551
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Modern Assay Techniques for Cancer Drugs: Electroanalytical and Liquid Chromatography Methods

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 306-323 | Published online: 29 Dec 2018

References

  • Serlin, R. C.; Mendoza, T. R.; Nakamura, Y.; Edwards, K. R.; Cleeland, C. S. When Is Cancer Pain Mild, Moderate or Severe? Grading Pain Severity by Its Interference with Function. Pain. 1995, 61, 277–284.
  • Kamb, A.; Wee, S.; Lengauer, C. Why is Cancer Drug Discovery so Difficult? Nat. Rev. Drug. Discov. 2007, 6, 115–120.
  • Cairns, R. A.; Harris, I. S.; Mak, T. W. Regulation of Cancer Cell Metabolism. Nat. Rev. Cancer. 2011, 11, 85–95.
  • Fuchs, E. J.; Matzinger, P. Is Cancer Dangerous to the Immune System? Semin. Immunol. 1996, 8, 271–280.
  • van den Beuken-van Everdingen, M.; de Rijke, J.; Kessels, A.; Schouten, H.; van Kleef, M.; Patijn, J. Prevalence of Pain in Patients with Cancer: A Systematic Review of the past 40 Years. Ann. Oncol. 2007, 18, 1437–1449.
  • Isanbor, C.; O’Hagan, D. Fluorine in Medicinal Chemistry: A Review of anti-Cancer Agents. J. Fluorine. Chem. 2006, 127, 303–319.
  • Denny, W. A. DNA-Intercalating Ligands as Anti-Cancer Drugs: Prospects for Future Design. Anticancer. Drug. Des. 1989, 4, 241–263.
  • Wheate, N. J.; Collins, J. G. Multi-Nuclear Platinum Complexes as Anti-Cancer Drugs. Coordination Chem. Rev. 2003, 241, 133–145.
  • Hambley, T. W. The Influence of Structure on the Activity and Toxicity of Pt anti-Cancer Drugs. Coordination. Chem. Rev. 1997, 166, 181–223.
  • Tsugane, S.; Sasazuki, S. Diet and the Risk of Gastric Cancer: Review of Epidemiological Evidence. Gastric. Cancer. 2007, 10, 75–83.
  • Petronelli, A.; Pannitteri, G.; Testa, U. Triterpenoids as New Promising Anticancer Drugs. Anticancer. Drugs. 2009, 20, 880–892.
  • Tibshirani, R.; Hastie, T.; Narasimhan, B.; Chu, G. Diagnosis of Multiple Cancer Types by Shrunken Centroids of Gene Expression. Proc. Natl. Acad. Sci. USA. 2002, 99, 6567–6572.
  • Peng, S.; Xu, Q.; Ling, X. B.; Peng, X.; Du, W.; Chen, L. Molecular Classification of Cancer Types from Microarray Data Using the Combination of Genetic Algorithms and Support Vector Machines. FEBS. Lett. 2003, 555, 358–362.
  • Lee, Y.; Lee, C.-K. Classification of Multiple Cancer Types by Multicategory Support Vector Machines Using Gene Expression Data. Bioinformatics. 2003, 19, 1132–1139.
  • Nussbaumer, S.; Bonnabry, P.; Veuthey, J. L.; Fleury-Souverain, S. Analysis of Anticancer Drugs: A Review. Talanta. 2011, 85, 2265–2289.
  • Rauf, S.; Gooding, J. J.; Akhtar, K.; Ghauri, M. A.; Rahman, M.; Anwar, M. A.; Khalid, A. M. Electrochemical Approach of Anticancer Drugs–DNA Interaction. J. Pharmaceut. Biomed. Anal. 2005, 37, 205–217.
  • Jordan, M. A.; Wilson, L. Microtubules as a Target for Anticancer Drugs. Nat. Rev. Cancer. 2004, 4, 253–265.
  • Ozkan, S. A.; Kauffmann.; J. M.; Zuman, P. Electroanalytical Techniques Most Frequently Used in Drug Analysis. Electroanalysis in Biomedical and Pharmaceutical Sciences 2015, DOI:10.1007/978-3-662-47138-8_3.
  • Wang, J. Analytical Electrochemistry. Hoboken, New Jersey: John Wiley & Sons, Inc., 2006.
  • Scholz, F.; Stojek, Z.; Inzelt, G.; Marken, F.; Neudeck, A.; Bond, A. M.; Lovric, M.; Retter, U.; Lohse, H.; Compton, R. G.; et al. Electroanalytical Methods: Guide to Experiments and Applications. Boston MA: Springer 2010.
  • Palacek, E.; Scheller.; F.; Wang, J. Electrochemistry of Nucleic Acids and Proteins:Towards Electrochemical Sensors for Genomics and Proteomics. New York: Elsevier Sci. 2005.
  • Gosser, D. K. Cyclic Voltammetry. New York: VCH 1994.
  • Vire, J. C.; Kauffmann, J. M. Trends in Electrochemistry in Drug Analysis. Curr. Top. Electrochem. 1994., 3, 493–515.
  • McCreery, R. L. Physical Methods of Chemistry. Wiley Intersci. 1984, 2, 1–92.
  • Ozkan, S. A. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation. New York: HNB. Pub. 2012.
  • Zhang, X.; Ju, H.; Wang, J. Electrochemical Sensors, Biosensors and Their Biomedical Applications. Burlington, USA: Elsevier. 2008.
  • Brett, C. M. A. Electrochemistry. Principles, Methods and Applications. Oxford, England: Oxford University Press. 1993.
  • Greef, R.; Peat, R.; Peter, L. M.; Pletcher, D. Instrumental Methods in Electrochemistry. Chichester: Ellis Horwood. 1990.
  • Hart, J. P. Electroanalysis of Biologically Important Compounds. Chichester: Ellis Horwood. 1990.
  • Smyth, M. R.; Vos, J. G. Comprehensive Analytical Chemistry. Elsevier Sci. 1992, 84, 1–120.
  • Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in Electroanalytical Chemistry. Marcel Dekker. 1996.
  • Özkan, S. A.; Uslu, B.; Aboul-Enein, H. Y. Analysis of Pharmaceuticals and Biological Fluids Using Modern Electroanalytical Techniques. Crit. Rev. Anal. Chem. 2003, 33, 155–181.
  • Chen, J.; Fu, B.; Liu, T.; Yan, Z.; Li, K. A Graphene Oxide-DNA Electrochemical Sensor Based on Glassy Carbon Electrode for Sensitive Determination of Methotrexate. Electroanalysis. 2018, 30, 288–295.
  • Zhang, Q. Electrochemical Determination of the Anticancer Drug Capecitabine Based on a Graphene-Gold Nanocomposite- Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2017, 12, 10773–10782.
  • Hadi, M.; Mollaei, T.; Ehsani, A. Graphene Oxides/Multi-Walled Carbon Nanotubes Hybrid-Modified Carbon Electrodes for Fast and Sensitive Voltammetric Determination of the Anticancer Drug 5-Fluorouracil in Spiked Human Plasma Samples. Chem. Pap. 2018, 72, 431–439.
  • Martínez-Rojas, F.; Del Valle, M. A.; Isaacs, M.; Ramírez, G.; Armijo, F. Electrochemical Behaviour Study and Determination of Guanine, 6-Thioguanine, Acyclovir and Gancyclovir on Fluorine-Doped SnO 2 Electrode. Application in Pharmaceutical Preparations. Electroanalysis. 2017, 29, 2888–2895.
  • Arkan, E.; Paimard, G.; Moradi, K. A Novel Electrochemical Sensor Based on Electrospun TiO 2 Nanoparticles/Carbon Nanofibers for Determination of Idarubicin in Biological Samples. Electroanal. Chem. 2017, 801, 480–487.
  • Brycht, M.; Kaczmarska, K.; Uslu, B.; Ozkan, S. A.; Skrzypek, S. Sensitive Determination of Anticancer Drug Imatinib in Spiked Human Urine Samples by Differential Pulse Voltammetry on Anodically Pretreated Boron-Doped Diamond Electrode. Diamond Related Materials. 2016, 68, 13–22.
  • Hatamluyi, B.; Es'haghi, Z. A Layer-by-Layer Sensing Architecture Based on Dendrimer and Ionic Liquid Supported Reduced Graphene Oxide for Simultaneous Hollow-Fiber Solid Phase Microextraction and Electrochemical Determination of anti-Cancer Drug Imatinib in Biological Samples. Electroanal. Chem. 2017, 801, 439–449.
  • Karadas-Bakirhan, N.; Patris, S.; Ozkan, S. A.; Can, A.; Kauffmann, J. M. Determination of the Anticancer Drug Sorafenib in Serum by Adsorptive Stripping Differential Pulse Voltammetry Using a Chitosan/Multiwall Carbon Nanotube Modified Glassy Carbon Electrode. Electroanalysis. 2016, 28, 358–365.
  • Liu, Y.; Wei, M.; Hu, Y.; Zhu, L.; Du, J. An Electrochemical Sensor Based on a Molecularly Imprinted Polymer for Determination of Anticancer Drug Mitoxantrone. Sens. Actuators B. Chem. 2018, 255, 544–551.
  • Manjunatha, J. G. Surfactant Modified Carbon Nanotube Paste Electrode for the Sensitive Determination of Mitoxantrone Anticancer Drug. J. Electrochem. Sci. Eng. 2017, 7, 39–49.
  • Hashemzadeh, N.; Hasanzadeh, M.; Shadjou, N.; Eivazi-Ziaei, J.; Khoubnasabjafari, M.; Jouyban, A. Graphene Quantum Dot Modified Glassy Carbon Electrode for the Determination of Doxorubicin Hydrochloride in Human Plasma. J. Pharm. Anal. 2016, 6, 235–241.
  • Materon, E. M.; Wong, A.; Klein, S. I.; Liu, J.; Sotomayor, M. D. P. T. Multi-Walled Carbon Nanotubes Modified Screen-Printed Electrodes for Cisplatin Detection. Electrochim. Acta. 2015, 158, 271–276.
  • Ribeiro, J. A.; Silva, F.; Pereira, C. M. Electrochemical Study of the Anticancer Drug Daunorubicin at a Water/Oil Interface: Drug Lipophilicity and Quantification. Anal. Chem. 2013, 85, 1582–1590.
  • Temerk, Y. M.; Ibrahim, H. S. M. Individual and Simultaneous Square Wave Voltammetric Determination of the Anticancer Drugs Emodin and Irinotecan at Renewable Pencil Graphite Electrodes. J. Brazilian Chem. Soc. 2013, 24, 1669–1678.
  • Bozal-Palabiyik, B.; Dogan-Topal, B.; Uslu, B.; Can, A.; Ozkan, S. A. Sensitive Voltammetric Assay of Etoposide Using Modified Glassy Carbon Electrode with a Dispersion of Multi-Walled Carbon Nanotube. J. Solid. State. Electrochem. 2013, 17, 2815–2822.
  • Kurbanoglu, S.; Dogan-Topal, B.; Uslu, B.; Can, A.; Ozkan, S. A. Electrochemical Investigations of the Anticancer Drug Idarubicin Using Multiwalled Carbon Nanotubes Modified Glassy Carbon and Pyrolytic Graphite Electrodes. Electroanalysis. 2013, 25, 1473–1482.
  • Karadas, N.; Sanli, S.; Akmese, B.; Dogan-Topal, B.; Can, A.; Ozkan, S. A. Analytical Application of Polymethylene Blue-Multiwalled Carbon Nanotubes Modified Glassy Carbon Electrode on Anticancer Drug Irinotecan and Determination of Its Ionization Constant Value. Talanta. 2013, 115, 911–919.
  • Rafique, B.; Khalid, A. M.; Akhtar, K.; Jabbar, A. Interaction of Anticancer Drug Methotrexate with DNA Analyzed by Electrochemical and Spectroscopic Methods. Biosensors and Biosens. Bioelectron. 2013, 44, 21–26.
  • Muti, M.; Gençdağ, K.; Nacak, F. M.; Aslan, A. Electrochemical Polymerized 5-Amino-2-Mercapto-1,3,4-Thiadiazole Modified Single Use Sensors for Detection of Quercetin. Colloids. Surf B.: Biointerfaces. 2013, 106, 181–186.
  • Radhapyari, K.; Kotoky, P.; Khan, R. Detection of Anticancer Drug Tamoxifen Using Biosensor Based on Polyaniline Probe Modified with Horseradish Peroxidase. Mater. Sci. Eng.: C 2013, 33, 583–587.
  • Karadas, N.; Ozkan, S. A. Electrochemical Preparation of Sodium Dodecylsulfate Doped over-Oxidized Polypyrrole/Multi-Walled Carbon Nanotube Composite on Glassy Carbon Electrode and Its Application on Sensitive and Selective Determination of Anticancer Drug: Pemetrexed. Talanta. 2014, 119, 248–254.
  • Yarman, A.; Scheller, F. W. The First Electrochemical MIP Sensor for Tamoxifen. Sensors (Basel). 2014, 14, 7647–7654.
  • Liu, Z.; Zhang, A.; Guo, Y.; Dong, C. Electrochemical Sensor for Ultrasensitive Determination of Isoquercitrin and Baicalin Based on DM-β-Cyclodextrin Functionalized Graphene Nanosheets. Biosens. Bioelectron. 2014, 58, 242–248.
  • Nejati, K.; Asadpour-Zeynali, K. Electrochemical Synthesis of Nickel-Iron Layered Double Hydroxide: Application as a Novel Modified Electrode in Electrocatalytic Reduction of Metronidazole. Mater. Sci. Eng. C Mater. Biol. Appl. ... 2014, 35, 179–184.
  • Florea, A.; Guo, ZZhong.; Cristea, C.; Bessueille, F.; Vocanson, F.; Goutaland, F.; Dzyadevych, S.; Săndulescu, R.; Jaffrezic-Renault, N. Anticancer Drug Detection Using a Highly Sensitive Molecularly Imprinted Electrochemical Sensor Based on an Electropolymerized Microporous Metal Organic Framework. Talanta. 2015, 138, 71–76.
  • Ahmadi, F.; Raoof, J. B.; Ojani, R.; Baghayeri, M.; Lakouraj, M. M.; Tashakkorian, H. Synthesis of Ag Nanoparticles for the Electrochemical Detection of Anticancer Drug Flutamide. Cuihua. Xuebao/Chinese. J. Catal. 2015, 36, 439–445.
  • Ghoreishi, S. M.; Saeidinejad, F.; Behpour, M.; Masoum, S. Application of Multivariate Optimization to Electrochemical Determination of Methyldopa Drug in the Presence of Diclofenac at a Nanostructured Electrochemical Sensor. Sens. Actuators, B: Chem. 2015, 221, 576–585.
  • Congur, G.; Erdem, A.; Mese, F. Electrochemical Investigation of the Interaction between Topotecan and DNA at Disposable Graphite Electrodes. Bioelectrochemistry. 2015, 102, 21–28.
  • Ibrahim, H.; Temerk, Y. Novel Sensor for Sensitive Electrochemical Determination of Luteolin Based on In2O3 Nanoparticles Modified Glassy Carbon Paste Electrode. Sens. Actuators B. Chem. 2015, 206, 744–752.
  • Ghalkhani, M.; Beheshtian, J.; Salehi, M. Electrochemical and DFT Study of an Anticancer and Active Anthelmintic Drug at Carbon Nanostructured Modified Electrode. Mater. Sci. Eng C. 2016, 69, 1345–1353.
  • Shashaani, H.; Faramarzpour, M.; Hassanpour, M.; Namdar, N.; Alikhani, A.; Abdolahad, M. Silicon Nanowire Based Biosensing Platform for Electrochemical Sensing of Mebendazole Drug Activity on Breast Cancer Cells. Biosens. Bioelectron. 2016, 85, 363–370.
  • Bukkitgar, S. D.; Shetti, N. P. Electrochemical Behavior of an Anticancer Drug 5-Fluorouracil at Methylene Blue Modified Carbon Paste Electrode. Mater. Sci. Eng C. 2016, 65, 262–268.
  • Temerk, Y.; Ibrahim, M.; Ibrahim, H.; Kotb, M. Adsorptive Stripping Voltammetric Determination of Anticancer Drug Lomustine in Biological Fluids Using in Situ Mercury Film Coated Graphite Pencil Electrode. Electroanal. Chem.. 2016, 760, 135–142.
  • Ruzicka, J.; Hansen, E. H. Flow Injection Analysis. Wiley 1988.
  • Christian, G. D.; Dasgupta, P.; Schug, K. Analytical Chemistry, 7th Edition. Hoboken, USA: Wiley Global Education. 2013.
  • Snyder, L. R.; Kirkland, J. J.; Glajch, J. L. Practical HPLC Method Development. New York, USA: Wiley. 2012.
  • Ettre, L. S. Does Chromatography Really Mean Color Writing?. Chromatographia. 1970, 3, 95–96.
  • Ettre, L. S.; Sakodynskii, K. I. M. S. Tswett and the Discovery of Chromatography II: Completion of the Development of Chromatography (1903–1910). Chromatographia. 1993, 35, 329–338.
  • Meyer, V. R. Michael Tswett’s Columns: Facts and Speculations. Chromatographia. 1992, 34, 342–346.
  • Sengel-Turk, C. T.; Gumustas, M.; Uslu, B.; Ozkan, S. A. in: Grumezescu, A. M. (Ed.), Design of Nanostructures for Theranostics Applications. Cambidge, USA: William Andrew Publishing. 2018. pp. 69–107.
  • Sengel-Turk, C. T.; Gumustas, M.; Uslu, B.; Ozkan, S. A. in: Grumezescu, A. M. (Ed.), Nano- and Microscale Drug Delivery Systems. Cambidge, USA: Elsevier. 2017. pp. 165–195.
  • Gumustas, M.; Kurbanoglu, S.; Uslu, B.; Ozkan, S. A. UPLC versus HPLC on Drug Analysis: Advantageous, Applications and Their Validation Parameters. Chromatographia. 2013, 76 (21-22), 1365–1427.
  • Dong, M. W. Modern HPLC for Practicing Scientists. Hoboken, USA: John Wiley & Sons, Inc. 2006. pp. 1–14.
  • Iñón, F. A.; Tudino, M. B. Advances in Flow Analysis. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2008. pp. 1–42.
  • Wixom, R. L.; Gehrke, C. W.; Berezkin, V. G.; Janak, J. Chromatography. Hoboken, USA: John Wiley & Sons, Inc. 2010. pp. 1–13.
  • Lembke, P.; Henze, G.; Cabrera, K.; Brünner.; W.; Müller, E. Handbook of Analytical Techniques. Weinheim, Germany: Wiley-VCH Verlag GmbH 2001. pp. 261–326.
  • LoBrutto, R.; Kazakevich, Y. HPLC for Pharmaceutical Scientists. Hoboken, USA: John Wiley & Sons, Inc. 2007. pp. 139–239.
  • Kromidas, S.; Neue, U. D.; Cheng.; Y.-F.; Lu, Z. HPLC Made to Measure. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2006. pp. 1–70.
  • Lunn, G. HPLC Methods for Recently Approved Pharmaceuticals. Hoboken, USA: John Wiley & Sons, Inc. 2005. pp. i–xxiii.
  • McCalley, D. V, Hydrophilic Interaction Chromatography. Hoboken, USA: John Wiley & Sons, Inc. 2013. pp. 1–41.
  • McMaster, M. C. LC/MS. Hoboken, USA: John Wiley & Sons, Inc. 2005. pp. 1–8.
  • Somsen, G. W.; Jong, G. J.; deMondello, L. C.; Lewis, A. D.; Bartle, K. Multidimensional Chromatography. Hoboken, USA: John Wiley & Sons, Ltd. 2001. pp. 251–307.
  • Kromidas, S. The HPLC Expert II. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2017. pp. 1–25.
  • Zhang, Z.; Wang, Z.; Liao, Y.; Liu, H. Applications of Nanomaterials in Liquid Chromatography: Opportunities for Separation with High Efficiency and Selectivity. J. Sep. Sci. 2006, 29, 1872–1878.
  • Cappiello, A.; Palma, P. Advances in the Use of Liquid Chromatography Mass Spectrometry Instrumentation Developments and Application. Amsterdam, Netherlands: Elsevier Science. 2018.
  • Saito, M. History of Supercritical Fluid Chromatography: Instrumental Development. J. Biosci. Bioeng. 2013, 115, 590–599.
  • Speybrouck, D.; Lipka, E. Preparative Supercritical Fluid Chromatography: A Powerful Tool for Chiral Separations. J. Chromatogr A. 2016, 1467, 33–55.
  • West, C.; Khater, S.; Lesellier, E. Characterization and Use of Hydrophilic Interaction Liquid Chromatography Type Stationary Phases in Supercritical Fluid Chromatography. J. Chromatogr A. 2012, 1250, 182–195.
  • Moldoveanu, S. C.; David, V. Selection of the HPLC Method in Chemical Analysis. Amsterdam, Netherlands: Elsevier Science. 2016.
  • Moldoveanu, S. C.; David, V. Amsterdam, Netherlands: Elsevier. 2013. pp. 85–114.
  • Ahuja, S.; Rasmussen, H. HPLC Method Development for Pharmaceuticals. Amsterdam, Netherlands: Elsevier Science. 2007.
  • Cappiello, A. Advances in LC-MS Instrumentation. Amsterdam, Netherlands: Elsevier Science. 2006.
  • Fanali, S.; Haddad, P. R.; Poole.; C.; Riekkola, M. L. Liquid Chromatography: Applications. Amsterdam, Netherlands: Elsevier Science. 2017.
  • Parris, N. A. Instrumental Liquid Chromatography: A Practical Manual on High Performance Liquid Chromatographic Methods. Amsterdam, Netherlands: Elsevier Science. 2011.
  • Scott, R. P. W. Liquid Chromatography Detectors. Amsterdam, Netherlands: Elsevier Science. 2011.
  • Macek, K.; Deyl.; Z.; Janák, J. Liquid Column Chromatography: A Survey of Modern Techniques and Applications. Amsterdam, Netherlands: Elsevier Science. 2011.
  • Fanali, S.; Haddad, P. R.; Poole, C.; Riekkola, M. L. Liquid Chromatography: Fundamentals and Instrumentation. Amsterdam, Netherlands: Elsevier Science. 2017.
  • Siddiqui, M. R.; AlOthman, Z. A.; Rahman, N. Analytical Techniques in Pharmaceutical Analysis: A Review. Arabian. J. Chem. 2017, 10, S1409–S1421.
  • Swartz, M. E. UPLCTM: An Introduction and Review. J. Liquid. Chromatogr. Related Technol. 2005, 28, 1253–1263.
  • Medvedev, Y. V.; Ramenskaya, G. V.; Shokhin, I. E.; Yarushok, T. A. HPLC and UPLC for Determining Drugs in Blood (a Review). Pharm. Chem. J. 2013, 47, 225–230.
  • Cielecka-Piontek, J.; Zalewski, P.; Jelińska, A.; Garbacki, P. UHPLC: The Greening Face of Liquid Chromatography. Chromatographia. 2013, 76, 1429–1437.
  • Mathias, P. I.; Connor, T. H.; B’Hymer, C. A Review of High Performance Liquid Chromatographic-Mass Spectrometric Urinary Methods for Anticancer Drug Exposure of Health Care Workers. J. Chromatogr. B. 2017, 1060, 316–324.
  • Derissen, E. J. B.; Hillebrand, M. J. X.; Rosing, H.; Schellens, J. H. M.; Beijnen, J. H. Development of an LC–MS/MS Assay for the Quantitative Determination of the Intracellular 5-Fluorouracil Nucleotides Responsible for the Anticancer Effect of 5-Fluorouracil. J. Pharmaceut. Biomed. Anal. 2015, 110, 58–66.
  • Mazzucchelli, S.; Ravelli, A.; Gigli, F.; Minoli, M.; Corsi, F.; Ciuffreda, P.; Ottria, R. LC-MS/MS Method Development for Quantification of Doxorubicin and Its Metabolite 13-Hydroxy Doxorubicin in Mice Biological Matrices: Application to a Pharmaco-Delivery Study. Biomed. Chromatogr. 2017, 31, e3863.
  • Respaud, R.; Quenum, L.; Plichon, C.; Tournamille, J. F.; Gyan, E.; Antier, D.; Viaud-Massuard, M. C. A Stability-Indicating, Ion-Pairing, Reversed-Phase Liquid Chromatography Method for Studies of Daunorubicin Degradation in i.v. infusion Fluids. J. Pharma. Biomed. Anal. 2013, 83, 164–170.
  • Wang G.; Zhao D.; Chen H.; Ding D.; Kou L.; Sun L.; Hao C.; Li X.; Jia K.; Kan Q.; Liu X.; He Z.; Sun J. Development and Validation of a UPLC–MS/MS Assay for the Determination of Gemcitabine and Its L-Carnitine Ester Derivative in Rat Plasma and Its Application in Oral Pharmacokinetics 2017, 12, 478–485. DOI:10.1016/j.ajps.2017.01.001.
  • Jeong, J.-W.; Seol, Y.-H.; Hyun, H.-C.; Kim, H.-R Lee, J.-H.; Gong, Y.-D Kang, N. S.; Koo, T.-S. A Validated HPLC–MS/MS Method for the Quantification of Supinoxin in Rat Plasma and Its Application to Pharmacokinetic Study. Acta chromatogr, 2017, 29. 463–468. DOI:10.1556/1326.2016.00056.
  • Wang, J.; Li, Y.; Ma, W.; Wang, X.; Tu, P. Validated LC-MS/MS Method for Simultaneous Determination of Doxorubicin and Curcumin in Polymeric Micelles in Subcellular Compartments of MCF-7/Adr Cells by Protein Precipitation-Ultrasonic Breaking Method. Biomed. Chromatogr. 2017, 31, e3892.
  • Zhang, P.; Ling, G.; Sun, J.; Sun, Y.; Pu, X.; Wang, Z.; He, Z. Determination of Mitoxantrone in Rat Plasma by Liquid Chromatography–Tandem Mass Spectrometry Method: Application to a Pharmacokinetic Study. J. Chromatogr. B. 2010, 878, 2260–2265.
  • Gong, X.; Yang, L.; Zhang, F.; Liang, Y.; Gao, S.; Liu, K.; Chen, W. Validated UHPLC-MS/MS Assay for Quantitative Determination of Etoposide, Gemcitabine, Vinorelbine and Their Metabolites in Patients with Lung Cancer. Biomed. Chromatogr. 2017, 31, e3989.
  • Binkhorst, L.; Mathijssen, R. H. J.; Ghobadi Moghaddam-Helmantel, I. M.; de Bruijn, P.; van Gelder, T.; Wiemer, E. A. C.; Loos, W. J. Quantification of Tamoxifen and Three of Its phase-I Metabolites in Human Plasma by Liquid Chromatography/Triple-Quadrupole Mass Spectrometry. J. Pharma. Biomed. Anal. 2011, 56, 1016–1023.
  • Sun, Y.; Tang, D.; Chen, H.; Zhang, F.; Fan, B.; Zhang, B.; Fang, S.; Lu, Q.; Wei, Y.; Yin, J.; Yin, X. Determination of Gemcitabine and Its Metabolite in Extracellular Fluid of Rat Brain Tumor by Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry Using Microdialysis Sampling after Intralesional Chemotherapy. J. Chromatogr. B. 2013, 919–920, 10–19.
  • Sumimoto, T.; Nakahara, R.; Sato, Y.; Itoh, H. A Quantitative Method for the Determination of Bosutinib in Human Plasma Using High-Performance Liquid Chromatography and Ultraviolet Detection. J. Clin. Lab. Anal. 2018, 32.
  • Yasu, T.; Momo, K.; Kobayashi, S.; Kuroda, S.; Tojo, A. Simple Determination of Plasma Ponatinib Concentration Using HPLC. Biol. Pharma. Bull. 2018, 41, 254–258.
  • Andriguetti, N. B.; Hahn, R. Z.; Vilela, R. M. M.; Klück, H.; Raymundo, S.; Schneider, A.; Bastiani, M. F.; Andriguetti, N. B.; Schwartsmann, G.; Antunes, M. V.; Linden, R. An Optimized High-Performance HPLC-PDA Method for the Clinical Application of Paclitaxel Therapeutic Drug Monitoring. Latin Am. J. Pharm. 2018, 37, 295–300.
  • Hahn, R. Z.; Arnhold, P. C.; Andriguetti, N. B.; Schneider, A.; Klück, H. M.; dos Reis, S. L.; Bastiani, M. F.; Kael, I.; da Silva, A. C. C.; Schwartsmann, G.; et al. Determination of Irinotecan and Its Metabolite SN-38 in Dried Blood Spots Using High-Performance Liquid-Chromatography with Fluorescence Detection. J. Pharma. Biomed. Anal. 2018, 150, 51–58.
  • Nasir, B. R.; M.; Hanif, N.; M.; Abbas, G. Reverse Phase High Performance Liquid Chromatography Method for Determination of 5-Fluorouracil in Rabbit Plasma. Acta Poloniae Pharmaceutica - Drug Res. 2017, 74, 379–383.
  • Furman, C.; Carpentier, R.; Barczyk, A.; Chavatte, P.; Betbeder, D.; Lipka, E. Development and Validation of a Reversed-Phase HPLC Method for the Quantification of Paclitaxel in Different PLGA Nanocarriers. Electrophoresis. 2017, 38, 2536–2541.
  • Kim, D. W.; Yousaf, A. M.; Li, D. X.; Kim, J. O.; Yong, C. S.; Cho, K. H.; Choi, H.-G. Development of RP-HPLC Method for Simultaneous Determination of Docetaxel and Curcumin in Rat Plasma: Validation and Stability. Asian J. Pharma. Sci. 2017, 12, 105–113.
  • Wang, Y.; Ren, K.; Yao, Y.; Zhang, R.; Zhou, J.; Zheng, H. Determination and Pharmacokinetic Study of Gefitinib in Rat Plasma by HPLC. Latin Am. J. Pharm. 2016, 35, 429–433.
  • Kaza, M.; Piórkowska, E.; Filist, M.; Rudzki, P. J. HPLC-UV Assay of Imatinib in Human Plasma Optimized for Bioequivalence Studies. Acta Poloniae Pharmaceutica - Drug Res. 2016, 73, 1495–1503.
  • Kumar, S.; Lather, V.; Pandita, D. Stability Indicating Simplified HPLC Method for Simultaneous Analysis of Resveratrol and Quercetin in Nanoparticles and Human Plasma. Food Chem. 2016, 197, 959–964.
  • Altmeyer, C.; Karam, T. K.; Khalil, N. M.; Mainardes, R. M. Tamoxifen-Loaded Poly(L-Lactide) Nanoparticles: Development, Characterization and in Vitro Evaluation of Cytotoxicity. Mater. Sci. Eng: C. 2016, 60, 135–142.
  • Ma, Y.; Fan, X.; Li, L. pH-Sensitive Polymeric Micelles Formed by Doxorubicin Conjugated Prodrugs for co-Delivery of Doxorubicin and Paclitaxel. Carbohydr. Polym. 2016, 137, 19–29.
  • Kamil, A.; Smith, D. E.; Blumberg, J. B.; Astete, C.; Sabliov, C.; Oliver Chen, C.-Y. Bioavailability and Biodistribution of Nanodelivered Lutein. Food. Chem. 2016, 192, 915–923.
  • Chang, D.; Gao, Y.; Wang, L.; Liu, G.; Chen, Y.; Wang, T.; Tao, W.; Mei, L.; Huang, L.; Zeng, X. Polydopamine-Based Surface Modification of Mesoporous Silica Nanoparticles as pH-Sensitive Drug Delivery Vehicles for Cancer Therapy. J. Colloid. Interface. Sci. 2016, 463, 279–287.
  • Wu, B.; Liang, Y.; Tan, Y.; Xie, C.; Shen, J.; Zhang, M.; Liu, X.; Yang, L.; Zhang, F.; Liu, L.; et al. Genistein-Loaded Nanoparticles of Star-Shaped Diblock Copolymer Mannitol-Core PLGA–TPGS for the Treatment of Liver Cancer. Mater. Sci. Eng. C. 2016, 59, 792–800.
  • Yang, Y.-C.; Cai, J.; Yin, J.; Zhang, J.; Wang, K.-L.; Zhang, Z.-T. Heparin-Functionalized Pluronic Nanoparticles to Enhance the Antitumor Efficacy of Sorafenib in Gastric Cancers. Carbohydr. Polym. 2016, 136, 782–790.
  • Hassanlou, S.; Rajabi, M.; Shahrasbi, A. A.; Afshar, M. Development and Validation of an Ecofriendly HPLC-UV Method for Determination of Capecitabine in Human Plasma: Application to Pharmacokinetic Studies. South Afr. J. Chem. 2016, 69, 174–179.
  • Eldin, N. E.; Abu Lila, A. S.; Kawazoe, K.; Elnahas, H. M.; Mahdy, M. A.; Ishida, T. Encapsulation in a Rapid-Release Liposomal Formulation Enhances the anti-Tumor Efficacy of Pemetrexed in a Murine Solid Mesothelioma-Xenograft Model. Eur. J. Pharma. Sci. 2016, 81, 60–66.
  • Ohgami, M.; Homma, M.; Suzuki, Y.; Naito, K.; Yamada, M.; Mitsuhashi, S.; Fujisawa, F.; Kojima, H.; Kaburagi, T.; Uchiumi, K.; et al. A Simple High-Performance Liquid Chromatography for Determining Lapatinib and Erlotinib in Human Plasma. Ther. Drug. Monitor. 2016, 38, 1–662.
  • Mondal, S.; Narendra, R.; Ghosh, D.; Ganapaty, S. Development and Validation of RP-HPLC and UV Spectrophotometric Methods for the Quantification of Capecitabine. Int. J. Pharm. Pharma. Sci. 2016, 8, 279–287.
  • Khan, I.; Iqbal, Z.; Khan, A.; Hassan, M.; Nasir, F.; Raza, A.; Ahmad, L.; Khan, A.; Akhlaq Mughal, M. A Simple, Rapid and Sensitive RP-HPLC-UV Method for the Simultaneous Determination of Sorafenib & Paclitaxel in Plasma and Pharmaceutical Dosage Forms: Application to Pharmacokinetic Study. J. Chromatogr B. Analyt. Technol. Biomed. Life. Sci. 2016, 1033–1034, 261–270.
  • Mandal, B.; Mittal, N. K.; Balabathula, P.; Thoma, L. A.; Wood, G. C. Development and in Vitro Evaluation of Core–Shell Type Lipid–Polymer Hybrid Nanoparticles for the Delivery of Erlotinib in Non-Small Cell Lung Cancer. Eur. J. Pharma. Sci. 2016, 81, 162–171.
  • Pallavi, K.; Srinivasa Babu, P.; Kishore Babu, G. Development and Validation of UV Spectrophotometric Method and RP-HPLC Method for Estimation of Capecitabine in Bulk and Tablet Dosage Forms. Int. J. Appl. Pharma. 2016, 8, 24–29.
  • Han, J.; Zhang, J.; Zhao, H.; Li, Y.; Chen, Z. Simultaneous Determination of Doxorubicin and Its Dipeptide Prodrug in Mice Plasma by HPLC with Fluorescence Detection. J. Pharma. Anal. 2016, 6, 199–202.
  • Lucas, A. T.; O’Neal, S. K.; Santos, C. M.; White, T. F.; Zamboni, W. C. A Sensitive High Performance Liquid Chromatography Assay for the Quantification of Doxorubicin Associated with DNA in Tumor and Tissues. J. Pharma. Biomed. Anal. 2016, 119, 122–129.
  • Saadat, E.; Ravar, F.; Dehghankelishadi, P.; Dorkoosh, F. A. Development and Validation of a Rapid RP-HPLC-DAD Analysis Method for the Simultaneous Quantitation of Paclitaxel and Lapatinib in a Polymeric Micelle Formulation. Sci. Pharm. 2016, 84, 333–345.
  • Caddeo, C.; Díez-Sales, O.; Pons, R.; Carbone, C.; Ennas, G.; Puglisi, G.; Fadda, A. M.; Manconi, M. Cross-Linked Chitosan/Liposome Hybrid System for the Intestinal Delivery of Quercetin. J. Colloid. Interface. Sci. 2016, 461, 69–78.
  • Annapurna, M. M.; Pramadvara.; K.; Venkatesh, B. New Liquid Chromatographic Method (Stability Indicating) for the Determination of cabazitaxel - An anti-Cancer Agent. J. Chem. Pharma. Sci. 2015, 8, 853–858.
  • Minhas, M. U.; Ahmad, M.; Sohail, M.; Siddique, F. Development and Optimization of Fast and New Reversed-Phase HPLC Method for Analysis of 5-Fluorouracil in Human and Rabbit Plasma. Pak. Veter. J. 2015, 35, 71–75.
  • Amin, A.; Bourget, P.; Ader, F.; Vidal, F.; Neuzillet, C.; Baillet-Guffroy, A. Contribution and Limits of a Non-Intrusive Raman Spectroscopic Method Compared with HPLC for Routine Application to Pre-Delivery Analytical Control of Two Major Camptothecin Analogs: Irinotecan and Topotecan. J. Raman Spectrosc. 2015, 46, 1283–1290.
  • Algan, A. H.; Gumustas, M.; Karatas, A.; Ozkan, S. A. A Selective and Sensitive stability-Indicating HPLC Method for the Validated Assay of Etoposide from Commercial Dosage Form and Polymeric Tubular Nanocarriers. J. Pharma. Biomed. Anal.s 2015, 124.
  • Alanazi, F. K.; Haq, N.; Radwan, A. A.; Alsarra, I. A.; Shakeel, F. Development and Validation of UHPLC-DAD Method for the Determination of Cholesteryl-Hexahydrophthaloyl-5-Fluorouracil in Lipid Nanoemulsion. J. Anal. Chem. 2015, 70, 593–599.
  • Li, W.; Lin, X.; Yang, Z.; Zhang, W.; Ren, T.; Qu, F.; Wang, Y.; Zhang, N.; Tang, X. A Bufadienolide-Loaded Submicron Emulsion for Oral Administration: Stability, Antitumor Efficacy and Toxicity. Int. J. Pharma. 2015, 479, 52–62.
  • Sezgin Bayindir, Z.; Beşikci, A.; Yüksel, N. Paclitaxel-Loaded Niosomes for Intravenous Administration: Pharmacokinetics and Tissue Distribution in Rats. Turk. J. Med. Sci. 2015, 45, 1403–1412.
  • Pigatto, M. C.; Mossmann, D. L.; Costa, T. D. HPLC-UV Method for Quantifying Etoposide in Plasma and Tumor Interstitial Fluid by Microdialysis: Application to Pharmacokinetic Studies. Biomed. Chromatogr. 2015, 29, 529–536.
  • Shah, P.; Shah, R. A Stability-Indicating RP-HPLC Method Development and Validation for the Related Substances determination of Imatinibprocess Impuritiesand Their Degradation Products in Tablet Dosage Form. Int. J. PharmTech Res. 2015, 8, 128–146.
  • Kawashima, W.; Okazaki, K.; Kitahara, K.; Tomioka, M.; Abe, S.; Murayama, J.-I. Development of a Quantitative Determination of Paclitaxel Using Hplc and Its Application as a Stability Test of Paclitaxel Solution for Clinical Practice. J. Showa Med. Assoc. 2015, 75, 348–352.
  • Moretton, M. A.; Cagel, M.; Bernabeu, E.; Gonzalez, L.; Chiappetta, D. A. Nanopolymersomes as Potential Carriers for Rifampicin Pulmonary Delivery. Colloids. Surf. B: Biointerf. 2015, 136, 1017–1025.
  • Ravisankar, P.; Niharika, A.; Anusha Rani, K.; Neeha, S. M.; Pavan, G. Development and Validation of RP-HPLC Method for Quantitative Determination of Imatinib Mesylate in Bulk Drug and Pharmaceutical Dosage Form. Der Pharmacia Lettre. 2015, 7, 102–112.
  • Jiang, X.; Xin, H.; Ren, Q.; Gu, J.; Zhu, L.; Du, F.; Feng, C.; Xie, Y.; Sha, X.; Fang, X. Nanoparticles of 2-Deoxy-d-Glucose Functionalized Poly(Ethylene Glycol)-co-Poly(Trimethylene Carbonate) for Dual-Targeted Drug Delivery in Glioma Treatment. Biomaterials. 2014, 35, 518–529.
  • Praveen Srikumar, P.; Siva Lakshmi, T.; Kathirvel, S.; Lourdu Rani, B.; Madhavi, N. Development and Validation of Stability Indicating RP- HPLC Method for the Determination of Irinotecan in Injection Formulation. Int. J. Pharm. Pharmaceu. Sci. 2013, 5, 398–400.
  • Dharmalingam, S. R.; Ramamurthy, S.; Chidambaram, K.; Nadaraju, S. A Simple HPLC Bioanalytical Method for the Determination of Doxorubicin Hydrochloride in Rat Plasma: Application to Pharmacokinetic Studies. Trop. J. Pharm. Res. 2014, 13, 409–415.
  • Jain, A.; Gulbake, A.; Jain, A.; Shilpi, S.; Hurkat, P.; Kashaw, S.; Jain, S. K. Development and Validation of the HPLC Method for Simultaneous Estimation of Paclitaxel and Topotecan. J. Chromatogr. Sci. 2014, 52, 697–703.
  • Pi, C.; Wei, Y.; Yang, H.; Zhou, Y.; Fu, J.; Yang, S.; Ye, Y.; Zhao, L. Development of a HPLC Method to Determine 5-Fluorouracil in Plasma: Application in Pharmacokinetics and Steady-State Concentration Monitoring. CP. 2014, 52, 1093–1101.
  • Parveen, R.; Ahmad, F.; Iqbal, Z.; Singh, M.; Kamal, Y.; Ahmad, S. Simultaneous Estimation of anti-Cancer Terpenoids in Pharmaceutical Nanoformulation by RP-HPLC and HPTLC. Acta Chromatographica. 2014, 26, 391–400.
  • Bernabeu, E.; Flor, S.; Hocht, C.; Taira, C.; Chiappetta, D.; Tripodi, V.; Lucangioli, S. Development and Validation of a Highly Sensitive HPLC Method for Determination of Paclitaxel in Pharmaceutical Dosage Forms and Biological Samples. Cpa. 2014, 10, 185–192.
  • Sathyamoorthy, N.; Rajendran, V.; Naveena, V. S. H.; Dhanaraju, M. D. An Approach for Validated RP-HPLC Method for the Analysis of Paclitaxel in Rat Plasma. J. Appl. Pharmaceu. Sci. 2014, 4, 73–76.
  • Choi, M.; Shin, D. H.; Kim, J.-S. Repositioning of Zoledronic Acid for Breast Cancer Using Transferrin-Conjugated Liposome. J. Pharmaceu. Invest. 2013, 43, 461–469.
  • Kassem, M. G.; Ezzeldin, E.; Korashy, H. M.; Mostafa, G. A. E. High-Performance Liquid Chromatographic Method for the Determination of Dasatinib in Rabbit Plasma Using Fluorescence Detection and Its Application to a Pharmacokinetic Study. J. Chromatogr B. Analyt. Technol. Biomed. Life Sci. 2013, 939, 73–79.
  • Caterino, M.; Casadei, G. M.; Arvonio, R.; De Francia, S.; Pirro, E.; Piccione, F. M.; Pane, F.; Ruoppolo, M. Quantification of Imatinib Plasma Levels in Patients with Chronic Myeloid Leukemia: Comparison between HPLC-UV and LC-MS/MS. Int. J. Pept. Res. Ther. 2013, 19, 109–116.
  • Alkharfy, K. M.; Ali Khan, R. M.; Al-Asmari, M.; Alhadeyah, B. H.; Ahmad, A. Quantitative Determination of Imatinib Stability under Various Stress Conditions. J. Pharm. Bioall. Sci. 2013, 5, 49–52.
  • Pyla, S.; Srinivas, K.; Yvv, J.; Panda, J. Development and Validation of New Analytical Method for Paclitaxel in Bulk and Pharmaceutical Dosage Form by Reverse Phase Hplc (RP-HPLC. Int. J. Pharma. Bio Sci. 2013, 4, P534–P540.
  • Raza, A.; Aman, A.; Bashir, S.; Ahmad, B.; Irfan, J.; Mehta, J.; D.;Gill, H. S.; Khan, A.; Alam, M.; Schätzlein, A. G. Rapid and Sensitive Liquid Chromatographic Method for Determination of Etoposide in Plasma and Biological Samples. J. Liquid. Chromatogr. Relat. Technol. 2013, 36, 2796–2813.
  • Haq, N.; Shakeel, F.; Alanazi, F. K.; Radwan, A. A.; Ali, M.; Alsarra, I. A. Development and Validation of an Isocratic, Sensitive and Facile RP-HPLC Method for Rapid Analysis of 5-Fluorouracil and Stability Studies under Various Stress Conditions. Asian J. Chem. 2013, 25, 7177–7182.
  • Palade, L.; Popovici, I.; Popa, G.; Cojocaru, I. Elaboration and Validation of an HPLC Method for the Quantitative Assay of 5-Fluorouracil. Farmacia. 2013, 61, 526–532.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.