801
Views
23
CrossRef citations to date
0
Altmetric
Review Articles

ELISA and Lateral Flow Immunoassay for the Detection of Food Colorants: State of the Art

ORCID Icon, ORCID Icon & ORCID Icon
Pages 209-223 | Received 11 Apr 2018, Accepted 20 Jul 2018, Published online: 21 Jan 2019

References

  • Carocho, M.; Barreiro, M. F.; Morales, P.; Ferreira, I. C. F. R. Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. DOI: 10.1111/1541-4337.12065.
  • Ghorpade, V. M.; Desphande, S. S.; Salunkhe, D. K. Food colors. In Food Additive Toxicology; Maga, J. A., Tuna, A. T., Eds.; New York: Marcel Dekker, 1995; pp 179–233.
  • Hunger, K. Food dyes. In Industrial Dyes: Chemistry, Properties, Applications, 3rd ed.; New Jersey, USA: John Wiley & Sons, 2003; pp 486–494.
  • Pérez-Ibarbia, L.; Majdanski, T.; Schubert, S.; Windhab, N.; Schubert, U. S. Safety and Regulatory Review of Dyes Commonly Used as Excipients in Pharmaceutical and Nutraceutical Applications. Eur. J. Pharm. Sci. 2016, 93, 264–273. DOI: 10.1016/j.ejps.2016.08.026.
  • The Society of Dyers and Colourists. Colour Index, 3rd ed., Vol. 4; Bradford, UK: Lund Humphries, 1971.
  • Yamjala, K.; Nainar, M. S.; Ramisetti, N. R. Methods for the Analysis of Azo Dyes Employed in Food industry-A review. Food Chem. 2016, 192, 813–824. 1–22. DOI: 10.1016/j.foodchem.2015.07.085.
  • Pressman, P.; Clemens, R.; Hayes, W.; C, R. Food Additive Safety: A Review of Toxicologic and Regulatory Issues. Toxicol. Res. Appl. 2017, 1, DOI: 10.1177/2397847317723572.
  • Oplatowska-Stachowiak, M.; Elliott, C. T. Food Colors: Existing and Emerging Food Safety Concerns. Crit. Rev. Food Sci. Nutr. 2017, 57, 524–548. DOI: 10.1080/10408398.2014.889652.
  • Chung, K. T. Mutagenicity and Carcinogenicity of Aromatic Amines Metabolically Produced from Azo Dyes. J. Environ. Sci. Health Part C 2000, 18, 51–74. DOI: 10.1080/10590500009373515.
  • Chung, K.-T. Azo Dyes and Human Health: A Review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 233–261. DOI: 10.1080/10590501.2016.1236602.
  • Harvey, W. G. Observations on Occupational Dermatitis. Br. Med. J. 1933, 2, 321–324.
  • Al-Degs, Y. S. Determination of Three Dyes in Commercial Soft Drinks Using HLA/GO and Liquid Chromatography. Food Chem. 2009, 117, 485–490. DOI: 10.1016/j.foodchem.2009.04.097.
  • Sha, O.; Zhu, X.; Feng, Y.; Ma, W. Aqueous Two-Phase Based on Ionic Liquid Liquid–Liquid Microextraction for Simultaneous Determination of Five Synthetic Food Colourants in Different Food Samples by High-Performance Liquid Chromatography. Food Chem. 2015, 174, 380–386. DOI: 10.1016/j.foodchem.2014.11.068.
  • Hashem, M. M.; Atta, A. H.; Arbid, M. S.; Nada, S. A.; Mouneir, S. M.; Asaad, G. F. Toxicological Impact of Amaranth, Sunset Yellow and Curcumin as Food Coloring Agents in Albino Rats. J. Pioneer. Med. Sci. 2011, 1, 43–51.
  • McCann, D.; Barrett, A.; Cooper, A.; Crumpler, D.; Dalen, L.; Grimshaw, K.; Kitchin, E.; Lok, K.; Porteous, L.; Prince, E. Food Additives and Hyperactive Behaviour in 3-Year-Old and 8/9-Year-Old Children in the Community: A Randomised, Double-Blinded, Placebo-Controlled Trial. Lancet 2007, 370, 1560–1567. DOI: 10.1016/S0140-6736(07)61306-3.
  • Platzek, T.; Lang, C.; Grohmann, G.; Gi, U. S.; Baltes, W. Formation of a Carcinogenic Aromatic Amine from an Azo Dye by Human Skin Bacteria In Vitro. Hum. Exp. Toxicol. 1999, 18, 552–559. DOI: 10.1191/096032799678845061.
  • Chequer, F. M. D.; Venâncio, VdP.; Bianchi, MdLP.; Antunes, L. M. G. Genotoxic and Mutagenic Effects of Erythrosine B, a Xanthene Food Dye, on HepG2 Cells. Food Chem. Toxicol. 2012, 50, 3447–3451. DOI: 10.1016/j.fct.2012.07.042.
  • Chung, K.-T. The Significance of Azo-Reduction in the Mutagenesis and Carcinogenesis of Azo Dyes. Mutat. Res. 1983, 114, 269–281. DOI: 10.1016/0165-1110(83)90035-0.
  • Mekkawy, H.; Ali, M.; El-Zawahry, A. OP3A18-Toxic Effect of Synthetic and Natural Food Dyes on Renal and Hepatic Functions in Rats. Toxicol. Lett. 1998, 95, 155.
  • Tanaka, T. Reproductive and Neurobehavioral Effects of Sunset Yellow FCF Administered to Mice in the Diet. Toxicol. Ind. Health. 1996, 12, 69–79. DOI: 10.1177/074823379601200104.
  • Hashem, M. M.; Atta, A. H.; Arbid, M. S.; Nada, S. A.; Asaad, G. F. Immunological Studies on Amaranth, Sunset Yellow and Curcumin as Food Colouring Agents in Albino Rats. Food Chem. Toxicol. 2010, 48, 1581–1586. DOI: 10.1016/j.fct.2010.03.028.
  • Fan, H. J.; Huang, S. T.; Chung, W. H.; L, J. J.; Lin, W. Y.; C, C. C. Degradation Pathways of Crystal Violet by Fenton and Fenton-like Systems: Condition Optimization and Intermediate Separation and Identification. J. Hazard. Maters. 2009, 171, 1032–1044. DOI: 10.1016/j.jhazmat.2009.06.117.
  • Lakdawalla, A. A.; Netrawali, M. S. Erythrosine, a Permitted Food Dye, Is Mutagenic in the Bacillus subtilis Multigene Sporulation Assay. Mutat. Res. 1988, 206, 171–176. DOI: 10.1016/0165-1218(88)90157-7.
  • Ishidate, M.; Jr.; Odashima, S. Chromosome Tests with 134 Compounds on Chinese Hamster Cells In Vitro–A Screening for Chemical Carcinogens. Mutat. Res. 1977, 48, 337–353. DOI: 10.1016/0027-5107(77)90177-4.
  • FDA. Toxicological Principles for the Safety Assessment of Direct Food Additives and Color Additives Used in Food. US Department of Commerce. Springfield, VA: National Technical Information Service, 1982.
  • Wrolstad, R. E.; Culver, C. A. Alternatives to Those Artificial FD&C Food Colorants. Annu. Rev. Food Sci. Technol. 2012, 3, 59–77. DOI: 10.1146/annurevfood-022811-101118.
  • Government of Canada, Research Centre Communication. 2009. C.R.C. P. 870. (Last amended on June 13, 2018) http://laws-lois.justice.gc.ca/eng/regulations/C.R.C.,_c._870/index.html.
  • Regulation: Commission Directive 95/45/EC of 26 July 1995 Laying down Specific Purity Criteria Concerning Colors for Use in Foodstuffs. Off. J. Eur. Union 1995, L206, p. 1, 26 July 1995.
  • Regulation: Commission Regulation (EC) No. 884/2007 on Emergency Measures Suspending the Use of E 128 Red 2G as Food Colour. Off. J. Eur. Union. 2007, L 195, p. 8/9, 27 July 2007.
  • Rovina, K.; Prabakaran, P. P.; Siddiquee, S.; Shaarani, S. M. Methods for the Analysis of Sunset Yellow FCF (E110) in Food and Beverage Products- a Review. Trends Anal. Chem. 2016, 85, 47–56. DOI: 10.1016/j.trac.2016.05.009.
  • Rebane, R.; Leito, I.; Yurchenko, S.; Herodes, K. A Review of Analytical Techniques for Determination of Sudan I-IV Dyes in Food Matrixes. J. Chromatogr. A. 2010, 1217, 2747–2757. DOI: 10.1016/j.chroma.2010.02.038.
  • Regulation: European Parliament and Council Directive 94/36//EC On Colours for Use in Foodstuffs. European Parliament and Council. Off. J. Eur. Union. 1994. L237 of 10.09.1994, 13?29.
  • Regulation: Directive 2000/13/EC: Directive of the European Parliament and of the Council of 20 March 2000 on the approximation of the laws of the Member States relating to the labelling, presentation and advertizing of foodstuffs. Off. J. Eur. Union. 2000, L109 of 6.5.2000, 29.
  • Lehto, S.; Buchweitz, M.; Klimm, A.; Straßburger, R.; Bechtold, C.; Ulberth, F. Comparison of Food Colour Regulations in the EU and the US: A Review of Current Provisions. Food. Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 335–355. DOI: 10.1080/19440049.2016.1274431.
  • Oplatowska, M.; Elliott, C. T. Development and Validation of Rapid Disequilibrium Enzyme-Linked Immunosorbent Assays for the Detection of Methyl Yellow and Rhodamine B Dyes in Foods. Analyst. 2011, 136, 2403–2410. DOI: 10.1039/C0AN00934B.
  • Scientific Opinion on the Re-Evaluation Tartrazine (E 102). EFSA J. 2009, 7, 1331–1352. Efsa, [pp.].
  • EFSA (EFSA Panel on Food Additives). Nutrient Sources added to Food Statement on Allura Red AC and Other Sulphonated Mono Azo Dyes Authorised as Food and Feed Additives. EFSA J. 2013, 11, 3234.
  • Calbiani, F.; Careri, M.; Elviri, L.; Mangia, A.; Zagnoni, I. Accurate Mass Measurements for the Confirmation of Sudan Azo-Dyes in Hot Chilli Products by Capillary Liquid Chromatography-Electrospray Tandem Quadrupole Orthogonal-Acceleration Time of Flight Mass Spectrometry. J. Chromatogr. A 2004, 1058, 127–135. DOI: 10.1016/j.chroma.2004.08.159.
  • Schwack, W.; Pellissier, E., Morlock, G. Analysis of unauthorized Sudan dyes in food by high-performance thin-layer chromatography. Analytical and bioanalytical chemistry. 2018, 410, 5641–5651. DOI: 10.1007/s00216-018-0945-6.
  • IARC. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man: Some Aromatic Azo Compounds. Int. Agency Res. Cancer. 1975, 8, 224–231.
  • Chailapakul, O.; Wonsawat, W.; Siangproh, W.; Grudpan, K.; Zhao, Y.; Zhu, Z. Analysis of Sudan I, Sudan II, Sudan III, and Sudan IV in Food by HPLC with Electrochemical Detection: Comparison of Glassy Carbon Electrode with Carbon Nanotube-Ionic Liquid Gel Modified Electrode. Food Chem. 2008, 109, 876–882. DOI: 10.1016/j.foodchem.2008.01.018.
  • Fessard, V.; Godard, T.; Huet, S.; Mourot, A.; Poul, J. M. Mutagenicity of Malachite Green and Leucomalachite Green in In Vitro Tests. J. Appl. Toxicol. 1999, 19, 421–430. DOI: 10.1002/(SICI)1099-1263(199911/12)19:6<421::AID-JAT595>3.0.CO;2-6.
  • Scotter, M. J. Methods for the Determination of European Union-Permitted Added Natural Colours in Foods: A Review. Food Addit. Contam. A 2011, 28, 527–596. DOI: 10.1080/19440049.2011.555844.
  • González, M.; Gallego, M.; Valcárcel, M. Liquid Chromatographic Determination of Natural and Synthetic Colorants in Lyophilized Foods Using an Automatic Solid-Phase Extraction System. J. Agric. Food Chem. 2003, 51, 2121–2129. DOI: 10.1021/jf0261147.
  • Chen, D.; Li, X.; Tao, Y.; Pan, Y.; Wu, Q.; Liu, Z.; Peng, D.; Wang, X.; Huang, L.; Wang, Y.; et al. Development of a Liquid Chromatography–Tandem Mass Spectrometry with Ultrasound-Assisted Extraction Method for the Simultaneous Determination of Sudan Dyes and Their Metabolites in the Edible Tissues and Eggs of Food-Producing Animals. J. Chromatogr. B 2013, 939, 45–50. DOI: 10.1016/j.jchromb.2013.08.028.
  • Yan, H.; Qiao, J.; Pei, Y.; Long, T.; Ding, W.; Xie, K. Molecularly Imprinted Solid-Phase Extraction Coupled to Liquid Chromatography for Determination of Sudan Dyes in Preserved Beancurds. Food Chem. 2012, 132, 649–654. DOI: 10.1016/j.foodchem.2011.10.105.
  • Yu, W.; Liu, Z.; Li, Q.; Zhang, H.; Yu, Y. Determination of Sudan I–IV in Candy Using Ionic Liquid/Anionic Surfactant Aqueous Two-Phase Extraction Coupled with High-Performance Liquid Chromatography. Food Chem. 2015, 173, 815–820. DOI: 10.1016/j.foodchem.2014.10.091.
  • Khalikova, M. A.; Šatínský, D.; Solich, P.; Nováková, L. Development and Validation of Ultra-High Performance Supercritical Fluid Chromatography Method for Determination of Illegal Dyes and Comparison to Ultra-High Performance Liquid Chromatography Method. Anal. Chim. Acta 2015, 874, 84–96. DOI: 10.1016/j.aca.2015.03.003.
  • Mejia, E.; Ding, Y.; Mora, M. F.; Garcia, C. D. Determination of Banned Sudan Dyes in Chili Powder by Capillary Electrophoresis. Food Chem. 2007, 102, 1027–1033. DOI: 10.1016/j.foodchem.2006.06.038.
  • Maxwell, E. J.; Tong, W. G. Sensitive Detection of Malachite Green and Crystal Violet by Nonlinear Laser Wave Mixing and Capillary Electrophoresis. J. Chromatogr. B 2016, 1020, 29–35. DOI: 10.1016/j.jchromb.2016.02.040.
  • de Andrade, F. I.; Florindo Guedes, M. I.; Pinto Vieira, Í. G.; Pereira Mendes, F. N.; Salmito Rodrigues, P. A.; Costa Maia, C. S.; Marques Ávila, M. M.; de Matos Ribeiro, L. Determination of Synthetic Food Dyes in Commercial Soft Drinks by TLC and Ion-Pair HPLC. Food Chem. 2014, 157, 193–198. DOI: 10.1016/j.foodchem.2014.01.100.
  • Gao, F.; Hu, Y.; Chen, D.; Li-Chan, E. C. Y.; Grant, E.; Lu, X. Determination of Sudan I in Paprika Powder by Molecularly Imprinted Polymers–Thin Layer Chromatography–Surface Enhanced Raman Spectroscopic Biosensor. Talanta 2015, 143, 344–352. DOI: 10.1016/j.talanta.2015.05.003.
  • Rocha, C. G.; Ferreira, A. A. P.; Yamanaka, H. Label-Free Impedimetric Immunosensor for Detection of the Textile Azo Dye Disperse Red 1 in Treated Water. Sens. Actuators B Chem. 2016, 236, 52–59. DOI: 10.1016/j.snb.2016.05.040.
  • Li, J.; Feng, H.; Li, J.; Feng, Y.; Zhang, Y.; Jiang, J.; Qian, D. Fabrication of Gold Nanoparticles-Decorated Reduced Graphene Oxide as a High Performance Electrochemical Sensing Platform for the Detection of Toxicant Sudan I. Electrochim. Acta 2015, 167, 226–236. DOI: 10.1016/j.electacta.2015.03.201.
  • Qiu, X.; Lu, L.; Leng, J.; Yu, Y.; Wang, W.; Jiang, M.; Bai, L. An Enhanced Electrochemical Platform Based on Graphene Oxide and Multi-Walled Carbon Nanotubes Nanocomposite for Sensitive Determination of Sunset Yellow and Tartrazine. Food Chem. 2016, 190, 889–895. DOI: 10.1016/j.foodchem.2015.06.045.
  • Gosetti, F.; Frascarolo, P.; Mazzucco, E.; Gianotti, V.; Bottaro, M.; Gennaro, M. C. Photodegradation of E110 and E122 Dyes in a Commercial Aperitif: A High Performance Liquid Chromatography–Diode Array–Tandem Mass Spectrometry Study. J. Chromatogr. A 2008, 1202, 58–63. DOI: 10.1016/j.chroma.2008.06.044.
  • Gosetti, F.; Chiuminatto, U.; Mazzucco, E.; Calabrese, G.; Gennaro, M. C.; Marengo, E. Non-Target Screening of Allura Red AC Photodegradation Products in a Beverage through Ultra High Performance Liquid Chromatography Coupled with Hybrid Triple Quadrupole/Linear Ion Trap Mass Spectrometry. Food Chem. 2013, 136, 617–623. DOI: 10.1016/j.foodchem.2012.08.019.
  • Dzantiev, B. B.; Byzova, N. A.; Urusov, A. E.; Zherdev, A. V. Immunochromatographic Methods in Food Analysis. Trends Anal. Chem. 2014, 55, 81–93. DOI: 10.1016/j.trac.2013.11.007.
  • Mitra, S. (ed.). Sample Preparation Techniques in Analytical Chemistry. Hoboken, NJ: John Wiley & Sons, 2004.
  • Zhu, Y.; Wu, Y.; Zhou, C.; Zhao, B.; Yun, W.; Huang, S.; Tao, P.; Tu, D.; Chen, S. A Screening Method of Oil-Soluble Synthetic Dyes in Chilli Products Based on Multi-Wavelength Chromatographic Fingerprints Comparison. Food Chem. 2016, 192, 441–451. DOI: 10.1016/j.foodchem.2015.07.038.
  • Han, D.; Yu, M.; Knopp, D.; Niessner, R.; Wu, M.; Deng, A. Development of a Highly Sensitive and Specific Enzyme-Linked Immunosorbent Assay for Detection of Sudan I in Food Samples. J. Agric. Food Chem. 2007, 55, 6424–6430. DOI: 10.1021/jf071005j.
  • Zhou, M.; Chen, X.; Xu, Y.; Qu, J.; Jiao, L.; Zhang, H.; Chen, H.; Chen, X. Sensitive Determination of Sudan Dyes in Foodstuffs by Mn–ZnS Quantum Dots. Dyes Pigm. 2013, 99, 120–126. DOI: 10.1016/j.dyepig.2013.04.027.
  • Wang, M.; Chen, Z.; Chen, Y.; Zhan, C.; Zhao, J. New Synthesis of Self-Assembly Ionic Liquid Functionalized Reduced Graphene Oxide–Gold Nanoparticle Composites for Electrochemical Determination of Sudan I. Electroanal. Chem. 2015, 756, 49–55. DOI: 10.1016/j.jelechem.2015.08.007.
  • Di Anibal, C. V.; Rodríguez, M. S.; Albertengo, L. Synchronous Fluorescence and Multivariate Classification Analysis as a Screening Tool for Determining Sudan I Dye in Culinary Spices. Food Control. 2015, 56, 18–23. DOI: 10.1016/j.foodcont.2015.03.010.
  • Li, B. L.; Luo, J. H.; Luo, H. Q.; Li, N. B. A Novel Conducting Poly(p-Aminobenzene Sulphonic Acid)-Based Electrochemical Sensor for Sensitive Determination of Sudan I and Its Application for Detection in Food Stuffs. Food Chem. 2015, 173, 594–599. DOI: 10.1016/j.foodchem.2014.10.060.
  • Ju, C.; Tang, Y.; Fan, H.; Chen, J. Enzyme-Linked Immunosorbent Assay (ELISA) Using a Specific Monoclonal Antibody as a New Tool to Detect Sudan Dyes and Para Red. Anal. Chim. Acta 2008, 621, 200–206. DOI: 10.1016/j.aca.2008.05.055.
  • Song, Y.; Wu, L.; Li, N.; Hu, M.; Wang, Z. Utilization of a Novel Microwave-Assisted Homogeneous Ionic Liquid Microextraction Method for the Determination of Sudan Dyes in Red Wines. Talanta 2015, 135, 163–169. DOI: 10.1016/j.talanta.2014.12.049.
  • Chang, X. C.; Hu, X. Z.; Li, Y. Q.; Shang, Y. J.; Liu, Y. Z.; Feng, G.; Wang, J. P. Multi-Determination of Para Red and Sudan Dyes in Egg by a Broad Specific Antibody Based Enzyme Linked Immunosorbent Assay. Food Control 2011, 22, 1770–1775. DOI: 10.1016/j.foodcont.2011.04.014.
  • Anfossi, L.; Baggiani, C.; Giovannoli, C.; Giraudi, G. Development of Enzyme-Linked Immunosorbent Assays for Sudan Dyes in Chilli Powder, Ketchup and Egg Yolk. Food Addit. Contam. A Chem. Anal. Control Expo. Risk Assess. 2009, 26, 800–807. DOI: 10.1080/02652030902755283.
  • Shan, W. C.; Xi, J. Z.; Sun, J.; Zhang, Y. J.; Wang, J. P. Production of the Monoclonal Antibody against Sudan 4 for Multi-Immunoassay of Sudan Dyes in Egg. Food Control 2012, 27, 146–152. DOI: 10.1016/j.foodcont.2012.03.017.
  • Wang, Y.; Wei, D.; Yang, H.; Yang, Y.; Xing, W.; Li, Y.; Deng, A. Development of a Highly Sensitive and Specific Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Sudan I in Food Samples. Talanta 2009, 77, 1783–1789. DOI: 10.1016/j.talanta.2008.10.016.
  • Liu, W.; Zhao, W-j.; Chen, J-b.; Yang, M-m. A Cloud Point Extraction Approach Using Triton X-100 for the Separation and Preconcentration of Sudan Dyes in Chilli Powder. Anal. Chim. Acta 2007, 605, 41–45. DOI: 10.1016/j.aca.2007.10.034.
  • Liu, J.; Zhang, H.; Zhang, D.; Gao, F.; Wang, J. Production of the Monoclonal Antibody against Sudan 2 for Immunoassay of Sudan Dyes in Egg. Anal. Biochem. 2012, 423, 246–252. DOI: 10.1016/j.ab.2012.02.001.
  • Xu, T.; Wei, K. Y.; Wang, J.; Eremin, S. A.; Liu, S. Z.; Li, Q. X.; Li, J. Development of an Enzyme-Linked Immunosorbent Assay Specific to Sudan Red I. Anal. Biochem. 2010, 405, 41–49. DOI: 10.1016/j.ab.2010.05.031.
  • An, L.; Deng, J.; Zhou, L.; Li, H.; Chen, F.; Wang, H.; Liu, Y. Simultaneous Spectrophotometric Determination of Trace Amount of Malachite Green and Crystal Violet in Water after Cloud Point Extraction Using Partial Least Squares Regression. J. Hazard. Mater. 2010, 175, 883–888. DOI: 10.1016/j.jhazmat.2009.10.092.
  • Sun, H.; Sun, N.; Li, H.; Zhang, J.; Yang, Y. Development of Multiresidue Analysis for 21 Synthetic Colorants in Meat by Microwave-Assisted Extraction–Solid-Phase Extraction–Reversed-Phase Ultrahigh Performance Liquid Chromatography. Food Anal. Methods 2013, 6, 1291–1299. DOI: 10.1007/s12161-012-9542-z.
  • Shan, W. C.; Cui, Y. L.; He, X.; Zhang, L.; Liu, J.; Wang, J. P. Immunoassay of Red Dyes Based on the Monoclonal Antibody of β-Naphthol. J. Environ. Sci. Health B 2015, 50, 645–653. DOI: 10.1080/03601234.2015.1038957.
  • Xu, J.; Zhang, Y.; Yi, J.; Meng, M.; Wan, Y.; Feng, C.; Wang, S.; Lu, X.; Xi, R. Preparation of anti-Sudan Red Monoclonal Antibody and Development of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for Detection of Sudan Red in Chilli Jam and Chilli Oil. Analyst 2010, 135, 2566–2572. DOI: 10.1039/C0AN00232A.
  • Dong, Y.; Zhang, J.; Xing, Y.; Song, Z.; Wang, Y.; Meng, M.; Deng, C.; Tong, Z.; Yin, Y.; Xi, R. Quantification of Ponceau 4R in Foods by Indirect Competitive Enzyme-Linked Immunosorbent Assay (icELISA). J. Agric. Food Chem. 2015, 63, 6338–6345. DOI: 10.1021/acs.jafc.5b02129.
  • Zvereva, E. A.; Zaichik, B. T.; Eremin, S. A.; Zherdev, A. V.; Dzantiev, B. B. Enzyme Immunoassay for Detection of Sudan I Dye and Its Application to the Control of Foodstuffs. J. Anal. Chem. 2016, 71, 944–948. DOI: 10.1134/S1061934816090185.
  • Fan, Y.; Meng, W.; Zhu, L.; Liu, R.; Xu, L.; Qiu, X.; Yang, F. Determination of Sudan I by Chemiluminescent Enzyme Immunoassay. Food Sci. 2015, 36, 209–212.
  • Wang, J.; Wei, K.; Li, H.; Li, Q. X.; Li, J.; Xu, T. A Sensitive and Selective Enzyme-Linked Immunosorbent Assay for the Analysis of Para Red in Foods. Analyst. 2012, 137, 2136–2142. DOI: 10.1039/C2AN35127G.
  • Xue, H.; Xing, Y.; Yin, Y.; Zhang, T.; Zhang, B.; Zhang, Y.; Song, P.; Tian, X.; Xu, Y.; Wang, P.; et al. Application of an Enzyme Immunoassay for the Quantitative Determination of Azo Dye (Orange II) in Food Products. Food Addit. Contam. A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1840–1848. DOI: 10.1080/19440049.2012.713029.
  • He, J.; Wang, Y.; Zhang, X. Preparation of Artificial Antigen and Development of Indirect Competitive ELISA Based on Chicken IgY for the Detection of Acid Orange II in Food Samples. Food Anal. Methods 2016, 9, 378–384. DOI: 10.1007/s12161-015-0203-x.
  • Polson, A.; von Wechmar, M. B.; van Regenmortel, M. H. Isolation of Viral IgY Antibodies from Yolks of Immunized Hens. Immunol. Commun. 1980, 9, 475–493. DOI: 10.3109/08820138009066010.
  • Tanaka, T. Reproductive and Neurobehavioural Toxicity Study of Ponceau 4R Administered to Mice in the Diet. Food Chem. Toxicol. 2006, 44, 1651–1658. DOI: 10.1016/j.fct.2006.05.001.
  • Li, Z.; Song, S.; Xu, L.; Kuang, H.; Guo, S.; Xu, C. Development of an Ultrasensitive Immunoassay for Detecting Tartrazine. Sensors 2013, 13, 8155–8169. DOI: 10.3390/s130708155.
  • Zhang, B.; Du, D.; Meng, M.; Eremin, S. A.; Rybakov, V. B.; Zhao, J.; Yin, Y.; Xi, R. Determination of Amaranth in Beverage by Indirect Competitive Enzyme-Linked Immunosorbent Assay (ELISA) Based on anti-Amaranth Monoclonal Antibody. Food Anal. Methods 2014, 7, 1498–1505. DOI: 10.1007/s12161-013-9779-1.
  • Lu, F.; Sun, M.; Fan, L.; Qiu, H.; Li, X.; Luo, C. Flow Injection Chemiluminescence Sensor Based on Core–Shell Magnetic Molecularly Imprinted Nanoparticles for Determination of Chrysoidine in Food Samples. Sens. Actuat. Chem. 2012, 173, 591–598. DOI: 10.1016/j.snb.2012.07.069.
  • Lei, H.; Liu, J.; Song, L.; Shen, Y.; Haughey, S. A.; Guo, H.; Yang, J.; Xu, Z.; Jiang, Y.; Sun, Y. Development of a Highly Sensitive and Specific Immunoassay for Determining Chrysoidine, A Banned Dye, in Soybean Milk Film. Molecules 2011, 16, 7043–7057. DOI: 10.3390/molecules16087043.
  • Food and Drug Administration (FDA). Background Document for the Food Advisory Committee: Certified Color Additives in food and possible association with attention deficit hyperactivity disorder in children March 30–31, 2011. Food and Drug Administration, 2012.
  • Xing, Y.; Meng, M.; Xue, H. Y.; Zhang, T. C.; Yin, Y. M.; Xi, R. M. Development of a Polyclonal Antibody-Based Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Sunset Yellow FCF in Food Samples. Talanta 2012, 99, 125–131. DOI: 10.1016/j.talanta.2012.05.029.
  • Abraxis Yellow Azo Dye/Tartrazine ELISA kit. 2017. http://www.labonline.com.au/content/life-science-clinical-diagnostics-instruments/hot-product/abraxis-yellow-azo-dye-tartrazine-elisa-kit–790940385.
  • Sudan Red ELISA (Microtiter Plate). 2018. http://www.abraxiskits.com/uploads/products/docfiles/212_ASudan%20Red%20PL %20Users%20Guide.pdf.
  • Sudan red ELISA Test Kit. 2018. http://www.bio-equip.cn/enshow1equip.asp?equipid =38511&division =2535.
  • Sudan ELISA Kit (DEIANJ27). 2018. https://www.creative-diagnostics.com/pdf/DEIANJ27.pdf.
  • Xu, K.; Long, H.; Xing, R.; Yin, Y.; Eremin, S. A.; Meng, M.; Xi, R. A Sensitive Chemiluminescent Immunoassay to Detect Chromotrope FB (Chr FB) in Foods. Talanta 2017, 164, 341–347. DOI: 10.1016/j.talanta.2016.09.063.
  • Kapeluich, Y. L.; Rubtsova, M. Y.; Egorov, A. M. Enhanced Chemiluminescence Reaction Applied to the Study of Horseradish Peroxidase Stability in the Course of p-Iodophenol Oxidation. J. Biolumin. Chemilumin. 1997, 12, 299–308. DOI: 10.1002/(SICI)1099-1271(199711/12)12:6<299::AID-BIO459>3.0.CO;2-S.
  • Hashimoto, J. C.; Paschoal, J. A. R.; De Queiroz, J. F.; Reyes, F. G. R. Considerations on the Use of Malachite Green in Aquaculture and Analytical Aspects of Determining the Residues in Fish: A Review. J. Aquat. Food Product Technol. 2011, 20, 273–294. DOI: 10.1080/10498850.2011.569643.
  • Shen, Y. D.; Deng, X. F.; Xu, Z. L.; Wang, Y.; Lei, H. T.; Wang, H.; Yang, J. Y.; Xiao, Z. L.; Sun, Y. M. Simultaneous Determination of Malachite Green, Brilliant Green and Crystal Violet in Grass Carp Tissues by a Broad-Specificity Indirect Competitive Enzyme-Linked Immunosorbent Assay. Anal. Chim. Acta 2011, 707, 148–154. DOI: 10.1016/j.aca.2011.09.006.
  • Singh, G.; Koerner, T.; Gelinas, J. M.; Abbott, M.; Brady, B.; Huet, A. C.; Charlier, C.; Delahaut, P.; Godefroy, S. B. Design and Characterization of a Direct ELISA for the Detection and Quantification of Leucomalachite Green. Food Addit. Contam. A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 731–739. DOI: 10.1080/19440049.2011.567360.
  • Yang, M.-C.; Fang, J.-M.; Kuo, T.-F.; Wang, D.-M.; Huang, Y.-L.; Liu, L.-Y.; Chen, P.-H.; Chang, T.-H. Production of Antibodies for Selective Detection of Malachite Green and the Related Triphenylmethane Dyes in Fish and Fishpond Water. J. Agric. Food Chem. 2007, 55, 8851–8856. DOI: 10.1021/jf071195y.
  • Xu, H.; Chen, X.; Guo, L.; Zhang, J.; Lai, W.; Aguilar, Z. P.; Wei, H.; Xiong, Y. Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay for Detection of Total Malachite Green and Crystal Violet Residues in Fishery Products. Int. J. Environ. Anal. Chem. 2013, 93, 959–969. DOI: 10.1080/03067319.2012.672982.
  • Xing, W.; He, L.; Yang, H.; Sun, C.; Li, D.; Yang, X.; Li, Y.; Deng, A. Development of a Sensitive and Group-Specific Polyclonal Antibody-Based Enzyme-Linked Immunosorbent Assay (ELISA) for Detection of Malachite Green and Leucomalachite Green in Water and Fish Samples. J. Sci. Food Agric. 2009, 89, 2165–2173. DOI: 10.1002/jsfa.3695.
  • Jiang, Y.; Chen, L.; Hu, K.; Yu, W.; Yang, X.; Lu, L. Development of a Fast ELISA for the Specific Detection of Both Leucomalachite Green and Malachite Green. J. Ocean Univ. China 2015, 14, 340–344. DOI: 10.1007/s11802-015-2407-5.
  • Oplatowska, M.; Connolly, L.; Stevenson, P.; Stead, S.; Elliott, C. T. Development and Validation of a Fast Monoclonal Based Disequilibrium Enzyme-Linked Immunosorbent Assay for the Detection of Triphenylmethane Dyes and Their Metabolites in Fish. Anal. Chim. Acta 2011, 698, 51–60. DOI: 10.1016/j.aca.2011.04.047.
  • Zhang, Y.; Yang, J-y.; Lei, H-t.; Wang, H.; Xu, Z-l.; Shen, Y-d.; Zeng, D-p.; Sun, Y-m. Development of Chemiluminescent Enzyme Immunoassay for the Determination of Malachite Green in Seafood. Food Agric. Immunol. 2015, 26, 204–217. DOI: 10.1080/09540105.2014.884056.
  • Dong, J. X.; Xu, C.; Wang, H.; Xiao, Z. L.; Gee, S. J.; Li, Z. F.; Wang, F.; Wu, W. J.; Shen, Y. D.; Yang, J. Y.; et al. Enhanced Sensitive Immunoassay: Noncompetitive Phage Anti-Immune Complex Assay for the Determination of Malachite Green and Leucomalachite Green. J. Agric. Food Chem. 2014, 62, 8752–8758. DOI: 10.1021/jf5019824.
  • Malachite Greens ELISA Kit. 2017. http://europroxima.com/products/contaminants-and-residues/fungicide/malachite-green-elisa/.
  • Malachite Greens ELISA Kit. 2017. http://www.abc-residue.com/product_detail.php?cate_index =2&item =13&set_lang=en.
  • MaxSignal® Malachite Green/LMG ELISA Test Kit. 2017. http://www.biooscientific.com/Antibiotic-Residue-Test-Kits/MaxSignal-Malachite-Green-LMG-ELISA-Test-Kit.
  • Malachite Green/Leucomalachite Green Plate Kit. 2017. http://www.abraxiskits.com/uploads/products/docfiles/234_MG%20 Plate052012.pdf.
  • Matula, T. I.; Downie, R. H. Genetic Toxicity of Erythrosine in Yeast. Mutat. Res. 1984, 138, 153–156. DOI: 10.1016/0165-1218(84)90038-7.
  • Capen, C. C. Mechanistic Data and Risk Assessment of Selected Toxic End Points of the Thyroid Gland. Toxicol. Pathol. 1997, 25, 39–48. DOI: 10.1177/019262339702500109.
  • Capen, C. C. Pathophysiology of Chemical Injury of the Thyroid Gland. Toxicol. Lett. 1992, 64–65, 381–388.
  • Zhang, B.; Du, D.; Yin, Y.; Zheng, L.; Zhao, J.; Eremin, S. A.; Rybakov, V. B.; Meng, M.; Xi, R. A Direct Enzyme Immunoassay to Detect Erythrosine in Foods. Food Anal. Methods 2014, 7, 1798–1803. DOI: 10.1007/s12161-014-9824-8.
  • Xu, Z.; Zheng, L.; Yin, Y.; Wang, J.; Wang, P.; Ren, L.; Eremin, S. A.; He, X.; Meng, M.; Xi, R. A Sensitive Competitive Enzyme Immunoassay for Detection of Erythrosine in Foodstuffs. Food Control. 2015, 47, 472–477. DOI: 10.1016/j.foodcont.2014.07.033.
  • Erythrosine ELISA kit. 2017. http://www.bio-equip.cn/enshow1equip.asp?equipid =45916&division=2535.
  • Quesada-González, D.; Merkoçi, A. Nanoparticle-Based Lateral Flow Biosensors. Biosens. Bioelectron. 2015, 73, 47–63. DOI: 10.1016/j.bios.2015.05.050.
  • Wang, J.; Wang, Z.; Liu, J.; Li, H.; Li, Q. X.; Li, J.; Xu, T. Nanocolloidal Gold-Based Immuno-Dip Strip Assay for Rapid Detection of Sudan Red I in Food Samples. Food Chem. 2013, 136, 1478–1483. DOI: 10.1016/j.foodchem.2012.09.047.
  • Berlina, A. N.; Zherdev, A. V.; Xu, C.; Eremin, S. A.; Dzantiev, B. B. Development of Lateral Flow Immunoassay for Rapid Control and Quantification of the Presence of the Colorant Sudan I in Spices and Seafood. Food Control. 2017, 73, 247–253. DOI: 10.1016/j.foodcont.2016.08.011.
  • Berlina, A. N.; Sotnikov, D. V.; Eremin, S. A.; Liu, L.; Xu, C.; Zherdev, A. V. Lateral Flow Immunoassay of Sudan I with Direct Calibration Dependence Based on the Use of Two Kinds of Conjugated Gold Nanoparticles. Eur. J. Mol. Biotechnol. 2016, 14, 117–124. DOI: 10.13187/ejmb.2016.14.117.
  • Xu, N.; Li, L.; Song, S.; Xu, L.; Kuang, H.; Xu, C. Development of a Lateral Flow Immunoassay for the Detection of Total Malachite Green Residues in Fish Tissues. Food Agric. Immunol. 2015, 26, 870–879. DOI: 10.1080/09540105.2015.1039498.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.