395
Views
8
CrossRef citations to date
0
Altmetric
Review Articles

Molecular Imprinting Prevents Environmental Contamination and Body Toxicity from Anticancer Drugs: An Update

Pages 324-335 | Received 28 Aug 2018, Accepted 19 Sep 2018, Published online: 02 Jan 2019

References

  • Sharma, P. S.; Iskierko, Z.; Pietrzyk-Le, A.; D'Souza, F.; Kutner, W. Bioinspired Intelligent Molecularly Imprinted Polymers for Chemosensing: A Mini Review. Electrochem. Commun. 2015, 50, 81–87.
  • Vasapollo, G.; Sole, R. D.; Mergola, L.; Lazzoi, M. R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945.
  • Zaidi, S. A. Molecular Imprinted Polymers as Drug Delivery Vehicles. Drug Deliv. 2016, 23, 2262–2271.
  • Zaidi, S. A. Development of Molecular Imprinted Polymers Based Strategies for the Determination of Dopamine. Sens. Actuators B. 2018, 265, 488–497.
  • Zaidi, S. A. Utilization of an Environmentally-Friendly Monomer for an Efficient and Sustainable Adrenaline Imprinted Electrochemical Sensor Using Graphene. Electrochim. Acta. 2018, 274, 370–377.
  • Zaidi, S. A. Molecular Imprinting Polymers and Their Composites: A Promising Material for Diverse Applications. Biomater. Sci. 2017, 5, 388–402.
  • Zaidi, S. A. Recent Developments in Molecularly Imprinted Polymer Nanofibers and Their Applications. Anal. Methods 2015, 7, 7406–7415.
  • Cieplak, M.; Kutner, W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941.
  • Biemar, F.; Foti, M. Global Progress against Cancer-Challenges and Opportunities. Cancer Biol. Med. 2013, 10, 183–186.
  • Zaidi, S. A. Cancer Biomarker Immunosensing Monitoring Strategies via Graphene Surface-Engineered Materials. In Next Generation Point-of-Care Biomedical Sensors Technologies for Cancer Diagnosis, Chandra, P., Tan, Y., Singh, S. Eds.; Springer: Singapore, 2017; pp 59–81.
  • Chandra, P.; Noh, H.-B.; Shim, Y.-B. Cancer Cell Detection Based on the Interaction between an Anticancer Drug and Cell Membrane Components. Chem. Commun. (Camb.) 2013, 49, 1900–1902.
  • https://www.medicinenet.com/cancer/article.htm#cancer_facts.
  • Siegel, R. L.; Miller, K. D.; Jemal, A. D. V. M. Cancer Statistics, 2018. CA Cancer J Clin. 2018, 68, 7–30.
  • Zaidi, S. A. Latest Trends in Molecular Imprinted Polymer Based Drug Delivery Systems. RSC Adv. 2016, 6, 88807–88819.
  • Heath, E.; Filipič, M.; Kosjek, T.; Isidori, M. Fate and Effects of the Residues of Anticancer Drugs in the environment. Environ. Sci. Pollut. Res. Int. 2016, 23, 14687–14691.
  • Chandra, P.; Zaidi, S. A.; Noh, H.-B.; Shim, Y. B. Separation and Simultaneous Detection of Anticancer Drugs in a Microfluidic Device With an Amperometric Biosensor. Biosens. Bioelectron. 2011, 28, 326–332.
  • Haupt, K. Molecularly Imprinted Polymers: The Next Generation. Anal. Chem. 2003, 75, 376A–383A.
  • Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular Imprinting: Perspectives and Applications. Chem. Soc. Rev. 2016, 45, 2137–2211.
  • Zaidi, S. A.; Cheong, W. J. Preparation of an Open-Tubular Capillary Column with a Monolithic Layer of S-Ketoprofen Imprinted and 4-Styrenesulfonic Acid Incorporated Polymer and Its Enhanced Chiral Separation Performance in Capillary Electrochromatography. J. Chromatogr. A. 2009, 1216, 2947–2952.
  • Zaidi, S. A. Dual‐Templates Molecularly Imprinted Monolithic Columns for the Evaluation of Serotonin and Histamine in CEC. Electrophoresis. 2013, 34, 1375–1382.
  • Zaidi, S. A.; Shin, J. H. Molecularly Imprinted Polymer Electrochemical Sensors Based on Synergistic Effect of Composites Synthesized from Graphene and Other Nanosystems. Int. J. Electrochem. Sci. 2014, 9, 4598–4616.
  • Lima, H. R. S.; da Silva, J. S.; de Oliveira Farias, E. A.; Teixeira, P. R. S.; Eiras, C.; Nunes, L. C. C. Electrochemical Sensors and Biosensors for the Analysis of Antineoplastic Drugs. Biosens. Bioelectron. 2018, 108, 27–37.
  • Selvolini, G.; Marrazza, G. MIP-Based Sensors: Promising New Tools for Cancer Biomarker Determination. Sensors. 2017, 17, 718.
  • Anderson, A. B.; Gergen, J.; Arriaga, E. A. Detection of Doxorubicin and Metabolites in cell extracts and in single cells by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. B. 2002, 769, 97–106.
  • Hajian, R.; Tayebi, Z.; Shams, N. Fabrication of an Electrochemical Sensor for Determination of Doxorubicin in Human Plasma and Its Interaction With DNA. J. Pharm. Anal. 2017, 7, 27–33.
  • Zhang, Q.; Zhang, L.; Wang, P.; Du, S. Coordinate Bonding Strategy for Molecularly Imprinted Hydrogels: Toward pH-Responsive Doxorubicin Delivery. J. Pharm. Sci. 2014, 103, 643–651.
  • Zavareh, S.; Mahdi, M.; Erfanian, S.; Hashemi-Moghaddam, H. Synthesis of Polydopamine as a New and Biocompatible Coating of Magnetic Nanoparticles for Delivery of Doxorubicin in Mouse Breast Adenocarcinoma. Cancer Chemother. Pharmacol. 2016, 78, 1073–1084.
  • Chen, F.; Chen, H.; Duan, X.; Jia, J.; Kong, J. Molecularly Imprinted Polymers Synthesized Using Reduction-Cleavable Hyperbranched Polymers for Doxorubicin Hydrochloride with Enhanced Loading Properties and Controlled Release. J. Mater. Sci. 2016, 51, 9367–9383.
  • Griffete, N.; Fresnais, J.; Espinosa, A.; Wilhelm, C.; Bée, A.; Ménager, C. Design of Magnetic Molecularly Imprinted Polymer Nanoparticles for Controlled Release of Doxorubicin under an Alternative Magnetic Field in Athermal Conditions. Nanoscale 2015, 7, 18891–18896.
  • Ahmadi, M.; Madrakian, T.; Afkhami, A. Solid Phase Extraction of Doxorubicin Using Molecularly Imprinted Polymer Coated Magnetite Nanospheres Prior to Its Spectrofluorometric Determination. New J. Chem 2015, 39, 163–171.
  • Xu, Z.; Deng, P.; Li, J.; Xu, L.; Tang, S. Molecularly Imprinted Fluorescent Probe Based on FRET for Selective and Sensitive Detection of Doxorubicin. Mater. Sci. Eng. B 2017, 218, 31–39.
  • Amjadi, M.; Jalili, R. Molecularly Imprinted Polymer-Capped Nitrogen Doped Graphene Quantum Dots as a Novel Chemiluminescence Sensor for Selective and Sensitive Determination of Doxorubicin. RSC Adv. 2016, 6, 86736–86743.
  • Radhapyari, K.; Kotoky, P.; Khan, R. Detection of Anticancer Drug Tamoxifen Using Biosensor Based on Polyaniline Probe Modified with Horseradish Peroxidase. Mater. Sci. Eng. C. 2013, 33, 583–587.
  • Peris-Vicente, J.; Ochoa-Aranda, E.; Bose, D.; Esteve-Romero, J. Determination of Tamoxifen and Its Main Metabolites in plasma Samples From Breast Cancer Patients by Micellar Liquid Chromatography. Talanta. 2015, 131, 535–540.
  • Rashid, B. A.; Briggs, R. J.; Hay, J. N.; Stevens, D. Preliminary Evaluation of a Molecular Imprinted Polymer for Solid-Phase Extraction of Tamoxifen. Anal. Commun. 1997, 34, 303–305.
  • Martin, P. D.; Wilson, T. D.; Wilson, I. D.; Jones, G. R. An Unexpected Selectivity of a Propranolol-Derived Molecular Imprint for Tamoxifen. Analyst 2001, 126, 757–759.
  • Nie, F.; Lu, J.; He, Y.; Du, J. Use of Molecule Imprinting–Chemiluminescence Method for the Determination of Tamoxifen in Breast Cancer Sufferers’ Urine. Luminescence. 2005, 20, 315– 320.
  • Claude, B.; Morin, P.; Bayoudh, S.; De Ceaurriz, J. Interest of Molecularly Imprinted Polymers in the Fight Against Doping Extraction of Tamoxifen and Its Main Metabolite From Urine Followed by High-Performance Liquid Chromatography With UV Detection. J. Chromatogr. A. 2008, 1196–1197, 81–88.
  • Ray, J. V.; Mirata, F.; Pérollier, C.; Arotcarena, M.; Bayoudh, S.; Resmini, M. Smart Coumarin-Tagged Imprinted Polymers for the Rapid Detection of Tamoxifen. Anal. Bioanal. Chem. 2016, 408, 1855–1861.
  • Yarman, A.; Scheller, F. W. The First Electrochemical MIP Sensor for Tamoxifen. Sensors (Basel). 2014, 14, 7647–7654.
  • Wang, S.; Qi, Z.; Huang, H.; Ding, H. Electrochemical Determination of Methotrexate at a Disposable Screen-Printed Electrode and Its Application Studies. Anal. Lett. 2012, 45, 1658–1669.
  • Chen, S.; Zhang, Z. Molecularly Imprinted Solid-Phase Extraction Combined with Electrochemical Oxidation Fluorimetry for the Determination of Methotrexate in Human Serum and Urine. Spectrochim. Acta Part A. 2008, 70, 36–41.
  • Liu, X.; Liu, J.; Huang, Y.; Zhao, R.; Liu, G.; Chen, Y. Determination of Methotrexate in Human Serum by High-Performance Liquid Chromatography Combined With Pseudo Template Molecularly Imprinted Polymer. J. Chromatogr. A. 2009, 1216, 7533–7538.
  • Ensafi, A. A.; Nasr-Esfahani, P.; Rezaei, B. Simultaneous Detection of Folic Acid and Methotrexate by an Optical Sensor Based on Molecularly Imprinted Polymers on Dual-Color CdTe Quantum Dots. Anal. Chim. Acta 2017, 996, 64–73.
  • Pattar, V. P.; Nandibewoor, S. T. Electroanalytical Method for the Determination of 5-Fluorouracil Using a Reduced Graphene Oxide/Chitosan Modified Sensor. RSC Adv. 2015, 5, 34292–34301.
  • Zeybek, D. K.; Demir, B.; Zeybek, B.; Pekyardımcı, Ş. A Sensitive Electrochemical DNA Biosensor for Antineoplastic Drug 5-Fluorouracil Based on Glassy Carbon Electrode Modified with Poly (Bromocresol Purple). Talanta. 2015, 144, 793–800.
  • Li, L.; Chen, L.; Liu, W.; Yang, Y.; Liu, X.; Chen, Y. Preparation and Characterization of 5-Fluorouracil Surface Imprinted Thermosensitive Magnetic Microspheres. Monatsh. Chem. 2015, 146, 441–447.
  • Zhang, L.; Chen, L.; Zhang, H.; Yang, Y.; Liu, X. Recognition of 5-Fluorouracil by Thermosensitive Magnetic Surface Molecularly Imprinted Microspheres Designed Using a Computational, Approach. J. Appl. Polym. Sci. 2017, 134, 45468– 45461. 9).
  • Li, L.; Chen, L.; Zhang, H.; Yang, Y.; Liu, X.; Chen, Y. Temperature and Magnetism bi-Responsive Molecularly Imprinted Polymers: Preparation, Adsorption Mechanism and Properties as Drug Delivery System for Sustained Release of 5-Fluorouracil. Mater. Sci. Eng. C. 2016, 61, 158–168.
  • Hashemi-Moghaddam, H.; Kazemi-Bagsangani, S.; Jamili, M.; Zavareh, S. Evaluation of Magnetic Nanoparticles Coated by 5-Fluorouracil Imprinted Polymer for Controlled Drug Delivery in Mouse Breast Cancer Model. Int. J. Pharm. 2016, 497, 228–238.
  • Zheng, X.-F.; Lian, Q.; Yang, H.; Wang, X. Surface Molecularly Imprinted Polymer of Chitosan Grafted Poly(Methyl Methacrylate) for 5-Fluorouracil and Controlled Release. Sci. Rep. 2016, 19, 21409.
  • Prasad, B. B.; Tiwari, K.; Singh, M.; Sharma, P. S.; Patel, A. K.; Srivastava, S. Ultratrace Analysis of Uracil and 5-Fluorouracil by Molecularly Imprinted Polymer Brushes Grafted to Silylated Solid-Phase Microextraction Fiber in Combination With Complementary Molecularly Imprinted Polymer-Based Sensor. Biomed. Chromatogr. 2009, 23, 499–509.
  • Prasad, B. B.; Srivastava, S.; Tiwari, K.; Sharma, P. S. Development of Uracil and 5-Fluorouracil Sensors Based on Molecularly Imprinted Polymer-Modified Hanging Mercury Drop Electrode. Sens. Mater. 2009, 21, 291–306.
  • Prasad, B. B.; Kumar, D.; Madhuri, R.; Tiwari, M. P. Nonhydrolytic Sol–Gel Derived Imprinted Polymer–Multiwalled Carbon Nanotubes Composite Fiber Sensors for Electrochemical Sensing of Uracil and 5-Fluorouracil. Electrochim. Acta. 2012, 71, 106–115.
  • Prasad, B. B.; Kumar, A. Development of Molecularly Imprinted Polymer Nanoarrays of N-Acryloyl-2-Mercaptobenzamide on a Silver Electrode for Ultratrace Sensing of Uracil and 5-Fluorouracil. J. Mater. Chem. B 2015, 3, 5864–5876.
  • Kugimiya, A.; Mukaw, T.; Takeuchi, T. Synthesis of 5-Fluorouracil-Imprinted Polymers with Multiple Hydrogen Bonding Interactions. Analyst 2001, 126, 772–774.
  • Huynh, T.-P.; Pieta, P.; D’Souza, F.; Kutner, W. Molecularly Imprinted Polymer for Recognition of 5-Fluorouracil by RNA-Type Nucleobase Pairing. Anal. Chem. 2013, 85, 8304–8312.
  • Singh, B.; Chauhan, N. Preliminary Evaluation of Molecular Imprinting of 5-Fluorouracil within Hydrogels for Use as Drug Delivery Systems. Acta Biomater. 2008, 4, 1244–1254.
  • Puoci, F.; Iemma, F.; Cirillo, G.; Picci, N.; Matricardi, P.; Alhaique, F. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids. Molecules 2007, 12, 805–814.
  • Cirillo, G.; Iemma, F.; Puoci, F.; Parisi, O. I.; Curcio, M.; Spizzirri, U. G.; Picci, N. Imprinted Hydrophilic Nanospheres as Drug Delivery Systems for 5-Fluorouracil Sustained Release. J. Drug Targeting. 2009, 17, 72–77.
  • Kan, W.; Li, X. Mathematical Modeling and Sustained Release Property of a 5-Fluorouracil Imprinted Vehicle. Eur. Polym. J. 2013, 49, 4167–4175.
  • Pandey, K.; Dubey, R. S.; Prasad, B. B. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil. Ind. J. Clin. Biochem. 2016, 31, 3–12.
  • Tang, W.; Li, W.; Li, Y.; Zhang, M.; Zeng, X. Electrochemical Sensors Based on Multi-Walled Nanotubes for Investigating the Damage and Action of 6-Mercaptopurine on Double-Stranded DNA. New J. Chem. 2015, 39, 8454–8460.
  • Wang, L.; Zhang, Z. The Study of Oxidization Fluorescence Sensor with Molecular Imprinting Polymer and Its Application for 6-Mercaptopurine (6-MP) Determination. Talanta 2008, 76, 768–771.
  • Attallah, O. A.; Al-Ghobashy, M. A.; Ayoub, A. T.; Nebsen, M. Magnetic Molecularly Imprinted Polymer Nanoparticles Forsimultaneous Extraction and Determination of 6-Mercaptopurine and Its Active Metabolite Thioguanine in Human Plasma. J. Chromatogr. A. 2018, 1561, 28–38.
  • Ensafi, A. A.; Karimi-Maleh, H. Modified Multiwall Carbon Nanotubes Paste Electrode as a Sensor for Simultaneous Determination of 6-Thioguanine and Folic Acid Using Ferrocenedicarboxylic Acid as a Mediator. J. Electroanal. Chem 2010, 640, 75–83.
  • Huynh, T.-P.; Wojnarowicz, A.; Sosnowska, M.; Srebnik, S.; Benincori, T.; Sannicolò, F.; D'Souza, F.; Kutner, W. Cytosine Derivatized Bis(2,2′-Bithienyl)Methane Molecularly Imprinted Polymer for Selective Recognition of 6-Thioguanine Anantitumor Drug. Biosens. Bioelectron. 2015, 70, 153–160.
  • Prasad, B. B.; Singh, R.; Kumar, A. Development of Imprinted Polyneutral Red/Electrochemically Reduced Graphene Oxide Composite for Ultra-Trace Sensing of 6-Thioguanine. Carbon. 2016, 102, 86–96.
  • Singh, A. K.; Singh, M. QCM Sensing of Melphalan via Electropolymerized Molecularly Imprinted Polythiophene Films. Biosens. Bioelectron. 2015, 74, 711–717.
  • Prasad, B. B.; Kumar, A.; Singh, R. Synthesis of Novel Monomeric Graphene Quantum Dots and Corresponding Nanocomposite with Molecularly Imprinted Polymer for Electrochemical Detection of an Anticancerous Ifosfamide Drug. Biosens. Bioelectron. 2017, 94, 1–9.
  • Gomar, M.; Panahi, H. A.; Pournamdari, E. Synthesis and Characterization of Thermosensitive Molecularly Imprinted Poly[Allylacetoacetate/N-Vinyl Caprolactam] for Selective Extraction of Gemcitabine in Biological Samples. Chem. Select. 2018, 3, 2571– 2577.
  • Florea, A.; Guo, Z.; Cecilia, C.; François, B.; Francis, V.; François, G.; Sergiy, D.; Robert, S.; Nicole, J.-R. Anticancer Drug Detection Using a Highly Sensitive Molecularly Imprinted Electrochemical Sensor Based on an Electropolymerized Microporous Metal Organic Framework. Talanta. 2015, 138, 71–76.
  • Huang, B.; Xiao, L.; Dong, H.; Zhang, X.; Gan, W.; Mahboob, S.; Al-Ghanim, K. A.; Yuan, Q.; Li, Y. Electrochemical Sensing Platform Based on Molecularly Imprinted Polymer Decorated N,S co-Doped Activated Graphene for Ultrasensitive and Selective Determination of Cyclophosphamide. Talanta 2017, 164, 601–607.
  • Singh, B.; Chauhan, N.; Sharma, V. Design of Molecular Imprinted Hydrogels for Controlled Release of Cisplatin: Evaluation of Network Density of Hydrogels. Ind. Eng. Chem. Res. 2011, 50, 13742–13751.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.