1,663
Views
64
CrossRef citations to date
0
Altmetric
Review Article

Electrochemical Enzyme Biosensors Revisited: Old Solutions for New Problems

& ORCID Icon
Pages 44-66 | Published online: 14 May 2018

References

  • European Union Council. Environment. http://ec.europa.eu/environment/index_en.htm (accessed Feb 27, 2018).
  • European Union Council. Food. https://ec.europa.eu/food/safety_en (accessed Feb 27, 2018).
  • Food and Drug Administration. FDA Food Safety Modernization Act (FSMA). https://www.fda.gov/food/guidanceregulation/fsma/default.htm (accessed Feb 27, 2018).
  • United States Environmental Protection Agency. Laws and Executive Orders. https://www.epa.gov/laws-regulations/laws-and-executive-orders (accessed Feb 27, 2018).
  • World Health Organization. WHO Guidelines Approved by the Guidelines Review Committee. http://www.who.int/publications/guidelines/en/ (accessed Feb 27, 2018).
  • Medeiros, A.; Maria, L.; Farias, A. Biosensor for Environmental Applications. In Environmental Biosensors; Somerset, V., Ed.; InTech: London, United Kingdom, 2011; pp. 3–16.
  • Gubala, V.; Harris, L. F.; Ricco, A. J.; Tan, M. X.; Williams, D. E. Point of Care Diagnostics: Status and Future. Anal. Chem. 2012, 84, 487–515. DOI: 10.1021/ac2030199.
  • Tokonami, S.; Iida, T. Review: Novel Sensing Strategies for Bacterial Detection Based on Active and Passive Methods Driven by External Field. Anal. Chim. Acta. 2017, 988, 1–16. DOI: 10.1016/j.aca.2017.07.034.
  • Mehrotra, P. Biosensors and their Applications – A Review. J. Oral Biol. Craniofacial Res. 2016, 6, 153–159. DOI: 10.1016/j.jobcr.2015.12.002.
  • Serna-Cock, L.; Perenguez-Verdugo, G. J. Biosensors Applications in Agri-food Industry. In Environmental Biosensors; Somerset, V., Ed.; InTech: London, United Kingdom, 2011; pp. 43–64.
  • Farré, M.; Kantiani, L.; Pérez, S.; Barceló, D.; Barceló, D. Sensors and Biosensors in Support of EU Directives. TrAC Trends Anal. Chem. 2009, 28, 170–185. DOI: 10.1016/j.trac.2008.09.018.
  • Palchetti, I.; Mascini, M. Electroanalytical Biosensors and their Potential for Food Pathogen and Toxin Detection. Anal. Bioanal. Chem. 2008, 391, 455–471. DOI: 10.1007/s00216-008-1876-4.
  • Kimmel, D. W.; LeBlanc, G.; Meschievitz, M. E.; Cliffel, D. E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. DOI: 10.1021/ac202878q.
  • Phillips, P. E. M.; Wightman, R. M. Critical Guidelines for Validation of the Selectivity of In-Vivo Chemical Microsensors. TrAC Trends Anal. Chem. 2003, 22, 509–514. DOI: 10.1016/S0165-9936(03)00907-5.
  • Wilson, G. S.; Gifford, R. Biosensors for Real-Time in Vivo Measurements. Biosens. Bioelectron. 2005, 20, 2388–2403. DOI: 10.1016/j.bios.2004.12.003.
  • Bahadır, E. B.; Sezgintürk, M. K. Applications of Commercial Biosensors in Clinical, Food, Environmental, and Biothreat/Biowarfare Analyses. Anal. Biochem. 2015, 478, 107–120. DOI: 10.1016/j.ab.2015.03.011.
  • Luppa, P. B.; Müller, C.; Schlichtiger, A.; Schlebusch, H. Point-of-Care Testing (POCT): Current Techniques and Future Perspectives. TrAC Trends Anal. Chem. 2011, 30, 887–898. DOI: 10.1016/j.trac.2011.01.019.
  • Sakamoto, J. H.; van de Ven, A. L.; Godin, B.; Blanco, E.; Serda, R. E.; Grattoni, A.; Ziemys, A.; Bouamrani, A.; Hu, T.; Ranganathan, S. I.; et al. Enabling Individualized Therapy through Nanotechnology. Pharmacol. Res. 2010, 62, 57–89. DOI: 10.1016/j.phrs.2009.12.011.
  • Brandt, S. D. Special Issue on Illicit Drugs. Drug Test. Anal. 2011, 3, 525–526. DOI: 10.1002/dta.308.
  • Turner, A. P. F.; Piletsky, S. Biosensors and Biomimetic Sensors for the Detection of Drugs, Toxins and Biological Agents. In Defense against Bioterror: Detection Technologies, Implementation Strategies and Commercial Opportunities; Morrison, D., Milanovich, F., Ivnitski, D., Austin, T. R., Eds.; Springer Netherlands: Dordrecht, 2005; pp. 261–272.
  • Thevis, M.; Kuuranne, T.; Walpurgis, K.; Geyer, H.; Schänzer, W. Annual Banned-Substance Review: Analytical Approaches in Human Sports Drug Testing. Drug Test. Anal. 2016, 8, 7–29. DOI: 10.1002/dta.1928.
  • Srinivasan, B.; Tung, S. Development and Applications of Portable Biosensors. J. Lab. Autom. 2015, 20, 365–389. DOI: 10.1177/2211068215581349.
  • Wang, J. Electrochemical Sensing of Explosives. Electroanalysis. 2007, 19, 415–423. DOI: 10.1002/elan.200603748.
  • Marín, S.; Merkoçi, A. Nanomaterials Based Electrochemical Sensing Applications for Safety and Security. Electroanalysis. 2012, 24, 459–469. DOI: 10.1002/elan.201100576.
  • Kim, K.; Tsay, O. G.; Atwood, D. A.; Churchill, D. G. Destruction and Detection of Chemical Warfare Agents. Chem. Rev. 2011, 111, 5345–5403. DOI: 10.1021/cr100193y.
  • Newman, J. D.; Turner, A. P. F. Home Blood Glucose Biosensors: A Commercial Perspective. Biosens. Bioelectron. 2005, 20, 2435–2453. DOI: 10.1016/j.bios.2004.11.012.
  • Renneberg, R.; Pfeiffer, D.; Lisdat, F.; Wilson, G.; Wollenberger, U.; Ligler, F.; Turner, A. P. F. Frieder Scheller and the Short History of Biosensors. In Biosensing for the 21st Century. Advances in Biochemical Engineering/Biotechnology; Renneberg R., Lisdat F., Eds.; Springer: Berlin, Heidelberg, 2007; pp. 1–18.
  • Wang, J. Glucose Biosensors: 40 Years of Advances and Challenges. Electroanalysis. 2001, 13, 983–988.
  • Heller, A.; Feldman, B. Electrochemical Glucose Sensors and Their Applications in Diabetes Management. Chem. Rev. 2008, 108, 2482–2505. DOI: 10.1021/cr068069y.
  • Yoo, E.-H.; Lee, S.-Y. Glucose Biosensors: An Overview of Use in Clinical Practice. Sensors. 2010, 10, 4558–4576. DOI: 10.3390/s100504558.
  • D'Orazio, P. Biosensors in Clinical Chemistry. Clin. Chim. Acta. 2003, 334, 41–69. DOI: 10.1016/S0009-8981(03)00241-9.
  • Ocvirk, G.; Buck, H.; DuVall, S. H. Electrochemical Glucose Biosensors for Diabetes Care. In Trends in Bioelectroanalysis; Matysik, F.-M., Ed.; Springer International Publishing: Cham, 2017; pp. 1–101.
  • Eggins, B. R. Biosensors: An Introduction; Wiley: New York, 1996.
  • Mitra, S.; Brukh, R. Sample Preparation: An Analytical Perspective. In Sample Preparation Techniques in Analytical Chemistry; Mitra, S., Ed.; John Wiley & Sons, Inc: New Jersey, 2003; pp. 1–36.
  • Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors. 2008, 8, 1400–1458. DOI: 10.3390/s80314000.
  • Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Electrochemical Biosensors: Recommended Definitions and Classification. Biosens. Bioelectron. 2001, 16, 121–131. DOI:10.1016/S0956-5663(01)00115-4.
  • Magner, E. Trends in Electrochemical Biosensors. Analyst. 1998, 123, 1967–1970. DOI:10.1039/a803314e.
  • Kricka, L. J. Microchips, Microarrays, Biochips and Nanochips: Personal Laboratories for the 21st Century. Clin. Chim. Acta. 2001, 307, 219–223. DOI: 10.1016/S0009-8981(01)00451-X.
  • Kotanen, C. N.; Moussy, F. G.; Carrara, S.; Guiseppi-Elie, A. Implantable Enzyme Amperometric Biosensors. Biosens. Bioelectron. 2012, 35, 14–26. DOI: 10.1016/j.bios.2012.03.016.
  • Alvarez-Icaza, M.; Bilitewski, U. Mass Production of Biosensors. Anal. Chem. 1993, 65, 525A–533A. DOI: 10.1021/ac00059a001.
  • Kissinger, P. T. Biosensors—A Perspective. Biosens. Bioelectron. 2005, 20, 2512–2516. DOI: 10.1016/j.bios.2004.10.004.
  • Luong, J. H. T.; Male, K. B.; Glennon, J. D. Biosensor Technology: Technology Push Versus Market Pull. Biotechnol. Adv. 2008, 26, 492–500. DOI: 10.1016/j.biotechadv.2008.05.007.
  • P. F. Turner, A. Biosensors And Bioelectronics. Adv. Mater. Lett. 2011, 2, 82–83. DOI: 10.5185/amlett.2011.6001.
  • Scheller, F.; Schubert, F. Biosensors, Volume 11, 1st ed.; Elsevier: Amsterdam, 1991.
  • Vigneshvar, S.; Sudhakumari, C. C.; Senthilkumaran, B.; Prakash, H. Recent Advances in Biosensor Technology for Potential Applications – An Overview. Front. Bioeng. Biotechnol. 2016, 4, 11. DOI: 10.3389/fbioe.2016.00011.
  • Shimomura-Shimizu, M.; Karube, I. Applications of Microbial Cell Sensors. In Whole Cell Sensing System II; Springer: Berlin, Heidelberg, 2009; pp. 1–30.
  • Yagi, K. Applications of Whole-Cell Bacterial Sensors in Biotechnology and Environmental Science. Appl. Microbiol. Biotechnol. 2007, 73, 1251–1258. DOI: 10.1007/s00253-006-0718-6.
  • Schlereth, D. D. Biosensors Based On Self-Assembled Monolayers. In Biosensors and Modern Biospecific Analytical Techniques, 1st ed.; Gorton, L., Ed.; Elsevier, 2005; pp. 1–63.
  • Ronkainen, N. J.; Halsall, H. B.; Heineman, W. R. Electrochemical Biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. DOI: 10.1039/b714449k.
  • Evtugyn, G. A.; Budnikov, H. C.; Nikolskaya, E. B. Sensitivity and Selectivity of Electrochemical Enzyme Sensors for Inhibitor Determination. Talanta. 1998, 46, 465–484. DOI:10.1016/S0039-9140(97)00313-5.
  • Amine, A.; Mohammadi, H.; Bourais, I.; Palleschi, G. Enzyme Inhibition-Based Biosensors for Food Safety and Environmental Monitoring. Biosens. Bioelectron. 2006, 21, 1405–1423. DOI: 10.1016/j.bios.2005.07.012.
  • Borgmann, S.; Hartwich, G.; Schulte, A.; Schuhmann, W. Amperometric Enzyme Sensors Based on Direct and Mediated Electron Transfer. In Electrochemistry of Nucleic Acids and Proteins – Towards Electrochemical Sensors for Genomics and Proteomics; Paleček, E., Scheller, F., Wang, J., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2005; pp. 599–655.
  • Zhou, W.; Jimmy Huang, P.-J.; Ding, J.; Liu, J. Aptamer-Based Biosensors for Biomedical Diagnostics. Analyst. 2014, 139, 2627–2640. DOI: 10.1039/c4an00132j.
  • MacKay, S.; Wishart, D.; Xing, J. Z.; Chen, J. Developing Trends in Aptamer-Based Biosensor Devices and Their Applications. IEEE Trans. Biomed. Circuits Syst. 2014, 8, 4–14. DOI: 10.1109/TBCAS.2014.2304718.
  • Rapini, R.; Marrazza, G. Electrochemical Aptasensors for Contaminants Detection in Food and Environment: Recent Advances. Bioelectrochemistry. 2017, 118, 47–61. DOI: 10.1016/j.bioelechem.2017.07.004.
  • Kissinger, P. T. Introduction to Amperometric Biosensor Configurations. Curr. Sep. 1997, 16, cs16–3f.
  • Montornes, J. M.; Vreeke, M. S.; Katakis, I. Glucose Biosensors. In Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications; Bartlett, P. N., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2008; pp. 199–217.
  • Vaddiraju, S.; Tomazos, I.; Burgess, D. J.; Jain, F. C.; Papadimitrakopoulos, F. Emerging Synergy between Nanotechnology and Implantable Biosensors: A Review. Biosens. Bioelectron. 2010, 25, 1553–1565. DOI: 10.1016/j.bios.2009.12.001.
  • Bartlett, P. N. Bioenergetics and Biological Electron Transport. In Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications; Bartlett, P. N., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2008; pp. 1–37.
  • Schuhmann, W. Amperometric Enzyme Biosensors Based on Optimised Electron-Transfer Pathways and Non-Manual Immobilisation Procedures. Rev. Mol. Biotechnol. 2002, 82, 425–441. DOI: 10.1016/S1389-0352(01)00058-7.
  • Frew, J. E.; Hill, H. A. O. Direct and Indirect Electron Transfer between Electrodes and Redox Proteins. Eur. J. Biochem. 1988, 172, 261–269. DOI: 10.1111/j.1432-1033.1988.tb13882.x.
  • Wang, J. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. J. Pharm. Biomed. Anal. 1999, 19, 47–53. DOI: 10.1016/S0731-7085(98)00056-9.
  • Gorton, L.; Bartlett, P. N. NAD(P)-Based Biosensors. In Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications; Bartlett, P. N., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2008; pp. 157–198.
  • Korkut, S.; Erhan, E.; Yilmaz, F. Enzyme based Phenol Biosensors. In Environmental Biosensors; Somerset, V., Ed.; InTech: London, United Kingdom, 2011; pp. 319–340.
  • Wollenberger, U.; Lisdat, F.; Rose, A.; Streffer, K. Phenolic Biosensors. In Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications; Bartlett, P. N., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2008; pp. 219–248.
  • Bistolas, N.; Wollenberger, U.; Jung, C.; Scheller, F. W. Cytochrome P450 Biosensors—A Review. Biosens. Bioelectron. 2005, 20, 2408–2423. DOI: 10.1016/j.bios.2004.11.023.
  • Gabriela Almeida, M.; Serra, A.; Silveira, C. M.; Moura, J. J. G. Nitrite Biosensing via Selective Enzymes – A Long but Promising Route. Sensors. 2010, 10, 11530–11555. DOI: 10.3390/s101211530.
  • Pohanka, M.; Skládal, P. Electrochemical Biosensors – Principles and Applications. J. Appl. Biomed. 2008, 6, 57–64.
  • Gorton, L.; Lindgren, A.; Larsson, T.; Munteanu, F. D.; Ruzgas, T.; Gazaryan, I. Direct Electron Transfer between Heme-Containing Enzymes and Electrodes as Basis for third Generation Biosensors. Anal. Chim. Acta. 1999, 400, 91–108. DOI: 10.1016/S0003-2670(99)00610-8.
  • Habermüller, K.; Mosbach, M.; Schuhmann, W. Electron-Transfer Mechanisms in Amperometric Biosensors. Fresenius. J. Anal. Chem. 2000, 366, 560–568. DOI: 10.1007/s002160051551.
  • Wang, J. Analytical Electrochemistry, 2nd ed.; Wiley: New York, 2000.
  • Limoges, B.; Moiroux, J.; Savéant, J.-M. Kinetic Control by the Substrate and/or the Cosubstrate in Electrochemically Monitored Redox Enzymatic Homogeneous Systems. Catalytic Responses in Cyclic Voltammetry. J. Electroanal. Chem. 2002, 521, 1–7. DOI: 10.1016/S0022-0728(02)00657-5.
  • Limoges, B.; Moiroux, J.; Savéant, J.-M. Kinetic Control by the Substrate and the Cosubstrate in Electrochemically Monitored Redox Enzymatic Immobilized Systems. Catalytic Responses in Cyclic Voltammetry and Steady State Techniques. J. Electroanal. Chem. 2002, 521, 8–15. DOI: 10.1016/S0022-0728(02)00658-7.
  • Lyons, M. E. G. Mediated Electron Transfer at Redox Active Monolayers. Part 4: Kinetics of Redox Enzymes Coupled With Electron Mediators. Sensors. 2003, 3, 19–42. DOI: 10.3390/s30200019.
  • Rusling, J. F.; Wang, B.; Yun, S. Electrochemistry of Redox Enzymes. In Bioelectrochemistry: Fundamentals, Experimental Techniques and Applications; Bartlett, P. N., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2008; pp. 39–85.
  • Chaubey, A.; Malhotra, B. D. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456. DOI: 10.1016/S0956-5663(01)00313-X.
  • Lojou, É.; Bianco, P. Application of the Electrochemical Concepts and Techniques to Amperometric Biosensor Devices. J. Electroceramics. 2006, 16, 79–91. DOI: 10.1007/s10832-006-2365-9.
  • Kutner, W.; Wang, J.; L'her, M.; Buck, R. P. Analytical Aspects of Chemically Modified Electrodes: Classification, Critical Evaluation and Recommendations (IUPAC Recommendations 1998). Pure Appl. Chem. 1998, 70, 1301–1318. DOI: 10.1351/pac199870061301.
  • Xu, Z.; Chen, X.; Dong, S. Electrochemical Biosensors Based on Advanced Bioimmobilization Matrices. TrAC Trends Anal. Chem. 2006, 25, 899–908. DOI: 10.1016/j.trac.2006.04.008.
  • Sassolas, A.; Blum, L. J.; Leca-Bouvier, B. D. Immobilization Strategies to Develop Enzymatic Biosensors. Biotechnol. Adv. 2012, 30, 489–511. DOI: 10.1016/j.biotechadv.2011.09.003.
  • Lojou, É.; Bianco, P. Membrane Electrodes for Protein and Enzyme Electrochemistry. Electroanalysis. 2004, 16, 1113–1121. DOI: 10.1002/elan.200403001.
  • Biosensors for Environmental Monitoring; Harwood Academic Publishers: Amsterdam, the Netherlands, 2000.
  • Centonze, D.; Palmisano, F.; Zambonin, P. G. Amperometric Biosensors based on Electrosynthesised Polymeric Films. Fresenius. J. Anal. Chem. 2000, 366, 586–601. DOI: 10.1007/s002160051554.
  • Bartlett, P. N.; Pratt, K. F. E. Theoretical Treatment of Diffusion and Kinetics in Amperometric Immobilized Enzyme Electrodes Part I: Redox Mediator Entrapped Within the Film. J. Electroanal. Chem. 1995, 397, 61–78. DOI: 10.1016/0022-0728(95)04236-7.
  • Ghindilis, A. L.; Atanasov, P.; Wilkins, E. Enzyme-catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications. Electroanalysis. 1997, 9, 661–674. DOI: 10.1002/elan.1140090902.
  • Green, M. J.; Hill, H. A. O. Amperometric enzyme electrodes. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1986, 82, 1237–1243. DOI: 10.1039/f19868201237.
  • Wollenberger, U. Third generation Biosensors—Integrating Recognition and Transduction in Electrochemical Sensors. In Biosensors and Modern Biospecific Analytical Techniques, 1st ed.; Gorton, L., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 65–130.
  • Scheller, F. W.; Lisdat, F.; Wollenberger, U. Application of Electrically Contacted Enzymes for Biosensors. In Bioelectronics: From Theory to Applications; Willner, I., Katz, E., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2005; pp. 99–126.
  • Karan, H. I. Enzyme Biosensors Containing Polymeric Electron Transfer Systems. In Biosensors and Modern Biospecific Analytical Techniques, 1st ed.; Gorton, L., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 131–178.
  • Wang, J. Electrochemical Glucose Biosensors. Chem. Rev. 2008, 108, 814–825. DOI: 10.1021/cr068123a.
  • Yellow Springs Instrument Co., Inc. Anal. Chem. 1987, 59, 231A–231A. DOI: 10.1021/ac00130a787.
  • Katz, E.; Shipway, A. N.; Willner, I. Mediated Electron-transfer Between Redox-Enzymes and Electrode Supports. In Encyclopedia of Electrochemistry, Vol 9 Bioelectrochemistry; Bard, A. J., Stratmann, M., Wilson, G. S., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; pp. 559–626.
  • Lee, T. M.-H. Over-the-Counter Biosensors: Past, Present, and Future. Sensors. 2008, 8, 5535–5559. DOI: 10.3390/s8095535.
  • Cass, A. E. G.; Davis, G.; Francis, G. D.; Hill, H. A. O.; Aston, W. J.; Higgins, I. J.; Plotkin, E. V.; Scott, L. D. L.; Turner, A. P. F. Ferrocene-Mediated Enzyme Electrode for Amperometric Determination of Glucose. Anal. Chem. 1984, 56, 667–671. DOI: 10.1021/ac00268a018.
  • Astier, Y.; Canters, G. W.; Davis, J. J.; Hill, H. A. O.; Verbeet, M. P.; Wijma, H. J. Sensing Nitrite through a Pseudoazurin-Nitrite Reductase Electron Transfer Relay. ChemPhysChem. 2005, 6, 1114–1120. DOI: 10.1002/cphc.200400384.
  • Chen, H.; Mousty, C.; Cosnier, S.; Silveira, C.; Moura, J. J. G.; Almeida, M. G. Highly Sensitive Nitrite Biosensor Based on the Electrical Wiring of Nitrite Reductase by [ZnCr-AQS] LDH. Electrochem. Commun. 2007, 9, 2240–2245. DOI: 10.1016/j.elecom.2007.05.030.
  • Ghica, M. E.; Brett, C. M. A. Development of Novel Glucose and Pyruvate Biosensors at Poly(Neutral Red) Modified Carbon Film Electrodes. Application to Natural Samples. Electroanalysis. 2006, 18, 748–756. DOI: 10.1002/elan.200503468.
  • Glazier, S. A.; Campbell, E. R.; Campbell, W. H. Construction and Characterization of Nitrate Reductase-Based Amperometric Electrode and Nitrate Assay of Fertilizers and Drinking Water. Anal. Chem. 1998, 70, 1511–1515. DOI: 10.1021/ac971146s.
  • Gorton, L.; Domínguez, E. Electrochemistry of NAD(P)+/NAD(P)H. In Encyclopedia of Electrochemistry, Vol 9 Bioelectrochemistry; Bard, A., Stratmann, M., Wilson, G., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2002; pp. 67–143.
  • Gründig, B.; Wittstock, G.; Rüdel, U.; Strehlitz, B. Mediator-Modified Electrodes for Electrocatalytic Oxidation of NADH. J. Electroanal. Chem. 1995, 395, 143–157. DOI: 10.1016/0022-0728(95)04090-B.
  • Kumar, S. A.; Chen, S.-M. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review. Sensors. 2008, 8, 739–766. DOI: 10.3390/s8020739.
  • Radoi, A.; Compagnone, D. Recent Advances in NADH Electrochemical Sensing Design. Bioelectrochemistry. 2009, 76, 126–134. DOI: 10.1016/j.bioelechem.2009.06.008.
  • Wilson, R.; Turner, A. P. F. Glucose Oxidase: An Ideal Enzyme. Biosens. Bioelectron. 1992, 7, 165–185. DOI: 10.1016/0956-5663(92)87013-F.
  • Wael, K. De; Bashir, Q.; Vlierberghe, S. Van; Dubruel, P.; Heering, H. A.; Adriaens, A. Electrochemical Determination of Hydrogen Peroxide with Cytochrome C Peroxidase and Horse Heart Cytochrome C Entrapped in a Gelatin Hydrogel. Bioelectrochemistry. 2012, 83, 15–18. DOI: 10.1016/j.bioelechem.2011.07.001.
  • Fridman, V.; Wollenberger, U.; Bogdanovskaya, V.; Lisdat, F.; Ruzgas, T.; Lindgren, A.; Gorton, L.; Scheller, F. W. Electrochemical Investigation of Cellobiose Oxidation by Cellobiose Dehydrogenase in the Presence of Cytochrome C as Mediator. Biochem. Soc. Trans. 2000, 28, 63–70. DOI: 10.1042/bst0280063.
  • Baldrian, P. Fungal Laccases – Occurrence and Properties. FEMS Microbiol. Rev. 2006, 30, 215–242. DOI: 10.1111/j.1574-4976.2005.00010.x.
  • Dronov, R.; Kurth, D. G.; Möhwald, H.; Scheller, F. W.; Lisdat, F. Communication in a Protein Stack: Electron Transfer between Cytochromec and Bilirubin Oxidase Within a Polyelectrolyte Multilayer. Angew. Chem. Int. Ed. 2008, 47, 3000–3003. DOI: 10.1002/anie.200704049.
  • Dronov, R.; Kurth, D. G.; Scheller, F. W.; Lisdat, F. Direct and Cytochromec Mediated Electrochemistry of Bilirubin Oxidase on Gold. Electroanalysis. 2007, 19, 1642–1646. DOI: 10.1002/elan.200703900.
  • Dronov, R.; Kurth, D. G.; Möhwald, H.; Spricigo, R.; Leimkühler, S.; Wollenberger, U.; Rajagopalan, K. V.; Scheller, F. W.; Lisdat, F. Layer-by-Layer Arrangement by Protein−Protein Interaction of Sulfite Oxidase and Cytochrome C Catalyzing Oxidation of Sulfite. J. Am. Chem. Soc. 2008, 130, 1122–1123. DOI: 10.1021/ja0768690.
  • Hart, J. Development of Disposable Amperometric Sulfur Dioxide Biosensors based on Screen Printed Electrodes. Biosens. Bioelectron. 2002, 17, 389–394. DOI: 10.1016/S0956-5663(01)00308-6.
  • Dronov, R.; Kurth, D. G.; Möhwald, H.; Scheller, F. W.; Lisdat, F. A Self-Assembled Cytochrome C/Xanthine Oxidase Multilayer Arrangement on Gold. Electrochim. Acta. 2007, 53, 1107–1113. DOI: 10.1016/j.electacta.2007.02.044.
  • Švancara, I.; Vytřas, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon Paste Electrodes in Facts, Numbers, and Notes: A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis. 2009, 21, 7–28. DOI: 10.1002/elan.200804340.
  • Schuhmann, W. Electron-Transfer Pathways in Amperometric Biosensors. Ferrocene-Modified Enzymes Entrapped in Conducting-Polymer Layers. Biosens. Bioelectron. 1995, 10, 181–193. DOI: 10.1016/0956-5663(95)96805-9.
  • Willner, I. Functional Biosensor Systems Via Surface-Nanoengineering of Electronic Elements. Rev. Mol. Biotechnol. 2002, 82, 325–355. DOI: 10.1016/S1389-0352(01)00050-2.
  • Fruk, L.; Kuo, C.-H.; Torres, E.; Niemeyer, C. M. Apoenzyme Reconstitution as a Chemical Tool for Structural Enzymology and Biotechnology. Angew. Chem. Int. Ed. 2009, 48, 1550–1574. DOI: 10.1002/anie.200803098.
  • Gregg, B. A.; Heller, A. Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications. Anal. Chem. 1990, 62, 258–263. DOI: 10.1021/ac00202a007.
  • Heller, A. Electrical Wiring of Redox Enzymes. Acc. Chem. Res. 1990, 23, 128–134. DOI: 10.1021/ar00173a002.
  • Heller, A. Electron-Conducting Redox Hydrogels: Design, Characteristics and Synthesis. Curr. Opin. Chem. Biol. 2006, 10, 664–672. DOI: 10.1016/j.cbpa.2006.09.018.
  • Taylor, C.; Kenausis, G.; Katakis, I.; Heller, A. “Wiring” of Glucose Oxidase Within a Hydrogel Made with Polyvinyl Imidazole Complexed with [(Os-4,4′-Dimethoxy-2,2′-Bipyridine)Cl]+/2+1. J. Electroanal. Chem. 1995, 396, 511–515. DOI: 10.1016/0022-0728(95)04080-8.
  • Prévoteau, A.; Mano, N. Oxygen Reduction on Redox Mediators May Affect Glucose Biosensors based on “Wired” Enzymes. Electrochim. Acta. 2012, 68, 128–133. DOI: 10.1016/j.electacta.2012.02.053.
  • Courjean, O.; Flexer, V.; Prévoteau, A.; Suraniti, E.; Mano, N. Effect of Degree of Glycosylation on Charge of Glucose Oxidase and Redox Hydrogel Catalytic Efficiency. ChemPhysChem. 2010, 11, 2795–2797. DOI: 10.1002/cphc.201000178.
  • Prévoteau, A.; Courjean, O.; Mano, N. Deglycosylation of Glucose Oxidase to Improve Biosensors and Biofuel Cells. Electrochem. Commun. 2010, 12, 213–215. DOI: 10.1016/j.elecom.2009.11.027.
  • Durand, F.; Stines-Chaumeil, C.; Flexer, V.; André, I.; Mano, N. Designing a Highly Active Soluble PQQ–Glucose Dehydrogenase for Efficient Glucose Biosensors and Biofuel Cells. Biochem. Biophys. Res. Commun. 2010, 402, 750–754. DOI: 10.1016/j.bbrc.2010.10.102.
  • Durand, F.; Limoges, B.; Mano, N.; Mavré, F.; Miranda-Castro, R.; Savéant, J.-M. Effect of Substrate Inhibition and Cooperativity on the Electrochemical Responses of Glucose Dehydrogenase. Kinetic Characterization of Wild and Mutant Types. J. Am. Chem. Soc. 2011, 133, 12801–12809. DOI: 10.1021/ja204637d.
  • Barlett, P. N.; Cooper, J. M. A Review of the Immobilization of Enzymes in Electropolymerized Films. J. Electroanal. Chem. 1993, 362, 1–12. DOI: 10.1016/0022-0728(93)80001-X.
  • Cosnier, S. Biomolecule Immobilization on Electrode Surfaces by Entrapment or Attachment to Electrochemically Polymerized Films. A Review. Biosens. Bioelectron. 1999, 14, 443–456. DOI: 10.1016/S0956-5663(99)00024-X.
  • Gerard, M. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. DOI: 10.1016/S0956-5663(01)00312-8.
  • Cosnier, S.; Holzinger, M. Biosensors Based on Electropolymerized Films. In Electropolymerization: Concepts, Materials and Applications; Cosnier, S., Karyakin, A., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2010; pp. 189–213.
  • Cosnier, S. Biosensors Based on Electropolymerized Films: New Trends. Anal. Bioanal. Chem. 2003, 377, 507–520. DOI: 10.1007/s00216-003-2131-7.
  • Nöll, T.; Nöll, G. Strategies for “Wiring” Redox-Active Proteins to Electrodes and Applications in Biosensors, Biofuel Cells, and Nanotechnology. Chem. Soc. Rev. 2011, 40, 3564–3576. DOI: 10.1039/c1cs15030h.
  • Jeuken, L. J. C. Conformational Reorganisation in Interfacial Protein Electron Transfer. Biochim. Biophys. Acta – Bioenerg. 2003, 1604, 67–76. DOI: 10.1016/S0005-2728(03)00026-4.
  • Wollenberger, U.; Spricigo, R.; Leimkühler, S.; Schröder, K. Protein Electrodes with Direct Electrochemical Communication. In Biosensing for the 21st Century. Advances in Biochemical Engineering/Biotechnology; Springer: Berlin, Heidelberg, 2007; pp. 19–64.
  • Yeh, P.; Kuwana, T. Reversible Electrode Reaction of Cytochrome C. Chem. Lett. 1977, 6, 1145–1148. DOI: 10.1246/cl.1977.1145.
  • Eddowes, M. J.; Hill, H. A. O. Novel Method for the Investigation of the Electrochemistry of Metalloproteins: Cytochrome C. J. Chem. Soc. Chem. Commun. 1977, 0, 771b–772. DOI: 10.1039/c3977000771b.
  • Varfolomeev, S. D.; Kurochkin, I. N.; Yaropolov, A. I. Direct Electron Transfer Effect Biosensors. Biosens. Bioelectron. 1996, 11, 863–871. DOI: 10.1016/0956-5663(96)89435-8.
  • Razumiene, J.; Niculescu, M.; Ramanavicius, A.; Laurinavicius, V.; Csöregi, E. Direct Bioelectrocatalysis at Carbon Electrodes Modified with Quinohemoprotein Alcohol Dehydrogenase from Gluconobacter sp. 33. Electroanalysis. 2002, 14, 43–49. DOI: 10.1002/1521-4109(200201)14:1<43::AID-ELAN43>3.0.CO;2-5.
  • Monteiro, T.; Rodrigues, P. R.; Gonçalves, A. L.; Moura, J. J. G.; Jubete, E.; Añorga, L.; Piknova, B.; Schechter, A. N.; Silveira, C. M.; Almeida, M. G. Construction of Effective Disposable Biosensors for Point of Care Testing of Nitrite. Talanta. 2015, 142, 246–251. DOI: 10.1016/j.talanta.2015.04.057.
  • Courjean, O.; Gao, F.; Mano, N. Deglycosylation of Glucose Oxidase for Direct and Efficient Glucose Electrooxidation on a Glassy Carbon Electrode. Angew. Chem. – Int. Ed. 2009, 48, 5897–5899. DOI: 10.1002/anie.200902191.
  • Wilson, G. S. Native Glucose Oxidase Does Not Undergo Direct Electron Transfer. Biosens. Bioelectron. 2016, 82, 7–8. DOI: 10.1016/j.bios.2016.04.083.
  • Bartlett, P. N.; Al-Lolage, F. A. There is no Evidence to Support Literature Claims of Direct Electron Transfer (DET) for Native Glucose Oxidase (GOx) at Carbon Nanotubes or Graphene. J. Electroanal. Chem. 2017, pp. 0–1. DOI: 10.1016/j.jelechem.2017.06.021.
  • Léger, C.; Bertrand, P. Direct Electrochemistry of Redox Enzymes as a Tool for Mechanistic Studies. Chem. Rev. 2008, 108, 2379–2438. DOI: 10.1021/cr0680742.
  • Wang, J.; Lin, Y. Functionalized Carbon Nanotubes and Nanofibers for Biosensing Applications. TrAC Trends Anal. Chem. 2008, 27, 619–626. DOI: 10.1016/j.trac.2008.05.009.
  • Das, P.; Das, M.; Chinnadayyala, S. R.; Singha, I. M.; Goswami, P. Recent Advances on Developing 3rd Generation Enzyme Electrode for Biosensor Applications. Biosens. Bioelectron. 2016, 79, 386–397. DOI: 10.1016/j.bios.2015.12.055.
  • Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. DOI: 10.1021/cr2001178.
  • Murray, R. W. Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 2008, 108, 2688–2720. DOI: 10.1021/cr068077e.
  • Lambrianou, A.; Demin, S.; Hall, E. A. H. Protein Engineering and Electrochemical Biosensors. In Biosensing for the 21st Century. Advances in Biochemical Engineering/Biotechnology; Springer: Berlin, Heidelberg, 2007; pp. 65–96.
  • Campàs, M.; Prieto-Simón, B.; Marty, J.-L. A Review of the Use of Genetically Engineered Enzymes in Electrochemical Biosensors. Semin. Cell Dev. Biol. 2009, 20, 3–9. DOI: 10.1016/j.semcdb.2009.01.009.
  • Beissenhirtz, M. K.; Scheller, F. W.; Stöcklein, W. F. M.; Kurth, D. G.; Möhwald, H.; Lisdat, F. Electroactive Cytochromec Multilayers Within a Polyelectrolyte Assembly. Angew. Chem. Int. Ed. 2004, 43, 4357–4360. DOI: 10.1002/anie.200352804.
  • Davis, F.; Higson, S. P. J. Structured Thin Films as Functional Components within Biosensors. Biosens. Bioelectron. 2005, 21, 1–20. DOI: 10.1016/j.bios.2004.10.001.
  • Iost, R. M.; Crespilho, F. N. Layer-By-Layer Self-Assembly and Electrochemistry: Applications in Biosensing and Bioelectronics. Biosens. Bioelectron. 2012, 31, 1–10. DOI: 10.1016/j.bios.2011.10.040.
  • Samanta, D.; Sarkar, A. Immobilization of Bio-Macromolecules on Self-Assembled Monolayers: Methods and Sensor Applications. Chem. Soc. Rev. 2011, 40, 2567–2592. DOI: 10.1039/c0cs00056f.
  • Murphy, L. Biosensors and Bioelectrochemistry. Curr. Opin. Chem. Biol. 2006, 10, 177–184. DOI: 10.1016/j.cbpa.2006.02.023.
  • Putzbach, W.; Ronkainen, N. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review. Sensors. 2013, 13, 4811–4840. DOI: 10.3390/s130404811.
  • Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene? Angew. Chemie Int. Ed. 2010, 49, 2114–2138. DOI: 10.1002/anie.200903463.
  • Wang, Z.; Dai, Z. Carbon Nanomaterial-Based Electrochemical Biosensors: An Overview. Nanoscale. 2015, 7, 6420–6431. DOI: 10.1039/C5NR00585J.
  • Merkoçi, A.; Pumera, M.; Llopis, X.; Pérez, B.; Valle, M. del; Alegret, S. New Materials for Electrochemical Sensing VI: Carbon Nanotubes. TrAC Trends Anal. Chem. 2005, 24, 826–838. DOI: 10.1016/j.trac.2005.03.019.
  • Wang, J. Carbon-Nanotube Based Electrochemical Biosensors: A Review. Electroanalysis. 2005, 17, 7–14. DOI: 10.1002/elan.200403113.
  • Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. Electrocatalysis at Graphite and Carbon Nanotube Modified Electrodes: Edge-Plane Sites and Tube Ends are the Reactive Sites. Chem. Commun. 2005, 0, 829–841. DOI: 10.1039/b413177k.
  • Chou, A.; Böcking, T.; Singh, N. K.; Gooding, J. J. Demonstration of the Importance of Oxygenated Species at the Ends of Carbon Nanotubes for their Favourable Electrochemical Properties. Chem. Commun. 2005, 0, 842–844. DOI: 10.1039/B415051A.
  • McCreery, R. L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. DOI: 10.1021/cr068076m.
  • Moore, R. R.; Banks, C. E.; Compton, R. G. Basal Plane Pyrolytic Graphite Modified Electrodes: Comparison of Carbon Nanotubes and Graphite Powder as Electrocatalysts. Anal. Chem. 2004, 76, 2677–2682. DOI: 10.1021/ac040017q.
  • Musameh, M.; Wang, J.; Merkoci, A.; Lin, Y. Low-Potential Stable NADH Detection at Carbon-Nanotube-Modified Glassy Carbon Electrodes. Electrochem. Commun. 2002, 4, 743–746. DOI: 10.1016/S1388-2481(02)00451-4.
  • Wang, J.; Musameh, M.; Lin, Y. Solubilization of Carbon Nanotubes by Nafion toward the Preparation of Amperometric Biosensors. J. Am. Chem. Soc. 2003, 125, 2408–2409. DOI: 10.1021/ja028951v.
  • Gooding, J. J.; Wibowo, R.; Liu,  .; Yang, W.; Losic, D.; Orbons, S.; Mearns, F. J.; Shapter, J. G.; Hibbert, D. B. Protein Electrochemistry Using Aligned Carbon Nanotube Arrays. J. Am. Chem. Soc. 2003, 125, 9006–9007. DOI: 10.1021/ja035722f.
  • Yu, X.; Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F.; Rusling, J. F. Peroxidase Activity of Enzymes Bound to the Ends of Single-Wall Carbon Nanotube Forest Electrodes. Electrochem. Commun. 2003, 5, 408–411. DOI: 10.1016/S1388-2481(03)00076-6.
  • Patolsky, F.; Weizmann, Y.; Willner, I. Long-Range Electrical Contacting of Redox Enzymes by SWCNT Connectors. Angew. Chemie Int. Ed. 2004, 43, 2113–2117. DOI: 10.1002/anie.200353275.
  • Goff, A. Le; Holzinger, M.; Cosnier, S. Enzymatic Biosensors based on SWCNT-Conducting Polymer Electrodes. Analyst. 2011, 136, 1279–1287. DOI: 10.1039/c0an00904k.
  • Feng, W.; Ji, P. Enzymes Immobilized on Carbon Nanotubes. Biotechnol. Adv. 2011, 29, 889–895. DOI: 10.1016/j.biotechadv.2011.07.007.
  • Jubete, E.; Loaiza, O. A.; Ochoteco, E.; Pomposo, J. A.; Grande, H.; Rodríguez, J. Nanotechnology: A Tool for Improved Performance on Electrochemical Screen-Printed (Bio)Sensors. J. Sensors. 2009, 2009, 1–13. DOI: 10.1155/2009/842575.
  • Lei, J.; Ju, H. Nanotubes in Biosensing. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 496–509. DOI: 10.1002/wnan.94.
  • Wang, Y.; Yao, Y. Direct Electron Transfer of Glucose Oxidase Promoted by Carbon Nanotubes is without Value in Certain Mediator-Free Applications. Microchim. Acta. 2012, 176, 271–277. DOI: 10.1007/s00604-011-0722-0.
  • Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A. Graphene: The New Two-Dimensional Nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777. DOI: 10.1002/anie.200901678.
  • Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S. Graphene Based materials: Past, Present and Future. Prog. Mater. Sci. 2011, 56, 1178–1271. DOI: 10.1016/j.pmatsci.2011.03.003.
  • Cinti, S.; Arduini, F. Graphene-Based Screen-Printed Electrochemical (Bio)sensors and Their Applications: Efforts and Criticisms. Biosens. Bioelectron. 2017, 89, 107–122. DOI: 10.1016/j.bios.2016.07.005.
  • Wen, Y.; Wen, W.; Zhang, X.; Wang, S. Highly Sensitive Amperometric Biosensor Based on Electrochemically-Reduced Graphene Oxide-Chitosan/Hemoglobin Nanocomposite for Nitromethane Determination. Biosens. Bioelectron. 2016, 79, 894–900. DOI: 10.1016/j.bios.2016.01.028.
  • Unnikrishnan, B.; Palanisamy, S.; Chen, S. M. A Simple Electrochemical Approach to Fabricate a Glucose Biosensor Based on Graphene-Glucose Oxidase Biocomposite. Biosens. Bioelectron. 2013, 39, 70–75. DOI: 10.1016/j.bios.2012.06.045.
  • Pakapongpan, S.; Poo-arporn, R. P. Self-Assembly of Glucose Oxidase on Reduced Graphene Oxide-Magnetic Nanoparticles Nanocomposite-Based Direct Electrochemistry for Reagentless Glucose Biosensor. Mater. Sci. Eng. C. 2017, 76, 398–405. DOI: 10.1016/j.msec.2017.03.031.
  • Wisitsoraat, A.; Pakapongpan, S.; Sriprachuabwong, C.; Phokharatkul, D.; Sritongkham, P.; Lomas, T.; Tuantranont, A. Graphene-PEDOT:PSS on Screen Printed Carbon Electrode for Enzymatic Biosensing. J. Electroanal. Chem. 2013, 704, 208–213. DOI: 10.1016/j.jelechem.2013.07.012.
  • Kurbanoglu, S.; Ozkan, S. A. Electrochemical Carbon Based Nanosensors: A Promising Tool in Pharmaceutical and Biomedical Analysis. J. Pharm. Biomed. Anal. 2018, 147, 439–457. DOI: 10.1016/j.jpba.2017.06.062.
  • Pasinszki, T.; Krebsz, M.; Tung, T. T.; Losic, D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors. 2017, 17, 1919. DOI: 10.3390/s17081919.
  • Palanisamy, S.; Cheemalapati, S.; Chen, S. M. Amperometric Glucose Biosensor Based on Glucose Oxidase Dispersed in Multiwalled Carbon Nanotubes/Graphene Oxide Hybrid Biocomposite. Mater. Sci. Eng. C. 2014, 34, 207–213. DOI: 10.1016/j.msec.2013.09.011.
  • Guo, S.; Dong, S. Biomolecule-Nanoparticle Hybrids for Electrochemical Biosensors. TrAC Trends Anal. Chem. 2009, 28, 96–109. DOI: 10.1016/j.trac.2008.10.014.
  • Pingarrón, J. M.; Yáñez-Sedeño, P.; González-Cortés, A. Gold Nanoparticle-Based Electrochemical Biosensors. Electrochim. Acta. 2008, 53, 5848–5866. DOI: 10.1016/j.electacta.2008.03.005.
  • Welch, C. M.; Compton, R. G. The Use of Nanoparticles in Electroanalysis: A Review. Anal. Bioanal. Chem. 2006, 384, 601–619. DOI: 10.1007/s00216-005-0230-3.
  • Willner, I.; Baron, R.; Willner, B. Integrated Nanoparticle–Biomolecule Systems for Biosensing and Bioelectronics. Biosens. Bioelectron. 2007, 22, 1841–1852. DOI: 10.1016/j.bios.2006.09.018.
  • Fu, Y.; Li, P.; Xie, Q.; Xu, X.; Lei, L.; Chen, C.; Zou, C.; Deng, W.; Yao, S. One-Pot Preparation of Polymer-Enzyme-Metallic Nanoparticle Composite Films for High-Performance Biosensing of Glucose and Galactose. Adv. Funct. Mater. 2009, 19, 1784–1791. DOI: 10.1002/adfm.200801576.
  • Xiao, Y. “Plugging into Enzymes”: Nanowiring of Redox Enzymes by a Gold Nanoparticle. Science. 2003, 299, 1877–1881. DOI: 10.1126/science.1080664.
  • Salimi, A.; Hallaj, R.; Soltanian, S. Immobilization of Hemoglobin on Electrodeposited Cobalt-Oxide Nanoparticles: Direct Voltammetry and Electrocatalytic Activity. Biophys. Chem. 2007, 130, 122–131. DOI: 10.1016/j.bpc.2007.08.004.
  • Baccarin, M.; Janegitz, B. C.; Berté, R.; Vicentini, F. C.; Banks, C. E.; Fatibello-Filho, O.; Zucolotto, V. Direct Electrochemistry of Hemoglobin and Biosensing for Hydrogen Peroxide Using a Film Containing Silver Nanoparticles and Poly(amidoamine) Dendrimer. Mater. Sci. Eng. C. 2016, 58, 97–102. DOI: 10.1016/j.msec.2015.08.013.
  • Santos, L.; Silveira, C. M.; Elangovan, E.; Neto, J. P.; Nunes, D.; Pereira, L.; Martins, R.; Viegas, J.; Moura, J. J. G.; Todorovic, S. Synthesis of WO3 Nanoparticles for Biosensing Applications. Sensors Actuators, B Chem. 2016, 223, 186–194. DOI: 10.1016/j.snb.2015.09.046.
  • Liu, J.; He, Z.; Khoo, S. Y.; Tan, T. T. Y. A New Strategy for Achieving Vertically-Erected and Hierarchical TiO2 Nanosheets Array/Carbon Cloth as a Binder-Free Electrode for Protein Impregnation, Direct Electrochemistry and Mediator-Free Glucose Sensing. Biosens. Bioelectron. 2016, 77, 942–949. DOI: 10.1016/j.bios.2015.10.070.
  • Yang, Z.; Cao, Y.; Li, J.; Jian, Z.; Zhang, Y.; Hu, X. Platinum Nanoparticles Functionalized Nitrogen Doped Graphene Platform for Sensitive Electrochemical Glucose Biosensing. Anal. Chim. Acta. 2015, 871, 35–42. DOI: 10.1016/j.aca.2015.02.029.
  • Amiri-Aref, M.; Raoof, J. B.; Kiekens, F.; Wael, K. De. Mixed hemi/ad-Micelles Coated Magnetic Nanoparticles for the Entrapment of Hemoglobin at the Surface of a Screen-Printed Carbon Electrode and its Direct Electrochemistry and Electrocatalysis. Biosens. Bioelectron. 2015, 74, 518–525. DOI: 10.1016/j.bios.2015.07.001.
  • World Health Organization. Global Burden of Diabetes. In Global Report on Diabetes; WHO Press, World Health Organization: Geneva, Switzerland, 2016; pp. 20–31.
  • Patil, A. V.; Davis, J. J. Molecular Scale Bioelectrochemistry. Coord. Chem. Rev. 2011, 255, 1970–1980. DOI: 10.1016/j.ccr.2011.02.002.
  • Batchelor-McAuley, C.; Dickinson, E. J. F.; Rees, N. V.; Toghill, K. E.; Compton, R. G. New Electrochemical Methods. Anal. Chem. 2012, 84, 669–684. DOI: 10.1021/ac2026767.
  • Zhang, J.; Chi, Q.; Hansen, A. G.; Jensen, P. S.; Salvatore, P.; Ulstrup, J. Interfacial Electrochemical Electron Transfer in Biology – Towards the Level of the Single Molecule. FEBS Lett. 2012, 586, 526–535. DOI: 10.1016/j.febslet.2011.10.023.
  • Vericat, C.; Vela, M. E.; Benitez, G. A.; Gago, J. A. M.; Torrelles, X.; Salvarezza, R. C. Surface Characterization of Sulfur and Alkanethiol Self-Assembled Monolayers on Au(111). J. Phys. Condens. Matter. 2006, 18, R867–R900. DOI: 10.1088/0953-8984/18/48/R01.
  • Ramin, M. A.; Bourdon, G. Le; Daugey, N.; Bennetau, B.; Vellutini, L.; Buffeteau, T. PM-IRRAS Investigation of Self-Assembled Monolayers Grafted onto SiO2/Au Substrates. Langmuir. 2011, 27, 6076–6084. DOI: 10.1021/la2006293.
  • Kind, M.; Wöll, C. Organic Surfaces Exposed by Self-Assembled Organothiol Monolayers: Preparation, Characterization, and Application. Prog. Surf. Sci. 2009, 84, 230–278. DOI: 10.1016/j.progsurf.2009.06.001.
  • Zamborini, F. P.; Bao, L.; Dasari, R. Nanoparticles in Measurement Science. Anal. Chem. 2012, 84, 541–576. DOI: 10.1021/ac203233q.
  • Larmour, I. A.; Graham, D. Surface Enhanced Optical Spectroscopies for Bioanalysis. Analyst. 2011, 136, 3831–3853. DOI: 10.1039/c1an15452d.
  • Murgida, D. H.; Hildebrandt, P. Disentangling Interfacial Redox Processes of Proteins by SERR Spectroscopy. Chem. Soc. Rev. 2008, 37, 937–945. DOI: 10.1039/b705976k.
  • Ash, P. A.; Vincent, K. A. Spectroscopic Analysis of Immobilised Redox Enzymes Under Direct Electrochemical Control. Chem. Commun. 2012, 48, 1400–1409. DOI: 10.1039/C1CC15871F.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.