid Pesticides in Fruit and Vegetables Using Solid Phase Extraction Clean-up Cartridges. J. Chromatogr. A 2006, 1127, 254–261. DOI: 10.1016/j.chroma.2006.06.007.
  • Pang, N.; Wang, T.; Hu, J. Method Validation and Dissipation Kinetics of Four Herbicides in Maize and Soil Using QuEChERS Sample Preparation and Liquid Chromatography Tandem Mass Spectrometry. Food Chem. 2016, 190, 793–800. DOI: 10.1016/j.foodchem.2015.05.081.
  • Zhao, L.; Chen, X.; Liu, F.; Ge, J.; You, X. Determination of Monosulfuron-Ester Residues in Grains, Straw, Green Plants and Soil of Wheat by Modified QuEChERS and LC-MS/MS. Anal. Methods 2013, 5, 2267–2272. DOI: 10.1039/c3ay40122g.
  • Daniel, D.; Santos, V. B.; Vidal, D. T. R.; Lago, C. L. Determination of Halosulfuron-Methyl Herbicide in Sugarcane Juice and Tomato by Capillary Electrophoresis–Tandem Mass Spectrometry. Food Chem. 2015, 175, 82–84. DOI: 10.1016/j.foodchem.2014.11.137.
  • Lee, Y.-J.; Choi, J.-H.; Abd El-Aty, A. M.; Im, S. J.; Rahman, M. M.; Kim, S.-W.; Shim, J.-H. Residue Analysis of Orthosulfamuron Herbicide in Fatty Rice Using Liquid Chromatography–Tandem Mass Spectrometry. J. Adv. Res. 2015, 6, 511–516. DOI: 10.1016/j.jare.2014.06.004.
  • Rejczak, T.; Tuzimski, T. Simple, Cost-Effective and Sensitive Liquid Chromatography Diode Array Detector Method for Simultaneous Determination of Eight Sulfonylurea Herbicides in Soya Milk Samples. J. Chromatogr. A 2016, 1473, 56–65. DOI: 10.1016/j.chroma.2016.10.023.
  • Lee, Y.-J.; Rahman, M. M.; Abd El-Aty, A. M.; Choi, J.-H.; Chung, H. S.; Kim, S.-W.; Abdel-Aty, A. M.; Shin, H.-C.; Shim, J.-H. Detection of Three Herbicides, and One Metabolite, Residues in Brown Rice and Rice Straw Using Various Versions of the QuEChERS Method and Liquid Chromatography-Tandem Mass Spectrometry. Food Chem. 2016, 210, 442–450. DOI: 10.1016/j.foodchem.2016.05.005.
  • Janaki, P.; Nithya, C.; Kalaiyarasi, D.; Sakthivel, N.; Prabhakaram, N. K.; Chinnusamy, C. Residue of Bensulfuron Methyl in Soil and Rice Following its Pre- and Post-Emergence Application. Plant Soil Environ. 2016, 62, 428–434. DOI: 10.17221/294/2016-PSE.
  • Quesada-Molina, C.; Olmo-Iruelo, M.; García-Campaña, A. M. Trace Determination of Sulfonylurea Herbicides in Water and Grape Samples by Capillary Zone Electrophoresis Using Large Volume Sample Stacking. Anal. Bioanal. Chem. 2010, 397, 2593–2601. DOI: 10.1007/s00216-010-3812-7.
  • Liang, P.; Wang, J.; Liu, G.; Guan, J. Determination of Sulfonylurea Herbicides in Food Crops by Matrix Solid-Phase Dispersion Extraction Coupled with High-Performance Liquid Chromatography. Food Anal. Methods 2014, 7, 1530–1535. DOI: 10.1007/s12161-013-9784-4.
  • Malhat, F. M. Persistence of Metalaxyl Residues on Tomato Fruit Using High Performance Liquid Chromatography and QuEChERS Methodology. Arab. J. Chem. 2017, 10, S765–S768. DOI: 10.1016/j.arabjc.2012.12.002.
  • Osman, K. A.; Al-Humaid, A. M.; Al-Rehiayani, S. M.; Al-Redhaiman, K. N. Monitoring of Pesticide Residues in Vegetables Marketed in Al-Qassim Region, Saudi Arabia. Ecotoxicol. Environ. Safe 2010, 73, 1433–1439. DOI: 10.1016/j.ecoenv.2010.05.020.
  • Fontana, A. R.; Rodríguez, I.; Ramil, M.; Altamirano, J. C.; Cela, R. Solid-Phase Extraction Followed by Liquid Chromatography Quadrupole Time-of-Flight Tandem Mass Spectrometry for the Selective Determination of Fungicides in Wine Samples. J. Chromatogr. A 2011, 1218, 2165–2175. DOI: 10.1016/j.chroma.2011.02.025.
  • Rodrigues, S. A.; Caldas, S. S.; Primel, E. G. A Simple; Efficient and Environmentally Friendly Method for the Extraction of Pesticides from Onion by Matrix Solid-Phase Dispersion with Liquid Chromatography–Tandem Mass Spectrometric Detection. Anal. Chim. Acta 2010, 678, 82–89. DOI: 10.1016/j.aca.2010.08.026.
  • Ravelo-Pérez, L. M.; Hernández-Borges, J.; Borges-Miquel, T. M.; Rodríguez-Delgado, M. A. Solid-Phase Microextraction and Sample Stacking Micellar Electrokinetic Chromatography for the Analysis of Pesticide Residues in Red Wines. Food Chem. 2008, 111, 764–770.
  • Li, H.; Yan, X.; Shi, H.; Yang, X. Development of a Bi-enzyme Tracer Competitive Enzyme-linked Immunosorbent Assay for Detection of Thiacloprid and Imidaclothin in Agricultural Samples. Food Chem. 2014, 164, 166–172. DOI: 10.1016/j.foodchem.2008.04.020. DOI: 10.1016/j.foodchem.2014.05.037.
  • Yin, W.; Hua, X.; Liu, X.; Shi, H.; Gee, S. J.; Wang, M.; Hammock, B. D. Development of an Enzyme-linked Immunosorbent Assay for Thiacloprid in Soil and Agro-Products with Phage-displayed Peptide. Anal. Biochem. 2015, 481, 27–32. DOI: 10.1016/j.ab.2015.04.015.
  • Watanabe, E.; Seike, N.; Motoki, Y.; Inao, K.; Otani, T. Potential Application of Immunoassays for Simple, Rapid and Quantitative Detections of Phytoavailable Neonicotinoid Insecticides in Cropland Soils. Ecotoxicol. Environ. Safe 2016, 132, 288–294. DOI: 10.1016/j.ecoenv.2016.06.023.
  • Yang, D.; Yin, W.; Cong, L.; Wang, M. Synthesis and Characterization of a Molecularly Imprinted Polymer for Preconcentration of Clothianidin in Environmental Samples. Anal. Lett. 2014, 47, 2613–2627. DOI: 10.1080/00032719.2014.915404.
  • Zhu, Q. Z.; Haupt, K.; Knopp, D.; Niessner, R. Molecularly Imprinted Polymer for Metsulfuron-Methyl and its Binding Characteristics for Sulfonylurea Herbicides. Anal. Chim. Acta 2002, 468, 217–227. DOI: 10.1016/S0003-2670(01)01437-4.
  • She, Y. X.; Cao, W. G.; Shi, X. M.; Lv, X. L.; Liu, J. J.; Wang, R. Y.; Jin, F.; Wang, J.; Xiao, H. Class-specific Molecularly Imprinted Polymers for the Selective Extraction and Determination of Sulfonylurea Herbicides in Maize Samples by High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. B 2010, 878, 2047–2053. DOI: 10.1016/j.jchromb.2010.05.038.
  • Chen, C.; Yang, L.; Zhou, J. Trace Bensulfuron-methyl Analysis in Tap Water, Soil, and Soybean Samples by a Combination of Molecularly Imprinted Stir Bar Sorption Extraction and HPLC-UV. J. Appl. Polym. Sci. 2011, 122, 1198–1205. DOI: 10.1002/app.34256.
  • Tang, K.; Gu, X.; Luo, Q.; Chen, S.; Wu, L.; Xiong, J. Preparation of Molecularly Imprinted Polymer for use as SPE Adsorbent for the Simultaneous Determination of Five Sulfonylurea Herbicides by HPLC. Food Chem. 2014, 150, 106–112. DOI: 10.1016/j.foodchem.2013.10.152.
  • http://www.fao.org (accessed Oct 15, 2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.