940
Views
18
CrossRef citations to date
0
Altmetric
Review Article

Enzyme-Based Ultrasensitive Electrochemical Biosensors for Rapid Assessment of Nitrite Toxicity: Recent Advances and Perspectives

, , &
Pages 32-43 | Published online: 14 May 2018

References

  • Mani, V.; Wu, T. Y.; Chen, S. M.; Chen. Iron Nanoparticles Decorated Grapheme-Multiwalled Carbon Nanotubes Nanocomposite-Modified Glassy Carbon Electrode for the Sensitive Determination of Nitrite. J. Solid State Electrochem. 2014, 18, 1015–1023. DOI:10.1007/s10008-013-2349-z.
  • Boningari, T.; Smirniotis, P. G. Impact of Nitrogen Oxides on the Environment and Human Health: Mn-Based Materials for the NOx Abatement. Curr. Opin. Chem. Eng. 2016, 13, 133–141. DOI:10.1016/j.coche.2016.09.004.
  • Zhang, J.; Chen, C.; Xu, X.; Wang, X.; Yang, X. Use of Fluorescent Gold Nanoclusters for the Construction of a NAND Logic Gate for Nitrite. Chem. Commun. 2013, 49, 2691–2693. DOI:10.1039/c3cc38298b.
  • Zurcher, D. M.; Adhia, Y. J.; Romero, J. D.; McNeil, A. J. Modifying a Known Gelator Scaffold for Nitrite Detection. Chem. Commun. 2014, 50, 7813–7816. DOI:10.1039/C4CC02504K.
  • Hord, N. G.; Conley, M. N.; Bryan, N. S.; Loscalzo, J. Regulation of Dietary Nitrate and Nitrite: Balancing Essential Physiological Roles with Potential Health Risks. In Nitrite and Nitrate in Human Health and Disease, Humana Press: Cham, Switzerland, 2017; pp. 153–162.
  • Silveira, C. M.; Almeida, M. G.; Moura, J. J. G. Nitrite Biosensing: ElectrochemicalBiosensors Based on Cytochrome C Nitrite Reductase from Desulfovibrio desulfuricans ATCC 27774, 1st ed.; LAP Lambert Academic Publishing: Saarbrücken, Germany. 2014
  • Larsson, S. C.; Orsini, N.; Wolk, A. Processed Meat Consumption and Stomach Cancer Risk: A Meta-Analysis. J. Natl. Cancer Inst. 2006, 98, 1078–1087. DOI:10.1093/jnci/djj301.
  • Ferreira, I. M.; Silva, S. Quantification of Residual Nitrite and Nitrate in Ham by Reverse-Phase High Performance Liquid Chromatography/Diode Array Detector. Talanta. 2008, 74, 1598–1602. DOI:10.1016/j.talanta.2007.10.004.
  • Lin, Z.; Xue, W.; Chen, H.; Lin, J. M. Peroxynitrous-Acid-Induced Chemiluminescence of Fluorescent Carbon Dots for Nitrite Sensing. Anal. Chem. 2011, 83, 8245–8251. DOI:10.1021/ac202039h.
  • Liu, L. L.; Ma, Q.; Liu, Z. P.; Li, Y.; Su, X. G. Detection of Trace Nitrite in Waters Using a QDs-Based Chemiluminescence Analysis System. Anal. Bioanal. Chem. 2014, 406, 879–886. DOI:10.1007/s00216-013-7490-0.
  • Pourreza, N.; Fat'hin, M. R.; Hatami, A. Indirect Cloud Point Extraction and Spectrophotometric Determination of Nitrite in Water and Meat Products. Microchem J. 2012, 104, 22–25. DOI:10.1016/j.microc.2012.03.026.
  • Ma, X.; Miao, T.; Zhu, W.; Gao, X.; Wang, C.; Zhao, C.; Ma, H. Electrochemical Detection of Nitrite Based on Glassy Carbon Electrode Modified with Gold–Polyaniline–Graphene Nanocomposites. RSC Adv. 2014, 4, 57842–57849. DOI:10.1039/C4RA08543D.
  • Yuan, B.; Xu, C.; Liu, L.; Shi, Y.; Li, S.; Zhang, R.; Zhang, D. Polyethylenimine-Bridged Graphene Oxide–Gold Film on Glassy Carbon Electrode and Its Electrocatalytic Activity Toward Nitrite and Hydrogen Peroxide. Sens. Actuator B. 2014, 198, 55–61. DOI:10.1016/j.snb.2014.03.014.
  • Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H. Surface Decoration of Multi-Walled Carbon Nanotubes Modified Carbon Paste Electrode with Gold Nanoparticles for Electrooxidation and Sensitive Determination of Nitrite. Biosens. Bioelectron. 2014, 51, 379–385. DOI:10.1016/j.bios.2013.07.056.
  • Almeida, M. G.; Serra, A.; Silveira, C. M.; Moura, J. J. G. Nitrite Biosensing via Selective Enzymes—A Long but Promising Route. Sensors. 2010, 10, 11530–11555. DOI:10.3390/s101211530.
  • Ishimori, K. Myoglobin. In Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001.
  • Giardina, B.; Messana, I.; Scatena, R.; Castagnola, M. The Multiple Functions of Hemoglobin. Crit. Rev. Biochem. Mol. Biol. 1995, 30, 165–196. DOI:10.3109/10409239509085142.
  • Zhang, Y.; Chen, X.; Yang, W. Direct Electrochemistry and Electrocatalysis of Myoglobin Immobilized in Zirconium Phosphate Nanosheets Film. Sens. Actuator B. 2008, 130, 682–688. DOI:10.1016/j.snb.2007.10.034.
  • Zhao, X.; Mai, Z.; Kang, X.; Dai, Z.; Zou, X. Clay-Chitosan-Gold Nanoparticle Nanohybrid: Preparation and Application for Assembly and Direct Electrochemistry of Myoglobin. Electrochim. Acta. 2008, 53, 4732–4739. DOI:10.1016/j.electacta.2008.02.007.
  • Sun, W.; Li, X.; Wang, Y.; Li, X.; Zhao, C.; Jiao, K. Electrochemistry of Myoglobin in Nafion and Multi-Walled Carbon Nanotubes Modified Carbon Ionic Liquid Electrode. Bioelectrochemistry. 2009, 75, 170–175. DOI:10.1016/j.bioelechem.2009.03.012.
  • Dai, Z.; Liu, S.; Ju, H.; Chen, H. Direct Electron Transfer and Enzymatic Activity of Hemoglobin in a Hexagonal Mesoporous Silica Matrix. Biosens. Bioelectron. 2004, 19, 861–867. DOI:10.1016/j.bios.2003.08.024.
  • Ding, Y.; Wang, Y.; Li, B.; Lei, Y. Electrospun Hemoglobin Microbelts Based Biosensor for Sensitive Detection of Hydrogen Peroxide and Nitrite. Biosens. Bioelectron. 2010, 25, 2009–2015. DOI:10.1016/j.bios.2010.01.024.
  • Hong, J; Dai, Z. Amperometric Biosensor for Hydrogen Peroxide and Nitrite Based on Hemoglobin Immobilized on One-Dimensional Gold Nanoparticle. Sens. Actuator B: Chem. 2009, 140(1), 222–226. DOI:10.1016/j.snb.2009.04.032.
  • Xu, Y; Hu, C; Hu S. A Reagentless Nitric Oxide Biosensor Based on the Direct Electrochemistry of Hemoglobin Adsorbed on the Gold Colloids Modified Carbon Paste Electrode. Sens. Actuator B: Chem. 2010, 148(1), 253–258. DOI:10.1016/j.snb.2010.05.028.
  • Titov, V. Y.; Petrenko, Y. M. Nitrite-Catalase Interaction as an Important Element of Nitrite Toxicity. Biochem. 2003, 68, 627–633.
  • Liu, L.; Zhao, F.; Liu, L.; Li, J.; Zeng, B. Improved Direct Electron Transfer and Electrocatalytic Activity of Horseradish Peroxidase Immobilized on Gemini Surfactant-Polyvinyl Alcohol Composite Film. Colloids Surf. B. 2009, 68, 93–97. DOI:10.1016/j.colsurfb.2008.09.018.
  • Chen, H.; Mousty, C.; Chen, L.; Cosneir, S. A New Approach for Nitrite Determination Based on a HRP/Catalase Biosensor. Mater. Sci. Eng. C. 2008, 28, 726–730. DOI:10.1016/j.msec.2007.10.015.
  • Zazoua, A.; Hnaien, M.; Cosnier, S.; Jaffrezic-Renault, N.; Kherrat, R. A New HRP/Catalase Biosensor Based on Microconductometric Transduction for Nitrite Determination. Mater. Sci. Eng. C. 2009, 29, 1919–1922. DOI:10.1016/j.msec.2009.03.008.
  • Liu, H.; Guo, K.; Lv, J.; Gao, Y.; Duan, C.; Deng, L.; Zhu, Z. A Novel Nitrite Biosensor Based on the Direct Electrochemistry of Horseradish Peroxidase Immobilized on Porous Co3O4 Nanosheets and Reduced Graphene Oxide Composite Modified Electrode. Sens. Actuator B: Chem. 2017, 238, 249–256. DOI:10.1016/j.snb.2016.07.073.
  • Rajesh, S.; Kanugula, A. K.; Bhargava, K.; Ilavazhagan, G.; Kotamraju, S.; Karunakaran, C. Simultaneous Electrochemical Determination of Superoxide Anion Radical and Nitrite Using Cu, ZnSOD Immobilized on Carbon Nanotube in Polypyrrole Matrix. Biosens. Bioelectron. 2010, 26, 689–695. DOI:10.1016/j.bios.2010.06.063.
  • Madasamy, T.; Pandiaraj, M.; Balamurugan, M.; Bhargava, K.; Sethy, N. K.; Karunakaran, C. Copper, Zinc Superoxide Dismutase and Nitrate Reductase Coimmobilized Bienzymatic Biosensor for the Simultaneous Determination of Nitrite and Nitrate. Biosens. Bioelectron. 2014, 52, 209–215. DOI:10.1016/j.bios.2013.08.036.
  • Geng, R.; Zhao, G.; Liu, M.; Li, M. A Sandwich Structured SiO2/Cytochrome c/SiO2 on a Boron-Doped Diamond Film Electrode as an Electrochemical Nitrite Biosensor. Biomaterials. 2008, 29, 2794–2801. DOI:10.1016/j.biomaterials.2008.03.004.
  • Chen, Q.; Ai, S.; Zhu, X.; Yin, H.; Ma, Q.; Qiu, Y. A Nitrite Biosensor Based on the Immobilization of Cytochrome c on Multi-Walled Carbon Nanotubes-PAMAM-Chitosan Nanocomposite Modified Glass Carbon Electrode. Biosens. Bioelectron. 2009, 24, 2991–2996. DOI:10.1016/j.bios.2009.03.007.
  • Eguílaz, M.; Agüí, L.; Yáñez-Sedeño, P.; Pingarrón, J. M. A Biosensor Based on Cytochrome c Immobilization on a Poly-3-Methylthiophene/Multi-Walled Carbon Nanotubes Hybrid-Modified Electrode. Application to the Electrochemical Determination of Nitrite. J. Electroanal. Chem. 2010, 644, 30–35. DOI:10.1016/j.jelechem.2010.03.025.
  • Gopalan, A. I.; Lee, K. P.; Komathi, S. Bioelectrocatalytic Determination of Nitrite Ions Based on Polyaniline Grafted Nanodiamond. Biosens. Bioelectron. 2010, 26, 1638–1643. DOI:10.1016/j.bios.2010.08.042.
  • Liang, F.; Jia, M.; Hu, J. Pt-implanted Indium Tin Oxide Electrodes and Their Amperometric Sensor Applications for Nitrite and Hydrogen Peroxide. Electrochim. Acta. 2012, 75, 414–419. DOI:10.1016/j.electacta.2012.05.033.
  • Haldorai, Y.; Hwang, S. K.; Gopalan, A. I.; Huh, Y. S.; Han, Y. K.; Voit, W.; Sai-Anand, G.; Lee, K. P. Direct Electrochemistry of Cytochrome c Immobilized on Titanium Nitride/Multi-Walled Carbon Nanotube Composite for Amperometric Nitrite Biosensor. Biosens. Bioelectron. 2016, 79, 543–552. DOI:10.1016/j.bios.2015.12.054.
  • Shanmugasundaram, K.; Sai-Anand, G.; Gopalan, A. I.; Lee, H. G.; Yeo, H. K.; Kang, S. W.; Lee, K. P. Direct Electrochemistry of Cytochrome c with Three-Dimensional Nanoarchitectured Multicomponent Composite Electrode and Nitrite Biosensing. Sens. Actuator B: Chem. 2016, 228, 737–747. DOI:10.1016/j.snb.2016.01.109.
  • Williams, P. A.; Fülöp, V.; Garman, E. F.; Saunders, N. F. W.; Ferguson, S. J.; Hajdu, J. Haem-Ligand Switching During Catalysis in Crystals of a Nitrogen-Cycle Enzyme. Nature. 1997, 389, 406–412. DOI:10.1038/38775.
  • Dooley, D. M.; Chan, J. M. Copper Enzymes in Denitrification. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R. B., Ed.; Wiley & Sons: Chichester, 2005; vol. 2, pp. 1081–1091.
  • Einsle, O.; Messerschmidt, A.; Stach, P.; Bourenkov, G. P.; Bartunik, H. D.; Huber, R.; Kroneck, P. M. Structure of cytochrome c nitrite reductase. Nature. 1999, 400(6743), 476–480. DOI:10.1038/22802.
  • Swamy, U.; Wang, M.; Tripathy, J.N.; Kim, S.K.; Hirasawa, M.; Knaff, D.B.; Allen, J.P. Structure of Spinach Nitrite Reductase: Implications for Multi-Electron Reactions by the Iron-Sulfur:Siroheme Cofactor. Biochemistry. 2005, 44, 16054–16063. DOI:10.1021/bi050981y.
  • Sasaki, S.; Karube, I.; Hirota, N.; Arikawa, Y.; Nishiyama, M.; Kukimoto, M.; Horinouchi, S.; Beppu, T. Application of Nitrite Reductase from Alcaligenes faecalis S-6 for Nitrite Measurement. Biosens. Bioelectron. 1998, 13, 1–5. DOI:10.1016/S0956-5663(97)00100-0.
  • Silva, S. D.; Cosnier, S.; Almeida, M. G.; Moura, J. J. G. An Efficient Poly(Pyrrole–Viologen)-Nitrite Reductase Biosensor for the Mediated Detection of Nitrite. Electrochem. Commun. 2004, 6, 404–408. DOI:10.1016/j.elecom.2004.02.007.
  • Quan, D.; Min, D. G.; Cha, G. S.; Nam, H. Electrochemical Characterization of Biosensor Based on Nitrite Reductase and Methyl Viologen Co-Immobilized Glassy Carbon Electrode. Bioelectrochemistry. 2006, 69, 267–275. DOI:10.1016/j.bioelechem.2006.03.030.
  • Almeida, M. G.; Silveira, C. M.; Moura, J. J. G. Biosensing Nitrite Using the System Nitriteedutase/Nafion/Methyl Viologen-a Voltammetric Study. Biosens. Bioelectron. 2007, 22, 2485–2492. DOI:10.1016/j.bios.2006.09.027.
  • Chen, H.; Mousty, C.; Cosnier, S.; Silveira, C.; Moura, J. J. G.; Almeida, M. G. Highly Sensitive Nitrite Biosensor Based on the Electrical Wiring of Nitrite Reductase by [ZnCr-AQS] LDH. Electrochem. Commun. 2007, 9, 2240–2245. DOI:10.1016/j.elecom.2007.05.030.
  • Zhang, Z.; Xia, S.; Leonard, D.; Jaffrezic-Renault, N.; Zhang, J.; Bessueille, F.; Goepfert, Y.; Wang, X.; Chen, L.; Zhu, Z.; et al. A Novel Nitrite Biosensor Based on Conductometric Electrode Modified with Cytochrome c Nitrite Reductase Composite Membrane. Biosens. Bioelectron. 2009, 24, 1574–1579. DOI:10.1016/j.bios.2008.08.010.
  • Silveira, C. M.; Gomes, S. P.; Araújo, A. N.; Conceição, M.; Montenegro, B. S. M.; Todorovic, S.; Viana, A. S.; Silva, R. J. C.; Moura, J. J. G.; Almeida, M. G. An Efficient Non-Mediated Amperometric Biosensor for Nitrite Determination. Biosens. Bioelectron. 2010, 25, 2026–2032. DOI:10.1016/j.bios.2010.01.031.
  • Serra, A. S.; Jorge, S. R.; Silveira, C. M.; Moura, J. J. G.; Jubete, E.; Ochoteco, E.; Cabañero, G.; Grande, H.; Almeida, M. G. Cooperative Use of Cytochrome cd1nitrite Reductase and its Redox Partner Cytochrome c552 to Improve the Selectivity of Nitrite Biosensing. Anal. Chim. Acta. 2011, 693, 41–46. DOI:10.1016/j.aca.2011.03.029.
  • Monteiro, T.; Rodrigues, P. R.; Gonçalves, A. L.; Moura, J. J. G.; Jubete, E.; Añorga, L.; Piknova, B.; Schechter, A. N.; Silveira, C. M.; Almeida, M. G. Construction of Effective Disposable Biosensors for Point of Care Testing of Nitrite. Talanta. 2015, 142, 246–251. DOI:10.1016/j.talanta.2015.04.057.
  • Santharaman, P.; Venkatesh, K. A.; Vairamani, K.; Benjamin, A. R.; Sethy, N. K.; Bhargava, K.; Karunakaran, C. ARM-Microcontroller Based Portable Nitrite Electrochemical Analyzer Using Cytochrome c Reductase Biofunctionalized onto Screen Printed Carbon Electrode. Biosens. Bioelectron. 2017, 90, 410–417. DOI:10.1016/j.bios.2016.10.039.
  • Singh, M.; Verma, N.; Garg, A. K.; Redhu, N. Urea Biosensors. Sens. Actuator B:Chem. 2008, 134, 345–351. DOI:10.1016/j.snb.2008.04.025.
  • Brígida, A. I. S.; Calado, V. M. A.; Gonçalves, L. R. B.; Coelho, M. A. Z. Effect of Chemical Treatments on Properties of Green Coconut Fiber. Carbohydr. Polym. 2010, 79, 832–838. DOI:10.1016/j.carbpol.2009.10.005.
  • Mitchell, S.; Ramírez, J. P. Mesoporous Zeolites as Enzyme Carriers: Synthesis, Characterization, and Application in Biocatalysis. Catal. Today. 2011, 168, 28–37. DOI:10.1016/j.cattod.2010.10.058.
  • Karagulyan, H. K.; Gasparyan, V. K.; Decker, S. R. Immobilization of Fungal Beta-Glucosidase on Silica Gel and Kaolin Carriers. Appl. Biochem. Biotechnol. 2008, 146, 39–47. DOI:10.1007/s12010-007-8065-3.
  • Joshi, K. A.; Tang, J.; Haddon, R.; Wang, J.; Chen, W.; Mulchandani, A. A Disposable Biosensor for Organophosphorus Nerve Agents Based on Carbon Nanotubes Modified Thick Film Strip Electrode. Electroanalysis. 2005, 17, 54–58. DOI:10.1002/elan.200403118.
  • Joshi, K. A.; Prouza, M.; Kum, M.; Wang, J.; Tang, J.; Haddon, R.; Chen, W.; Mulchandani, A. V-Type Nerve Agent Detection Using a Carbon Nanotube-Based Amperometric Enzyme Electrode. Anal. Chem. 2006, 78(1), 331–336. DOI:10.1021/ac051052f.
  • Adekunle, A. S.; Mamba, B. B.; Agboola, B. O.; Ozoemena, K. I. Nitrite Electrochemical Sensor Based on Prussian Blue/SingleWalled Carbon Nanotubes Modified Pyrolytic Graphite Electrode. Int. J. Electrochem. Sci. 2011, 6, 4388–4403.
  • Flickinger, M. C.; Drew, S. W. Fermentation, Biocatalysis and Bioseparation. In Encyclopedia of Bioprocess Technology, 1st ed.; Flickinger, M. C., Ed.; Wiley: New York, NY, USA, 1999; vol. 1.
  • Huang, L.; Cheng, Z. M. Immobilization of Lipase on Chemically Modified Bimodal Ceramic Foams for Olive Oil Hydrolysis. Chem. Eng. J. 2008, 144, 103–109. DOI:10.1016/j.cej.2008.05.015.
  • Chronopoulou, L.; Kamel, G.; Sparago, C.; Bordi, F.; Lupi, S. Structure–Activity Relationships of Candida rugosa Lipase Immobilised on Polylactic Acid Nanoparticles. Soft Matter. 2011, 7, 2653–2662. DOI:10.1039/c0sm00712a.
  • Bucur, B.; Danet, A. F.; Marty, J. L. Versatile Method of Cholinesterase Immobilisation Via Affinity Bonds Using Concanavalin A Applied to the Construction of a Screen-Printed Biosensor. Biosens. Bioelectron. 2004, 20(2), 217–225. DOI:10.1016/j.bios.2004.02.024.
  • Pryakhin, A. N.; Chukhrai, E. S.; Poltorak, O. M. Glucose 6-Phosphate Dehydrogenase Immobilized by Adsorption on Silica Gel Solid Supports. Vest. Moskov. Univ. Ser. 2 Khim. 1977, 18(1), 125.
  • Guisan, J. M. Immobilization of Enzymes as the 21st Century Begins. In Immobilization of Enzymes and Cells, 2nd ed.; Guisan, J. M., Ed.; Humana Press Inc: Totowa, NJ, USA, 2006, pp. 1–13.
  • Obzturk, B. Immobilization of Lipase from Candida rugosa on Hydrophobic and Hydrophilic Supports. M.Sc. Dissertation, Izmir Institute of Technology, İzmir, Turkey, 2001, pp. 40.
  • Zhao, Z.; Jiang, H. Enzyme-Based Electrochemical Biosensors. In Biosensors; Serra, Pier Andrea, Ed.; InTech: Rijeka, Croatia, 2010.
  • Ispas, C.; Sokolov, I.; Andreescu, S. Enzyme-Functionalized Mesoporous Silica for Bioanalytical Applications. Anal. Bioanal. Chem. 2009, 393, 543–554. DOI:10.1007/s00216-008-2250-2.
  • Ovsejevi, K.; Manta, C.; Battista-Viera, F. Reversible Covalent Immobilization of Enzymes Via Disulphide Bonds. Methods Mol. Biol. 2013, 1051, 89–116. DOI:10.1007/978-1-62703-550-7_7.
  • Subramanian, A.; Kennel, S. J.; Oden, P. I.; Jacobson, K. B.; Woodward, J.; Doktycz, M. J. Comparison of Techniques for Enzyme Immobilisation on Silicon Supports – Effect of Cross-Linker Chain Length on Enzyme Activity. Enzyme Microb. Technol. 1999, 24(1), 26–34. DOI:10.1016/S0141-0229(98)00084-2.
  • Costa, S. A.; Azevedo, H. S.; Reis, R. L. Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications. In Biodegradable Systems in Tissue Engineering and Regenerative Medicine, Reis, R. L., Román, J. S., Eds.; CRC Press LLC: London, 2005; pp. 109–112.
  • Lopez, A.; Lazaro, N.; Marques, A. M. The interphase technique: a simple method of cell immobilization in gel-beads. J. Microbiol. Methods. 1997, 30, 231–234. DOI:10.1016/S0167-7012(97)00071-7.
  • Wang, Z. G.; Wan, L. S.; Liu, Z. M.; Huang, X. J.; Xu, Z. K. Enzyme Immobilization on Electrospun Polymer Nanofibers: An Overview. J. Mol. Catal. B-Enzym. 2009, 56, 189–195. DOI:10.1016/j.molcatb.2008.05.005.
  • Shen, Q.; Yang, R.; Hua, X.; Ye, F.; Zhang, W.; Zhao, W. Gelatin-Templated Biomimetic Calcification for β-Galactosidase Immobilization. Process Biochem. 2011, 46, 1565–1571. DOI:10.1016/j.procbio.2011.04.010.
  • Sheldon, R. A. Cross-Linked Enzyme Aggregates (CLEAs): Stable and Recyclable Biocatalysts. Biochem. Soc. 2007, 35(6), 1583–1587. DOI:10.1042/BST0351583.
  • Shi, Y.; Jin, F.; Wu, Y.; Yan, F.; Yu, X.; Quan, Y. Improvement of Immobilized Cells Through Permealilizing and Crosslinking. Chin. J. Biotechnol. 1997, 13(1), 111–113.
  • Hanefield, U.; Gardossi, L.; Magner, E. Understanding Enzyme Immobilisation. Chem. Soc. Rev. 2008, 38, 453–468. DOI:10.1039/B711564B.
  • Gorecka, E.; Jastrzebska, M. Immobilization Techniques and Biopolymer Carriers. Biotechnol. Food Sci. 2011, 75, 65–86.
  • Datta, S.; Rene, C. L.; Rajaram, Y. R. S. Enzyme Immobilization: An Overview on Techniques and Support Materials. 3 Biotech. 2013, 3(1), 1–9. DOI:10.1007/s13205-012-0071-7.
  • Park, J. K.; Chang, H. N. Microencapsulation of Microbial Cells. Biotechnol. Adv. 2000, 18(4), 303–319. DOI:10.1016/S0734-9750(00)00040-9.
  • Scharf, M.; Moreno, C.; Costa, C.; Van Dijk, C.; Payne, W.J.; LeGall, J.; Moura, I.; Moura, J. J. Electrochemical Studies on Nitrite Reductase Towards a Biosensor. Biochem. Biophys. Res. Commun. 1995, 209, 1018–1025. DOI:10.1006/bbrc.1995.1599.
  • Silveira, C. M.; Baur, J.; Holzinger, M.; Moura, J. J. G.; Cosnier, S.; Almeida, M. G. Enhanced Direct Electron Transfer of a Multihemic Nitrite Reductase on Single-Walled Carbon Nanotube Modified Electrodes. Electroanalysis. 2010. DOI:10.1002/elan.201000363.
  • Li, J.; Lin, X. Electrocatalytic Reduction of Nitrite at Polypyrrole Nanowire–Platinum Nanocluster Modified Glassy Carbon Electrode. Microchem. J. 2007, 87, 41–46. DOI:10.1016/j.microc.2007.05.005.
  • Huang, X.; Li, Y.; Chen, Y.; Wang, L. Electrochemical Determination of Nitrite and Iodate by Use of Gold Nanoparticles/Poly (3-Methylthiophene) Composites Coated Glassy Carbon Electrode. Sens. Actuator B: Chem. 2008, 134, 780–786. DOI:10.1016/j.snb.2008.06.028.
  • Yang, S.; Liu, X.; Zeng, X.; Xia, B.; Gu, J.; Luo, S.; Mai, N.; Wei, W. Fabrication of Nano Copper/Carbon Nanotubes/Chitosan Film by One-Step Electrodeposition and Its Sensitive Determination of Nitrite. Sens. Actuator B: Chem. 2010, 145, 762–768. DOI:10.1016/j.snb.2010.01.032.
  • Xia, C.; Yanjun, X.; Ning, W. Hollow Fe2O3 Polyhedrons: One-Pot Synthesis and Their Use as Electrochemical Material for Nitrite Sensing. Electrochim. Acta. 2012, 59, 81–85. DOI:10.1016/j.electacta.2011.10.039.
  • Zhang, Y.; Yuan, R.; Chai, Y.; Li, W.; Zhong, X.; Zhong, H. Simultaneous Voltammetric Determination for DA, AA and NO2−Based on Graphene/Poly-Cyclodextrin/MWCNTs Nanocomposite Platform. Biosens. Bioelectron. 2011, 26, 3977–3980. DOI:10.1016/j.bios.2011.03.017.
  • Zhang, M. L.; Cao, Z.; He, J. L.; Xue, L.; Zhou, Y.; Long, S.; Deng, T.; Zhang, L. A Simple Gold Plate Electrode Modified with Gd-Doped TiO2 Nanoparticles Used for Determination of Trace Nitrite in Cured Food. Food Addit. Contam.: Part A.2012, 29, 1938–1946. DOI:10.1080/19440049.2012.715762.
  • Zhang, S.; Li, B.; Sheng, Q.; Zheng, J. Electrochemical Sensor for Sensitive Determination of Nitrite Based on the CuS–MWCNT Nanocomposites. J. Electroanal. Chem. 2016, 769, 118–123. DOI:10.1016/j.jelechem.2016.03.025.
  • Lin, P.; Chai, F.; Zhang, R.; Xu, G.; Fan, X.; Luo, X. Electrochemical Synthesis of Poly(3,4-Ethylenedioxythiophene) Doped with Gold Nanoparticles, and Its Application to Nitrite Sensing. Microchim. Acta. 2016, 183, 1235–1241. DOI:10.1007/s00604-016-1751-5.
  • Wang, H.; Wen, F.; Chen, Y.; Sun, T.; Meng, Y.; Zhang, Y. Electrocatalytic Determination of Nitrite Based on Straw Cellulose/Molybdenum Sulfide Nanocomposite. Biosens. Bioelectron. 2016, 85, 692–697. DOI:10.1016/j.bios.2016.05.078.
  • Sheng, Q.; Liu, D.; Zheng, J. A Nonenzymatic Electrochemical Nitrite Sensor Based on Pt Nanoparticles Loaded Ni(OH)2/Multi-Walled Carbon Nanotubes Nanocomposites. J. Electroanal. Chem. 2017, 796, 9–16. DOI:10.1016/j.jelechem.2017.04.050.
  • Losada, J.; Armada, M. P. G.; García, E.; Casado, C. M.; Alonso, B. Electrochemical Preparation of Gold Nanoparticles on Ferrocenyl-Dendrimer Film Modified Electrodes and Their Application for the Electrocatalytic Oxidation and Amperometric Detection of Nitrite. J. Electroanal. Chem. 2017, 788, 14–22. DOI:10.1016/j.jelechem.2017.01.066.
  • Jaiswal, N.; Tiwari, I.; Foster, C. W.; Banks, C. E. Highly Sensitive Amperometric Sensing of Nitrite Utilizing Bulk-Modified MnO2 Decorated Graphene Oxide Nanocomposite Screen-Printed Electrodes. Electrochim. Acta. 2017, 227, 255–266. DOI:10.1016/j.electacta.2017.01.007.
  • Zou, C.; Yang, B.; Bin, D.; Wang, J.; Li, S.; Yang, P.; Wang, C.; Shiraishi, Y.; Du, Y. Electrochemical Synthesis of Gold Nanoparticles Decorated Flower-Like Graphene for High Sensitivity Detection of Nitrite. J. Colloid Interface Sci. 2017, 488, 135–141. DOI:10.1016/j.jcis.2016.10.088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.