3,873
Views
96
CrossRef citations to date
0
Altmetric
Review Article

Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review

, ORCID Icon, , , , & show all
Pages 503-516 | Published online: 30 Mar 2018

References

  • Han, J.; Wang, M.; Hu, Y.; Zhou, C.; Guo, R. Conducting Polymer-Noble Metal Nanoparticle Hybrids: Synthesis Mechanism Application. Prog. Polym. Sci. 2017, 70, 52–91. DOI: 10.1016/j.progpolymsci.2017.04.002.
  • Khan, Z. U. H.; Khan, A.; Chen, Y. M.; Shah, N. S.; Muhammad, N.; Khan, A. U.; Tahir, K.; Khan, F. U.; Murtaza, B.; Hassan, S. U. Biomedical Applications of Green Synthesized Nobel Metal Nanoparticles. J. Photochem. Photobiol. 2017, 173, 150–164. DOI: 10.1016/j.jphotobiol.2017.05.034.
  • Xu, P.; Han, X.; Zhang, B.; Du, Y.; Wang, H.-L. Multifunctional Polymer–Metal Nanocomposites via Direct Chemical Reduction by Conjugated Polymers. Chem. Soc. Rev. 2014, 43, 1349–1360. DOI: 10.1039/C3CS60380F.
  • Prakash, J.; Pivin, J.; Swart, H. Noble Metal Nanoparticles Embedding into Polymeric Materials: From Fundamentals to Applications. Adv. Colloid. Interface Sci. 2015, 226, 187–202. DOI: 10.1016/j.cis.2015.10.010.
  • Farooqi, Z. H.; Khan, S. R.; Hussain, T.; Begum, R.; Ejaz, K.; Majeed, S.; Ajmal, M.; Kanwal, F.; Siddiq, M. Effect of Crosslinker Feed Content on Catalaytic Activity of Silver Nanoparticles Fabricated in Multiresponsive Microgels. Korean J. Chem. Eng. 2014, 31, 1674–1680. DOI: 10.1007/s11814-014-0117-0.
  • Gorelikov, I.; Field, L. M.; Kumacheva, E. Hybrid Microgels Photoresponsive in the Near-Infrared Spectral Range. J. Am. Chem. Soc. 2004, 126, 15938–15939. DOI: 10.1021/ja0448869.
  • Naseem, K.; Begum, R.; Wu, W.; Irfan, A.; Farooqi, Z. H. Advancement in Multi-Functional Poly (styrene)-Poly (N-isopropylacrylamide) Based Core–Shell Microgels and their Applications. Polym. Rev. 2018, 1–38. DOI: 10.1080/15583724.2017.1423326. In press.
  • Farooqi, Z. H.; Khalid, R.; Begum, R.; Farooq, U.; Wu, Q.; Wu, W.; Ajmal, M.; Irfan, A.; Naseem, K. Facile Synthesis of Silver Nanoparticles in a Crosslinked Polymeric System by in Situ Reduction Method for Catalytic Reduction of 4-nitroaniline. Environ. Technol. 2018. DOI: 10.1080/09593330.2018.1435737.
  • Liz-Marzán, L. M.; Lado-Touriño, I. Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants. Langmuir. 1996, 12, 3585–3589. DOI: 10.1021/la951501e.
  • Niu, Y.; Crooks, R. M. Preparation of Dendrimer-Encapsulated Metal Nanoparticles Using Organic Solvents. Chem. Mater. 2003, 15, 3463–3467. DOI: 10.1021/cm034172h.
  • Sakai, T.; Alexandridis, P. Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymer Solutions at Ambient Temperature. Langmuir. 2004, 20, 8426–8430. DOI: 10.1021/la049514s.
  • Farooqi, Z. H.; Naseem, K.; Ijaz, A.; Begum, R. Engineering of Silver Nanoparticle Fabricated Poly(N-isopropylacrylamide-co-acrylic acid) Microgels for Rapid Catalytic Reduction of Nitrobenzene. J. Polym. Eng. 2016, 36, 87–96. DOI: 10.1515/polyeng-2015-0082.
  • Begum, R.; Naseem, K.; Farooqi, Z. H. A Review of Responsive Hybrid Microgels Fabricated with Silver Nanoparticles: Synthesis, Classification, Characterization and Applications. J. Sol-Gel Sci. Technol. 2016, 77, 497–515. DOI: 10.1007/s10971-015-3896-9.
  • Wu, W.; Shen, J.; Banerjee, P.; Zhou, S. Chitosan-based Responsive Hybrid Nanogels for Integration of Optical pH-sensing, Tumor Cell Imaging and Controlled Drug Delivery. Biomaterials. 2010, 31, 8371–8381. DOI: 10.1016/j.biomaterials.2010.07.061.
  • Wu, W.; Zhou, T.; Shen, J.; Zhou, S. Optical Detection of Glucose by CdS Quantum Dots Immobilized in Smart Microgels. Chem. Commun. 2009, 4390–4392. DOI: 10.1039/b907348e.
  • Thomas, V.; Namdeo, M.; Murali Mohan, Y.; Bajpai, S.; Bajpai, M. Review on Polymer, Hydrogel and Microgel Metal Nanocomposites: A Facile Nanotechnological Approach. J. Macromol. Sci. A. 2007, 45, 107–119. DOI: 10.1080/10601320701683470.
  • Xu, S.; Zhang, J.; Paquet, C.; Lin, Y.; Kumacheva, E. From Hybrid Microgels to Photonic Crystals. Adv. Funct. Mater. 2003, 13, 468–472. DOI: 10.1002/adfm.200304338.
  • Naseer, F.; Ajmal, M.; Bibi, F.; Farooqi, Z. H.; Siddiq, M. Copper and Cobalt Nanoparticles Containing Poly (acrylic acid-co-acrylamide) Hydrogel Composites for Rapid Reduction of 4-Nitrophenol and Fast Removal of Malachite Green from Aqueous Medium. Polym. Compos. 2017. DOI: 10.1002/pc.24329.
  • Farooqi, Z. H.; Ijaz, A.; Begum, R.; Naseem, K.; Usman, M.; Ajmal, M.; Saeed, U. Synthesis and Characterization of Inorganic–organic Polymer Microgels for Catalytic Reduction of 4-Nitroaniline in Aqueous Medium. Polym. Compos. 2016, 39, 645–653.
  • Lu, Y.; Mei, Y.; Ballauff, M.; Drechsler, M. Thermosensitive Core−shell Particles as Carrier Systems for Metallic Nanoparticles. J. Phys. Chem. B. 2006, 110, 3930–3937. DOI: 10.1021/jp057149n.
  • Contreras-Cáceres, R.; Pacifico, J.; Pastoriza-Santos, I.; Pérez-Juste, J.; Fernández‐Barbero, A.; Liz-Marzán, L. M. Au@ pNIPAM Thermosensitive Nanostructures: Control over Shell Cross‐linking, Overall Dimensions, and Core Growth. Adv. Funct. Mater. 2009, 19, 3070–3076. DOI: 10.1002/adfm.200900481.
  • Wagner, T.; Nedilko, A.; Linn, M.; Chigrin, D. N.; von Plessen, G.; Böker, A. Controlled Gold Nanorod Reorientation and Hexagonal Order in Micromolded Gold Nanorod@ pNIPAM Microgel Chain Arrays. Small 2017, 13, 1603054–1603063. DOI: 10.1002/smll.201603054.
  • Hellweg, T.; Dewhurst, C. D.; Eimer, W.; Kratz, K. PNIPAm-Co-Polystyrene Core−Shell Microgels: Structure, Swelling Behavior, and Crystallization. Langmuir 2004, 20, 4330–4335. DOI: 10.1021/la0354786.
  • Farooqi, Z. H.; Naseem, K.; Begum, R.; Ijaz, A. Catalytic Reduction of 2-nitroaniline in Aqueous Medium Using Silver Nanoparticles Functionalized Polymer Microgels. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1554–1568. DOI: 10.1007/s10904-015-0275-5.
  • Yang, L.-Q.; Hao, M.-M.; Wang, H.-Y.; Zhang, Y. Amphiphilic Polymer-Ag Composite Microgels with Tunable Catalytic Activity and Selectivity. Colloid Polym. Sci. 2015, 293, 2405–2417. DOI: 10.1007/s00396-015-3642-4.
  • Zhang, J. T.; Wei, G.; Keller, T. F.; Gallagher, H.; Stötzel, C.; Müller, F. A.; Gottschaldt, M.; Schubert, U. S.; Jandt, K. D. Responsive Hybrid Polymeric/Metallic Nanoparticles for Catalytic Applications. Macromol. Mater. Eng. 2010, 295, 1049–1057. DOI: 10.1002/mame.201000204.
  • Wang, Q.; Zhao, Y.; Xu, H.; Yang, X.; Yang, Y. Thermosensitive Phase Transition Kinetics of Poly(N-Isopropylacryl Amide-co-Acrylamide) Microgel Aqueous Dispersions. J. Appl. Polym. Sci. 2009, 113, 321–326. DOI: 10.1002/app.29642.
  • Naseem, K.; Ur Rehman, M. A.; Huma, R. Review on Vinyl Acetic Acid-based Polymer Microgels for Biomedical and Other Applications. Int. J. Polym. Mater. 2018, 67, 322–332. DOI: 10.1080/00914037.2017.1327434.
  • Najeeb, J.; Ahmad, G.; Nazir, S.; Naseem, K.; Kanwal, A. Critical Analysis of Various Supporting Mediums Employed for the Incapacitation of Silver Nanomaterial for Aniline and Phenolic Pollutants: A Review. Korean J. Chem. Eng. 2017. DOI: 10.1007/s11814-017-0192-0.
  • Naseem, K.; Begum, R.; Farooqi, Z. H. Platinum Nanoparticles Fabricated Multiresponsive Microgel Composites: Synthesis, Characterization, and Applications. Polym. Compos. 2016. DOI: 10.1002/pc.24212.
  • Das, M.; Sanson, N.; Fava, D.; Kumacheva, E. Microgels Loaded with Gold Nanorods: Photothermally Triggered Volume Transitions under Physiological Conditions. Langmuir. 2007, 23, 196–201. DOI: 10.1021/la061596s.
  • Khan, A.; El-Toni, A. M.; Alrokayan, S.; Alsalhi, M.; Alhoshan, M.; Aldwayyan, A. S. Microwave-Assisted Synthesis of Silver Nanoparticles Using Poly-N-Isopropylacrylamide/Acrylic Acid Microgel Particles. Colloids Suf., A. 2011, 377, 356–360. DOI: 10.1016/j.colsurfa.2011.01.042.
  • Volden, S.; Eilertsen, J. L.; Singh, G.; Wang, W.; Zhu, K.; Nyström, B.; Glomm, W. R. Effect of Charge Density Matching on the Temperature Response of PNIPAAM Block Copolymer–Gold Nanoparticles. J. Phys. Chem. C. 2012, 116, 12844–12853. DOI: 10.1021/jp300754b.
  • Zhang, J.; Xu, S.; Kumacheva, E. Polymer Microgels: Reactors for Semiconductor, Metal, and Magnetic Nanoparticles. J. Am. Chem. Soc. 2004, 126, 7908–7914. DOI: 10.1021/ja031523k.
  • Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive Core–shell Particles as Carriers for Ag Nanoparticles: Modulating the Catalytic Activity by a Phase Transition in Networks. Angew. Chem. Int. Ed. 2006, 45, 813–816. DOI: 10.1002/anie.200502731.
  • Suzuki, D.; McGrath, J. G.; Kawaguchi, H.; Lyon, L. A. Colloidal Crystals of Thermosensitive, Core/shell Hybrid Microgels. J. Phys. Chem. C. 2007, 111, 5667–5672. DOI: 10.1021/jp068535n.
  • Contreras-Cáceres, R.; Pastoriza-Santos, I.; Alvarez-Puebla, R. A.; Pérez-Juste, J.; Fernández-Barbero, A.; Liz-Marzán, L. M. Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface‐Enhanced Raman Scattering Detection. Chem. Eur. J. 2010, 16, 9462–9467. DOI: 10.1002/chem.201001261.
  • Suzuki, D.; Kawaguchi, H. Modification of Gold Nanoparticle Composite Nanostructures Using Thermosensitive Core−Shell Particles as a Template. Langmuir. 2005, 21, 8175–8179. DOI: 10.1021/la0504356.
  • Kim, J.-H.; Lee, T. R. Hydrogel-Templated Growth of Large Gold Nanoparticles: Synthesis of Thermally Responsive Hydrogel−Nanoparticle Composites. Langmuir. 2007, 23, 6504–6509. DOI: 10.1021/la0629173.
  • Contreras-Cáceres, R.; Sánchez-Iglesias, A.; Karg, M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Pacifico, J.; Hellweg, T.; Fernández-Barbero, A.; Liz-Marzán, L. M. Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. Adv. Mater. 2008, 20, 1666–1670. DOI: 10.1002/adma.200800064.
  • Zhang, J.; Xu, S.; Kumacheva, E. Photogeneration of Fluorescent Silver Nanoclusters in Polymer Microgels. Adv. Mater. 2005, 17, 2336–2340. DOI: 10.1002/adma.200501062.
  • Wu, Z.; Chen, X.; Li, J.-Y.; Pan, C.-Y.; Hong, C.-Y. Au–Polymer Hybrid Microgels Easily Prepared by Thermo-Induced Self-Crosslinking and In Situ Reduction. RSC Adv. 2016, 6, 48927–48932. DOI: 10.1039/C6RA07864H.
  • Wu, W.; Zhou, T.; Zhou, S. Tunable Photoluminescence of Ag Nanocrystals in Multiple-Sensitive Hybrid Microgels. Chem. Mater. 2009, 21, 2851–2861. DOI: 10.1021/cm900635u.
  • Fernández-López, C.; Pérez-Balado, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; de Lera, Á. R.; Liz-Marzán, L. M. A General LbL Strategy for the Growth of pNIPAM Microgels on Au Nanoparticles with Arbitrary Shapes. Soft Matter. 2012, 8, 4165–4170. DOI: 10.1039/C1SM06396K.
  • Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods. Chem. Mater. 2006, 18, 2465–2467. DOI: 10.1021/cm060293g.
  • Dong, Y.; Ma, Y.; Zhai, T.; Shen, F.; Zeng, Y.; Fu, H.; Yao, J. Silver Nanoparticles Stabilized by Thermoresponsive Microgel Particles: Synthesis and Evidence of an Electron Donor–Acceptor Effect. Macromol. Rapid Commun. 2007, 28, 2339–2345. DOI: 10.1002/marc.200700483.
  • Begum, R.; Farooqi, Z. H.; Ahmed, E.; Naseem, K.; Ashraf, S.; Sharif, A.; Rehan, R. Catalytic Reduction of 4-Nitrophenol Using Silver Nanoparticles-Engineered Poly (N-isopropylacrylamide-co-acrylamide) Hybrid Microgels. Appl. Organomet. Chem. 2017, 31, 3563–3571. DOI: 10.1002/aoc.3563.
  • Tang, Y.; Wu, T.; Hu, B.; Yang, Q.; Liu, L.; Yu, B.; Ding, Y.; Ye, S. Synthesis of Thermo-and pH-responsive Ag Nanoparticle-Embedded Hybrid Microgels and their Catalytic Activity in Methylene Blue Reduction. Mater. Chem. Phys. 2015, 149, 460–466. DOI: 10.1016/j.matchemphys.2014.10.045.
  • Khan, S. R.; Farooqi, Z. H.; Ajmal, M.; Siddiq, M.; Khan, A. Synthesis, Characterization, and Silver Nanoparticles Fabrication in N-isopropylacrylamide-Based Polymer Microgels for Rapid Degradation of p-Nitrophenol. J. Dispersion Sci. Technol. 2013, 34, 1324–1333. DOI: 10.1080/01932691.2012.744690.
  • Wu, W.; Zhou, T.; Berliner, A.; Banerjee, P.; Zhou, S. Smart Core−Shell Hybrid Nanogels with Ag Nanoparticle Core for Cancer Cell Imaging and Gel Shell for pH-Regulated Drug Delivery. Chem. Mater. 2010, 22, 1966–1976. DOI: 10.1021/cm903357q.
  • Ajmal, M.; Farooqi, Z. H.; Siddiq, M. Silver Nanoparticles Containing Hybrid Polymer Microgels with Tunable Surface Plasmon Resonance and Catalytic Activity. Korean J. Chem. Eng. 2013, 30, 2030–2036. DOI: 10.1007/s11814-013-0150-4.
  • Farooqi, Z. H.; Siddiq, M. Temperature-Responsive Poly (N-Isopropylacrylamide-Acrylamide-Phenylboronic Acid) Microgels for Stabilization of Silver Nanoparticles. J. Dispersion Sci. Technol. 2015, 36, 423–429. DOI: 10.1080/01932691.2014.911106.
  • Shah, L. A.; Ambreen, J.; Bibi, I.; Sayed, M.; Siddiq, M. Silver Nanoparticles Fabricated Hybrid Microgels for Optical and Catalytic Study. J. Chem. Soc. Pak. 2016, 38, 850–858.
  • Suzuki, D.; Kawaguchi, H. Hybrid Microgels with Reversibly Changeable Multiple Brilliant Color. Langmuir. 2006, 22, 3818–3822. DOI: 10.1021/la052999f.
  • Ur Rehman, S.; Khan, A. R.; Shah, A.; Badshah, A.; Siddiq, M. Preparation and Characterization of Poly (N-Isoproylacrylamideo-Dimethylaminoethyl Methacrylate) Microgels and their Composites of Gold Nanoparticles. Colloids Surf., A. 2017, 520, 826–833. DOI: 10.1016/j.colsurfa.2017.02.060.
  • Shah, L. A.; Sayed, M.; Fayaz, M.; Bibi, I.; Nawaz, M.; Siddiq, M. Ag-loaded Thermo-sensitive Composite Microgels for Enhanced Catalytic Reduction of Methylene Blue. Nanotechnol. Environ. Eng. 2017, 2, 1–14. DOI: 10.1007/s41204-017-0026-7.
  • Lu, Y.; Proch, S.; Schrinner, M.; Drechsler, M.; Kempe, R.; Ballauff, M. Thermosensitive Core-shell Microgel as a “Nanoreactor” for Catalytic Active Metal Nanoparticles. J. Mater. Chem. 2009, 19, 3955–3961. DOI: 10.1039/b822673n.
  • Farooqi, Z. H.; Khan, S. R.; Begum, R.; Kanwal, F.; Sharif, A.; Ahmed, E.; Majeed, S.; Ejaz, K.; Ijaz, A. Effect of Acrylic Acid Feed Contents of Microgels on Catalytic Activity of Silver Nanoparticles Fabricated Hybrid Microgels. Turk. J. Chem. 2015, 39, 96–107. DOI: 10.3906/kim-1406-40.
  • Suzuki, D.; Kawaguchi, H. Gold Nanoparticle Localization at the Core Surface by Using Thermosensitive Core−Shell Particles as a Template. Langmuir. 2005, 21, 12016–12024. DOI: 10.1021/la0516882.
  • Vimala, K.; Sivudu, K. S.; Mohan, Y. M.; Sreedhar, B.; Raju, K. M. Controlled Silver Nanoparticles Synthesis in Semi-hydrogel Networks of Poly (Acrylamide) and Carbohydrates: A Rational Methodology for Antibacterial Application. Carbohydr. Polym. 2009, 75, 463–471. DOI: 10.1016/j.carbpol.2008.08.009.
  • Karg, M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Hellweg, T.; Liz-Marzán, L. M. Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small. 2007, 3, 1222–1229. DOI: 10.1002/smll.200700078.
  • Das, M.; Mordoukhovski, L.; Kumacheva, E. Sequestering Gold Nanorods by Polymer Microgels. Adv. Mater. 2008, 20, 2371–2375. DOI: 10.1002/adma.200702860.
  • Lu, Y.; Yuan, J.; Polzer, F.; Drechsler, M.; Preussner, J. In Situ Growth of Catalytic Active Au−Pt Bimetallic Nanorods in Thermoresponsive Core−Shell Microgels. ACS Nano. 2010, 4, 7078–7086. DOI: 10.1021/nn102622d.
  • Rodríguez-Fernández, J.; Fedoruk, M.; Hrelescu, C.; Lutich, A. A.; Feldmann, J. Triggering the Volume Phase Transition of Core–shell Au Nanorod–Microgel Nanocomposites with Light. Nanotechnology. 2011, 22, 245708–245716. DOI: 10.1088/0957-4484/22/24/245708.
  • Kawano, T.; Niidome, Y.; Mori, T.; Katayama, Y.; Niidome, T. PNIPAM gel-Coated Gold Nanorods for Targeted Delivery Responding to a Near-infrared Laser. Bioconjugate Chem. 2009, 20, 209–212. DOI: 10.1021/bc800480k.
  • Khan, A. Preparation and Characterization of N-isopropylacrylamide/Acrylic Acid Copolymer Core–Shell Microgel Particles. Colloid Interface Sci. 2007, 313, 697–704. DOI: 10.1016/j.jcis.2007.05.027.
  • Wang, Y.; Wei, G.; Wen, F.; Zhang, X.; Zhang, W.; Shi, L. Synthesis of Gold Nanoparticles Stabilized with Poly(N-Isopropylacrylamide)-co-poly (4-Vinyl Pyridine) Colloid and Their Application in Responsive Catalysis. J. Mol. Catal. A: Chem. 2008, 280, 1–6. DOI: 10.1016/j.molcata.2007.10.014.
  • Fundueanu, G.; Constantin, M.; Ascenzi, P. Poly(N-isopropylacrylamide-co-Acrylamide) Cross-linked Thermoresponsive Microspheres Obtained from Preformed Polymers: Influence of the Physico-Chemical Characteristics of Drugs on their Release Profiles. Acta Biomater. 2009, 5, 363–373. DOI: 10.1016/j.actbio.2008.07.011.
  • Fundueanu, G.; Constantin, M.; Ascenzi, P. Fast-Responsive Porous Thermoresponsive Microspheres for Controlled Delivery of Macromolecules. Int. J. Pharm. 2009, 379, 9–17. DOI: 10.1016/j.ijpharm.2009.05.064.
  • Ajmal, M.; Demirci, S.; Siddiq, M.; Aktas, N.; Sahiner, N. Simultaneous Catalytic Degradation/reduction of Multiple Organic Compounds by Modifiable p(methacrylic acid-co-acrylonitrile)–M (M: Cu, Co) Microgel Catalyst Composites. New J. Chem. 2016, 40, 1485–1496. DOI: 10.1039/C5NJ02298C.
  • Khan, S. R.; Farooqi, Z. H.; Ali, A.; Begum, R.; Kanwal, F.; Siddiq, M. Kinetics and Mechanism of Reduction of Nitrobenzene Catalyzed by Silver-poly(N-Isopropylacryl Amide-co-Allylacetic Acid) Hybrid Microgels. Mater. Chem. Phys. 2016, 171, 318–327. DOI: 10.1016/j.matchemphys.2016.01.023.
  • Shah, L. A.; Haleem, A.; Sayed, M.; Siddiq, M. Synthesis of Sensitive Hybrid Polymer Microgels for Catalytic Reduction of Organic Pollutants. J. Environ. Chem. Eng. 2016, 4, 3492–3497. DOI: 10.1016/j.jece.2016.07.029.
  • Liu, Y.-Y.; Liu, X.-Y.; Yang, J.-M.; Lin, D.-L.; Chen, X.; Zha, L.-S. Investigation of Ag Nanoparticles Loading Temperature Responsive Hybrid Microgels and their Temperature Controlled Catalytic Activity. Colloids Surf., A. 2012, 393, 105–110. DOI: 10.1016/j.colsurfa.2011.11.007.
  • Pich, A.; Karak, A.; Lu, Y.; Ghosh, A. K.; Adler, H.-J. P. Tuneable Catalytic Properties of Hybrid Microgels Containing Gold Nanoparticles. J. Nanosci. Nanotechnol. 2006, 6, 3763–3769. DOI: 10.1166/jnn.2006.621.
  • Wu, S.; Dzubiella, J.; Kaiser, J.; Drechsler, M.; Guo, X.; Ballauff, M.; Lu, Y. Thermosensitive Au‐PNIPA Yolk–Shell Nanoparticles with Tunable Selectivity for Catalysis. Angew. Chem. Int. Ed. 2012, 51, 2229–2233. DOI: 10.1002/anie.201106515.
  • Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic Activity of Palladium Nanoparticles Encapsulated in Spherical Polyelectrolyte Brushes and Core−shell Microgels. Chem. Mater. 2007, 19, 1062–1069. DOI: 10.1021/cm062554s.
  • Cho, S.; Li, Y.; Seo, M.; Kumacheva, E. Nanofibrillar Stimulus-Responsive Cholesteric Microgels with Catalytic Properties. Angew. Chem. Int. Ed. 2016, 55, 14014–14018. DOI: 10.1002/anie.201607406.
  • Naseem, K.; Begum, R.; Farooqi, Z. H. Catalytic Reduction of 2-Nitroaniline: a Review. Environ. Sci. Pollut. Res. 2017, 24, 6446–6460. DOI: 10.1007/s11356-016-8317-2.
  • Wang, L.; Chen, S.; Zhou, J.; Yang, J.; Chen, X.; Ji, Y.; Liu, X.; Zha, L. Silver Nanoparticles Loaded Thermoresponsive Hybrid Nanofibrous Hydrogel as a Recyclable Dip-Catalyst with Temperature-Tunable Catalytic Activity. Macromol. Mater. Eng. 2017, 302, 1700181–1700189. DOI: 10.1002/mame.201700181.
  • Zhang, C.; Li, C.; Chen, Y.; Zhang, Y. Synthesis and Catalysis of Ag Nanoparticles Trapped into Temperature-Sensitive and Conductive Polymers. J. Mater. Sci. 2014, 49, 6872–6882. DOI: 10.1007/s10853-014-8389-7.
  • Farooqi, Z. H.; Iqbal, S.; Khan, S. R.; Kanwal, F.; Begum, R. Cobalt and Nickel Nanoparticles Fabricated p (NIPAM-co-MAA) Microgels for Catalytic Applications. e-Polymers. 2014, 14, 313–321. DOI: 10.1515/epoly-2014-0111.
  • Ajmal, M.; Demirci, S.; Siddiq, M.; Aktas, N.; Sahiner, N. Betaine Microgel Preparation from 2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) Ammonium Hydroxide and Its Use as a Catalyst System. Colloids Surf., A. 2015, 486, 29–37. DOI: 10.1016/j.colsurfa.2015.09.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.