2,070
Views
67
CrossRef citations to date
0
Altmetric
Review Articles

Electrochromic Sensors Based on Conducting Polymers, Metal Oxides, and Coordination Complexes

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 195-208 | Received 12 May 2018, Accepted 07 Jul 2018, Published online: 04 Oct 2018

References

  • Abidin, T.; Zhang, Q.; Wang, K.-L.; Liaw, D.-J. Recent Advances in Electrochromic Polymers. Polymer. 2014, 55, 5293–5304. DOI: 10.1016/j.polymer.2014.08.046.
  • Latosov, E.; Loorits, M.; Maaten, B.; Volkova, A.; Soosaar, S. Corrosive Effects of H2S and NH3 on Natural Gas Piping Systems Manufactured of Carbon Steel. Energy Proced. 2017, 128, 316–323. DOI: 10.1016/j.egypro.2017.08.319.
  • Koivusalo, M.; Vartiainen, T. Drinking Water Chlorination by-Products and Cancer. Rev. Environ. Health. 1997, 12, 81–90. DOI: 10.1515/REVEH.1997.12.2.81.
  • Zhang, K.; Batterman, S. Air Pollution and Health Risks Due to Vehicle Traffic. Sci. Total Environ. 2013, 450-451, 307–316. DOI: 10.1016/j.scitotenv.2013.01.074.
  • Sandilands, E. A.; Bateman, D. N. Carbon Monoxide. Medicine. 2016, 44, 151–152. DOI: 10.1016/j.mpmed.2015.12.024.
  • Rees, R. M.; Flack, S.; Maxwell, K.; Mistry, A. Air: Greenhouse Gases from Agriculture. In Encyclopedia of Agriculture and Food Systems, van Alfen, N. K., Holt, S., Eds.; Elsevier Inc.: San Diego, CA, 2017; pp 293–303.
  • Salzano, E.; Cammarota, F.; Di Benedetto, A.; Di Sarli, V. Explosion Behavior of Hydrogen–Methane/Air Mixtures. J. Loss Prevent. Proc. 2012, 25, 443–447. DOI: 10.1016/j.jlp.2011.11.010.
  • Aufrère, G.; Bourhis, B. L.; Beaugé, F. Ethanol Intake after Chronic Intoxication by Inhalation of Ethanol Vapour in Rats: Behavioural Dependence. Alcohol. 1997, 14, 247–253. DOI: 10.1016/S0741-8329(96)00175-9.
  • Ernstgård, L.; Shibata, E.; Johanson, G. Uptake and Disposition of Inhaled Methanol Vapor in Humans. Toxicol. Sci. 2005, 88, 30–38. DOI: 10.1093/toxsci/kfi281.
  • Chovatiya, R.; Medzhitov, R. Stress, Inflammation, and Defense of Homeostasis. Mol. Cell. 2014, 54, 281–288. DOI: 10.1016/j.molcel.2014.03.030.
  • Juraschek, S. P.; Miller, E. R.; Gelber, A. C. Effect of Oral Vitamin C Supplementation on Serum Uric Acid: A Meta-Analysis of Randomized Controlled Trials. Arthrit. Care Res. 2011, 63, 1295–1306. DOI: 10.1002/acr.20519.
  • Kumar, R.; Singh, S.; Yadav, B. C. Conducting Polymers: Synthesis, Properties and Applications. Int. Adv. Res. J. Sci. Eng. Technol. 2015, 2, 110–124. DOI: 10.17148/IARJSET.2015.21123.
  • Agbor, N. E.; Cresswell, J. P.; Petty, M. C.; Monkman, A. P. An Optical Gas Sensor Based on Polyaniline Langmuir-Blodgett Films. Sens. Actuators B Chem. 1997, 41, 137–141. DOI: 10.1016/S0925-4005(97)80286-9.
  • Ai, L.; Mau, J. C.; Liu, W. F.; Chen, T. C.; Su, W. K. A Volatile-Solvent Gas Fiber Sensor Based on Polyaniline Film Coated on Superstructure Fiber Bragg Gratings. Meas. Sci. Technol. 2008, 19, 017002. DOI: 10.1088/0957-0233/19/1/017002.
  • Jin, Z.; Su, Y.; Duan, Y. Development of a Polyaniline-Based Optical Ammonia Sensor. Sens. Actuators B Chem. 2001, 72, 75–79. DOI: 10.1016/S0925-4005(00)00636-5.
  • Kondratowicz, B.; Narayanaswamy, R.; Persaud, K. C. An Investigation into the Use of Electrochromic Polymers in Optical Fibre Gas Sensors. Sens. Actuators B Chem. 2001, 74, 138–144. DOI:10.1016/S0925-4005(00)00723-1.
  • Nicho, M. E.; Trejo, M.; Garcı́a-Valenzuela, A.; Saniger, J. M.; Palacios, J.; Hu, H. Polyaniline Composite Coatings Interrogated by a Nulling Optical-Transmittance Bridge for Sensing Low Concentrations of Ammonia Gas. Sens. Actuators B Chem. 2001, 76, 18–24. DOI: 10.1016/S0925-4005(01)00562-7.
  • Airoudj, A.; Debarnot, D.; Bêche, B.; Poncin-Epaillard, F. Development of an Optical Ammonia Sensor Based on Polyaniline/Epoxy Resin (SU-8) Composite. Talanta. 2009, 77, 1590–1596. DOI: 10.1016/j.talanta.2008.09.054.
  • Hu, C.-W.; Yamada, Y.; Yoshimura, K. A New Type of Gasochromic Material: Conducting Polymers with Catalytic Nanoparticles. Chem. Commun. 2017, 53, 3242–3245. DOI: 10.1039/C7CC00077D.
  • Aba, L.; Yusuf, Y.; Mitrayana, Siswanta, D.; Junaidi, Triyana, K. Sensitivity Improvement of Ammonia Gas Sensor Based on Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) by Employing Doping of Bromocresol Green. J. Nanotechnol. 2014, 2014, 1–5. DOI: 10.1155/2014/864274.
  • Stejskal, J.; Gilbert, R. G. Polyaniline. Preparation of a Conducting Polymer (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 857–867. DOI: 10.1351/pac200274050857.
  • Arenas, M. C.; Sánchez, G.; Nicho, M. E.; Elizalde-Torres, J.; Castaño, V. M. Engineered Doped and Codoped Polyaniline Gas Sensors Synthesized in N,N,Dimethylformamide Media. Appl. Phys. A. 2012, 106, 901–908. DOI: 10.1007/s00339-011-6704-6.
  • Kebiche, H.; Debarnot, D.; Merzouki, A.; Poncin, F.; Haddaoui, N. Ammonia Gas Sensors Based on in Situ and Drop-Coated Polyaniline Nanostructures. Adv. Mater. Res. 2013, 685, 134–138. DOI: 10.4028/www.scientific.net/AMR.685.134.
  • Tsizh, B.; Aksimentyeva, O. Organic High-Sensitive Elements of Gas Sensors Based on Conducting Polymer Films. Mol. Cryst. Liq. Cryst. 2016, 639, 33–38. DOI: 10.1080/15421406.2016.1254490.
  • Othman, N.; Hanim, W. F.; Noor, U. M.; Hana, S. Optical pH Sensor Based on Polyaniline Sol-Gel Film Immobilized with Bromothymol Blue and Phenol Red. AIP Conf. Proc. 2016, 1774, 050014. DOI: 10.1063/1.4965101.
  • Khalaf, A. L.; Mohamad, F. S.; Rahman, N. A.; Lim, H. N.; Paiman, S.; Yusof, N. A.; Mahdi, M. A.; Yaacob, M. H. Room Temperature Ammonia Sensor Using Side-Polished Optical Fiber Coated with Graphene/Polyaniline Nanocomposite. Opt. Mater. Express. 2017, 7, 1858–1870. DOI: 10.1364/OME.7.001858.
  • Jin, Z.; Su, Y.; Duan, Y. An Improved Optical pH Sensor Based on Polyaniline. Sens. Actuators B Chem. 2000, 71, 118–122. DOI: 10.1016/S0925-4005(00)00597-9.
  • Nemzer, L. R.; Epstein, A. J. A Polyaniline-Based Optical Biosensing Platform Using an Entrapped Oxidoreductase Enzyme. Sens. Actuators B Chem. 2010, 150, 376–383. DOI: 10.1016/j.snb.2010.06.054.
  • Porcel-Valenzuela, M.; Ballesta-Claver, J.; de Orbe-Payá, I.; Montilla, F.; Capitan-Vallvey, L. F. Disposable Electrochromic Polyaniline Sensor Based on a Redox Response Using a Conventional Camera: A First Approach to Handheld Analysis. J. Electroanal. Chem. 2015, 738, 162–169. DOI: 10.1016/j.jelechem.2014.12.002.
  • Deshmukh, M. A.; Gicevicius, M.; Ramanaviciene, A.; Shirsat, M. D.; Viter, R.; Ramanavicius, A. Hybrid Electrochemical/Electrochromic Cu(II) Ion Sensor Prototype Based on PANI/ITO-Electrode. Sens. Actuators B Chem. 2017, 248, 527–535. DOI: 10.1016/j.snb.2017.03.167.
  • Alvarado, M. A.; Carvalho, D. O.; Rehder, G.; Gruber, J.; Li, R. W. C.; Alayo, M. I. Optical Humidity Sensor Using Polypyrrole (PPy). Proceedings Optical Components Materials IX, 2012, 8257, 825716. DOI: 10.1117/12.908485, 8257, 825716.
  • Gonçalves, D. Preparation and Characterization of Cellulose Paper/Polypyrrole/Bromophenol Blue Composites for Disposable Optical Sensors. Open Chem. 2016, 14, 404–411. DOI: 10.1515/chem-2016-0043.
  • Tavoli, F.; Alizadeh, N. Optical Ammonia Gas Sensor Based on Nanostructure Dye-Doped Polypyrrole. Sens. Actuators B Chem. 2013, 176, 761–767. DOI: 10.1016/j.snb.2012.09.013.
  • Camurlu, P. Polypyrrole Derivatives for Electrochromic Applications. RSC Adv. 2014, 4, 55832–55845. DOI: 10.1039/C4RA11827H.
  • Somani, P. R.; Radhakrishnan, S. Electrochromic Materials and Devices: present and Future. Mater. Chem. Phys. 2003, 77, 117–133. DOI: 10.1016/S0254-0584(01)00575-2.
  • Loguercio, L. F.; Alves, C. C.; Thesing, A.; Ferreira, J. Enhanced Electrochromic Properties of a Polypyrrole-Indigo Carmine-Gold Nanoparticles Nanocomposite. Phys. Chem. Chem. Phys. 2015, 17, 1234–1240. DOI: 10.1039/C4CP04262J.
  • Deshmukh, M. A.; Shirsat, M. D.; Ramanaviciene, A.; Ramanavicius, A. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Crit. Rev. Anal. Chem. 2018, 48, 293–304. https://doi.org/10.1080/10408347.2017.1422966.
  • Nardes, A. M.; Kemerink, M.; de Kok, M. M.; Vinken, E.; Maturova, K.; Janssen, R. A. J. Conductivity, Work Function, and Environmental Stability of PEDOT:PSS Thin Films Treated with Sorbitol. Org. Electron. 2008, 9, 727–734. DOI: 10.1016/j.orgel.2008.05.006.
  • Wu, X.; Li, F.; Wu, W.; Guo, T. Flexible Organic Light Emitting Diodes Based on Double-Layered Graphene/PEDOT:PSS Conductive Film Formed by Spray-Coating. Vacuum. 2014, 101, 53–56. DOI: https://doi.org/10.1016/j.vacuum.2013.07.034.
  • Long, L. M.; Trung, T. Q.; Truong, V.-V.; Dinh, N. N. Optical and NH3 Gas Sensing Properties of Hole-Transport Layers Based on PEDOT: PSS Incorporated with Nano-TiO2. MSA. 2017, 08, 663–672. DOI: 10.4236/msa.2017.89047.
  • Zhang, F.; Cai, T.; Ma, L.; Zhan, L.; Liu, H. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing. Sensors (Basel). 2017, 17, 276–286. DOI: 10.3390/s17020276.
  • Granqvist, C.-G. Electrochromic Metal Oxides: An Introduction to Materials and Devices. In Electrochromic Materials and Devices, Mortimer, R. J., Rosseinsky, D. R., Monk, P. M. S., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: London, 2013; pp 1–40.
  • Comini, E.; Sberveglieri, G. Metal Oxide Nanowires as Chemical Sensors. Mater. Today. 2010, 13, 36–44. DOI: 10.1016/S1369-7021(10)70126-7.
  • Hsu, C.-H.; Chang, C.-C.; Yeh, K.-W.; Wu, Y.-R.; Chan, C.-C.; Wang, M.-J.; Wu, M.-K. Pulsed Laser Deposition of (WO3)1−x(Nb2O5)x Thin Films: Characterization and Gasochromic Studies. Thin Solid Films. 2011, 520, 1470–1474. DOI: 10.1016/j.tsf.2011.07.062.
  • Piegari, A. F. F.; Flory, F. Optical Thin Films and Coatings: From Materials to Applications, 1st ed.; Woodhead Publishing: Cambridge, 2013.
  • Koutsospyros, A.; Braida, W.; Christodoulatos, C.; Dermatas, D.; Strigul, N. A Review of Tungsten: From Environmental Obscurity to Scrutiny. J. Hazard. Mater. 2006, 136, 1–19. DOI: 10.1016/j.jhazmat.2005.11.007.
  • Jimenez, I.; Arbiol, J.; Cornet, A.; Morante, J. Structural and Gas-Sensing Properties of WO3 Nanocrystalline Powders Obtained by a Sol-Gel Method from Tungstic Acid. IEEE Sensors J. 2002, 2, 329–335. DOI: 10.1109/JSEN.2002.803747.
  • Qadri, M.; Diaz, A.; Cittadini, M.; Martucci, A.; Pujol, M.; Ferré-Borrull, J.; Llobet, E.; Aguiló, M.; Díaz, F. Effect of Pt Nanoparticles on the Optical Gas Sensing Properties of WO3 Thin Films. Sensors (Basel). 2014, 14, 11427–11443. DOI: 10.3390/s140711427.
  • Hsu, W.-C.; Chan, C.-C.; Peng, C.-H.; Chang, C.-C. Hydrogen Sensing Characteristics of an Electrodeposited WO3 Thin Film Gasochromic Sensor Activated by Pt Catalyst. Thin Solid Film. 2007, 516, 407–411. DOI: 10.1016/j.tsf.2007.07.055.
  • Ranjbar, M.; Zad, A. I.; Mahdavi, S. M. Gasochromic Tungsten Oxide Thin Films for Optical Hydrogen Sensors. J. Phys. D: Appl. Phys. 2008, 41, 055405. DOI: 10.1088/0022-3727/41/5/055405.
  • Matsuyama, N.; Okazaki, S.; Nakagawa, H.; Sone, H.; Fukuda, K. Response Kinetics of a Fiber-Optic Gas Sensor Using Pt/WO3 Thin Film to Hydrogen. Thin Solid Films. 2009, 517, 4650–4653. DOI: https://doi.org/10.1016/j.tsf.2009.01.126.
  • Hsu, C.-H.; Chang, C.-C.; Tseng, C.-M.; Chan, C.-C.; Chao, W.-H.; Wu, Y.-R.; Wen, M.-H.; Hsieh, Y.-T.; Wang, Y.-C.; Chen, C.-L.; et al. An Ultra-Fast Response Gasochromic Device for Hydrogen Gas Detection. Sens. Actuators B Chem. 2013, 186, 193–198. DOI: 10.1016/j.snb.2013.06.004.
  • Marques, A. C.; Santos, L.; Costa, M. N.; Dantas, J. M.; Duarte, P.; Gonçalves, A.; Martins, R.; Salgueiro, C. A.; Fortunato, E. Office Paper Platform for Bioelectrochromic Detection of Electrochemically Active Bacteria Using Tungsten Trioxide Nanoprobes. Sci. Rep. 2015, 5, 7. DOI: 10.1038/srep09910.
  • Buch, V. R.; Chawla, A. K.; Rawal, S. K. Review on Electrochromic Property for WO3 Thin Films Using Different Deposition Techniques. Mater. Today: Proc. 2016, 3, 1429–1437. DOI: 10.1016/j.matpr.2016.04.025.
  • Lee, Y.-A.; Kalanur, S. S.; Shim, G.; Park, J.; Seo, H. Highly Sensitive Gasochromic H2 Sensing by Nano-Columnar WO3-Pd Films with Surface Moisture. Sens. Actuators B Chem. 2017, 238, 111–119. DOI: 10.1016/j.snb.2016.07.058.
  • Chithambararaj, A.; Bose, A. C. Investigation on Structural, Thermal, Optical and Sensing Properties of Meta-Stable Hexagonal MoO3 Nanocrystals of One Dimensional Structure. Beilstein J. Nanotechnol. 2011, 2, 585–592. DOI: 10.3762/bjnano.2.62.
  • Mane, A. A.; Moholkar, A. V. Orthorhombic MoO3 Nanobelts Based NO2 Gas Sensor. Appl. Surf. Sci. 2017, 405, 427–440. DOI: 10.1016/j.apsusc.2017.02.055.
  • Domaradzki, J.; Baniewicz, K.; Mazur, M.; Wojcieszak, D.; Kaczmarek, D. Characterization and Properties of Multicomponent Oxide Thin Films with Gasochromic Effect. Proc. SPIE. 2013, 8902, 890223-1-5. DOI: 10.1117/12.2030099.
  • Chou, J. C.; Liu, C. H.; Chen, C. C. Electrochromic Property of Sol-Gel Derived TiO2 Thin Film for pH Sensor. In 5th Kuala Lumpur International Conference on Biomedical Engineering 2011: (BIOMED 2011), Kuala Lumpur, Malaysia, June 20–23, Osman, N. A. A., Abas, W. A. B. W., Wahab, A. K. A, Ting, H.-N., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp 69–72.
  • Ab Kadir, R.; Rani, R. A.; Alsaif, M. M. Y. A.; Ou, J. Z.; Wlodarski, W.; O’Mullane, A. P.; Kalantar-Zadeh, K. Optical Gas Sensing Properties of Nanoporous Nb2O5 Films. ACS Appl. Mater. Interfaces. 2015, 7, 4751–4758. DOI: 10.1021/am508463g.
  • Takeyasu, T.; Takase, S.; Shimizu, Y. Electrochromic Properties of Mixed Metal Oxide Thin-Film and Its Application to Nitrate-Ion Sensor. ECS Trans. 2007, 3, 1–6. DOI: 10.1149/1.2806944.
  • Tarantik, K.; Schmitt, K.; Pannek, C.; Miensopust, L.; Wöllenstein, J. Investigation of Gasochromic Rhodium Complexes Regarding Their Reactivity towards CO. Eurosensors Proc. 2017, 1, 454–459. DOI: 10.3390/proceedings1040454; Hong, S.-F.; Chen, L.-C. Nano-Prussian Blue Analogue/PEDOT:PSS Composites for Electrochromic Windows. Sol. Energy Mater. Sol. Cells. 2012, 104, 64–74. DOI: 10.1016/j.solmat.2012.04.032.
  • Wang, T.; Sun, Z.; Wang, Y.; Liu, R.; Sun, M.; Xu, L. Enhanced Photoelectric Gas Sensing Performance of SnO2 Flower-like Nanorods Modified with Polyoxometalate for Detection of Volatile Organic Compound at Room Temperature. Sens. Actuators B Chem. 2017, 246, 769–775. DOI: 10.1016/j.snb.2017.02.108.
  • Gao, G.; Xu, L.; Wang, W.; Wang, Z.; Qiu, Y.; Wang, E. Electrochromic and pH-Sensitive Multilayer Films Based on Nickel-Substituted Dawson-Type Polyoxometalate. J. Electrochem. Soc. 2005, 152, H102–H106. DOI: 10.1149/1.1923879.
  • Xu, B.; Xu, L.; Gao, G.; Yang, Y.; Guo, W.; Liu, S.; Sun, Z. Multicolor Electrochromic and pH-Sensitive Nanocomposite Thin Film Based on Polyoxometalates and Polyviologen. Electrochim. Acta. 2009, 54, 2246–2252. DOI: 10.1016/j.electacta.2008.10.030
  • Gouzerh, P.; Che, M. From Scheele and Berzelius to Müller: Polyoxometalates (POMs) Revisited and the “Missing Link” between the Bottom up and Top down Approaches. L'Act. Chim. 2006, 298, 9–22.
  • Berzelius, J. J. Beitrag Zur Näheren Kenntniss Des Molybdäns. Ann. Phys. 1826, 82, 369–392. DOI: 10.1002/andp.18260820402.
  • Mizuno, N.; Yamaguchi, K. Polyoxometalate Catalysts: Toward the Development of Green H2O2-Based Epoxidation Systems. Chem. Record. 2006, 6, 12–22. DOI: 10.1002/tcr.20067.
  • Hasenknopf, B. Polyoxometalates: Introduction to a Class of Inorganic Compounds and Their Biomedical Applications. Front. Biosci. 2005, 10, 275–287. DOI: 10.2741/1527.
  • Gonzalez, A.; Galvez, N.; Clemente-Leon, M.; Dominguez-Vera, J. M. Electrochromic Polyoxometalate Material as a Sensor of Bacterial Activity. Chem. Commun. 2015, 51, 10119–10122. DOI: 10.1039/C5CC03301B.
  • Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid Organic − Inorganic Polyoxometalate Compounds: From Structural Diversity to Applications. Chem. Rev. 2010, 110, 6009–6048. DOI: 10.1021/cr1000578.
  • Karyakin, A. A. Advances of Prussian Blue and Its Analogues in (Bio)Sensors. Curr. Opin. Electrochem. 2017, 5, 92–98. DOI: 10.1016/j.coelec.2017.07.006.
  • Zloczewska, A.; Celebanska, A.; Szot, K.; Tomaszewska, D.; Opallo, M.; Jönsson-Niedziolka, M. Self-Powered Biosensor for Ascorbic Acid with a Prussian Blue Electrochromic Display. Biosens. Bioelectron. 2014, 54, 455–461. 2014, DOI: 10.1016/j.bios.2013.11.033.
  • Pellitero, M. A.; Guimerà, A.; Kitsara, M.; Villa, R.; Rubio, C.; Lakard, B.; Doche, M.-L.; Hihn, J.-Y.; Javier del Campo, F. Quantitative Self-Powered Electrochromic Biosensors. Chem. Sci. 2017, 8, 1995–2002. DOI: 10.1039/C6SC04469G.
  • Wang, Y.; Gao, C.; Ge, S.; Zhang, L.; Yu, J.; Yan, M. Self-Powered Sensing Platform Equipped with Prussian Blue Electrochromic Display Driven by Photoelectrochemical Cell. Biosens. Bioelectron. 2017, 89, 728–734. DOI: 10.1016/j.bios.2016.11.027.
  • Chow, E.; Liana, D. D.; Raguse, B.; Gooding, J. J. A Potentiometric Sensor for pH Monitoring with an Integrated Electrochromic Readout on Paper. Aust. J. Chem. 2017, 70, 979–984. DOI: 10.1071/CH17191.
  • Koncki, R.; Wolfbeis, O. S. Composite Films of Prussian Blue and N-Substituted Polypyrroles: Fabrication and Application to Optical Determination of pH. Anal. Chem. 1998, 70, 2544–2550. DOI: 10.1021/ac9712714.
  • Guo, Y.; Guadalupe, A. R.; Resto, O.; Fonseca, L. F.; Weisz, S. Z. Chemically Derived Prussian Blue Sol − Gel Composite Thin Films. Chem. Mater. 1999, 11, 135–140. DOI: 10.1021/cm9806275.
  • Biesaga, M.; Pyrzyńska, K.; Trojanowicz, M. Porphyrins in Analytical Chemistry. A Review. Talanta. 2000, 51, 209–224. DOI: 10.1016/S0039-9140(99)00291-X.
  • Yahaya, M. B. M.; Salleh, M.; Yusniza, N.; Yusoff, N. Electrochromic Sensor Using Porphyrins Thin Films to Detect Chlorine. Proc. SPIE 5276, Device and Process Technologies for MEMS, Microelectronics, and Photonics III, 2004, 5276, 422–427. DOI: 10.1117/12.522857.
  • Claessens, C. G.; Blau, W. J.; Cook, M.; Hanack, M.; Nolte, R. J. M.; Torres, T.; Wöhrle, D. Phthalocyanines and Phthalocyanine Analogues: The Quest for Applicable Optical Properties. Monatsh. Chem. Chem. Mon. 2001, 132, 3–11. DOI: 10.1007/s007060170140.
  • Paoletti, A. M.; Pennesi, G.; Rossi, G.; Generosi, A.; Paci, B.; Albertini, V. R. Titanium and Ruthenium Phthalocyanines for NO2 Sensors: A Mini-Review. Sensors (Basel). 2009, 9, 5277–5297. DOI: 10.3390/s90705277.
  • Souto, J.; Tomilova, L.; Aroca, R.; DeSaja, J. A. Spectroscopic Studies of Langmuir-Blodgett Monolayers of Praseodymium Bis-Phthalocyanines. Langmuir. 1992, 8, 942–946. DOI: 10.1021/la00039a033.
  • Rodríguez-Méndez, M. L.; Souto, J.; de Saja-González, J.; de Saja, J. A. Crown-Ether Lutetium Bisphthalocyanine Langmuir-Blodgett Films as Gas Sensors. Sens. Actuators B Chem. 1996, 31, 51–55. DOI: 10.1016/0925-4005(96)80016-5.
  • Rodríguez-Méndez, M. L.; Gorbunova, Y.; de Saja, J. A. Spectroscopic Properties of Langmuir − Blodgett Films of Lanthanide Bis(Phthalocyanine)s Exposed to Volatile Organic Compounds. Sensing Applications. Langmuir. 2002, 18, 9560–9565. DOI: 10.1021/la020380x.
  • Maciak, E.; Pustelny, T.; Opilski, Z. The Optoelectronic Ammonia Gas Sensor System Based on Pd/CuPc Interferometric Nanostructures. Procedia Eng. 2012, 47, 738–741. DOI: 10.1016/j.proeng.2012.09.253.
  • Açıkbaş, Y.; Evyapan, M.; Ceyhan, T.; Çapan, R.; Bekaroğlu, Ö. Characterisation of Langmuir–Blodgett Films of New Multinuclear Copper and Zinc Phthalocyanines and Their Sensing Properties to Volatile Organic Vapours. Sens. Actuators B Chem. 2007, 123, 1017–1024. DOI: 10.1016/j.snb.2006.11.004.
  • Spadavecchia, J.; Ciccarella, G.; Siciliano, P.; Capone, S.; Rella, R. Spin-Coated Thin Films of Metal Porphyrin–Phthalocyanine Blend for an Optochemical Sensor of Alcohol Vapours. Sens. Actuators B Chem. 2004, 100, 88–93. DOI: 10.1016/j.snb.2003.12.027.
  • Basova, T.; Jushina, I.; Gürek, A. G.; Ahsen, V.; Ray, A. K. Use of the Electrochromic Behaviour of Lanthanide Phthalocyanine Films for Nicotinamide Adenine Dinucleotide Detection. J. Roy. Soc. Interface. 2008, 5, 801–806. DOI: 10.1098/rsif.2007.1241.
  • Basova, T.; Gürek, A. G.; Ahsen, V.; Ray, A. Electrochromic Lutetium Phthalocyanine Films for in Situ Detection of NADH. Opt. Mater. 2013, 35, 634–637. DOI: 10.1016/j.optmat.2012.10.017.
  • Rella, R.; Spadavecchia, J.; Ciccarella, G.; Siciliano, P.; Vasapollo, G.; Valli, L. Optochemical Vapour Detection Using Spin Coated Thin Films of Metal Substituted Phthalocyanines. Sens. Actuators B Chem. 2003, 89, 86–91. DOI: 10.1016/S0925-4005(02)00447-1.
  • Kerdcharoen, T.; Kladsomboon, S. Optical Chemical Sensor and Electronic Nose Based on Porphyrin and Phthalocyanine. In Applications of Nanomaterials in Sensors and Diagnostics, Tuantranont A., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013; pp 237–255.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.