2,537
Views
69
CrossRef citations to date
0
Altmetric
Review Articles

Fabrications and Applications of ZnO Nanomaterials in Flexible Functional Devices-A Review

ORCID Icon, &
Pages 336-349 | Published online: 29 Dec 2018

References

  • Klingshirn, C. The Luminescence of ZnO under High One-and Two-Quantum Excitation. Phys. Stat. Sol. (b) 1975, 71, 547–556.
  • Baltakesmez, A.; Yenisoy, A.; Tüzemen, S.; Gür, E. Effects of Gold Nanoparticles on the Growth of ZnO Thin Films and p-Si/ZnO Heterostructures. Mater. Sci. Semicond. Process. 2018, 74, 249–254. DOI: 10.1016/j.mssp.2017.10.037.
  • Wang, H.; Zhao, Y.; Wu, C.; Dong, X.; Zhang, B. L.; Wu, G. G.; Ma, Y.; Du, G. T. Ultraviolet Electroluminescence from n-ZnO/NiO/p-GaN Light-Emitting Diode Fabricated by MOCVD. J. Lumin. 2015, 158, 6–10. DOI: 10.1016/j.jlumin.2014.09.007.
  • Jeong, S.; Kim, H. Enhanced Performance Characteristics of n-ZnO/p-GaN Heterojunction Light-Emitting Diodes by Forming Excellent Ohmic Contact to p-GaN. Mater. Sci. Semicond. Process 2015, 39, 771–774. DOI: 10.1016/j.mssp.2015.06.045.
  • Li, R.; Reyes, P. I.; Ragavendiran, S.; Shen, H.; Lu, Y.-C. Tunable Surface Acoustic Wave Device Based on Acoustoelectric Interaction in ZnO/GaN Heterostructures. Appl. Phys. Lett. 2015, 107, 074106. DOI: 10.1063/1.4928724.
  • Lin, J. S.; Fu, W.; Jing, L. Q.; Qu, Y. C.; Li, Z. J. Electrochemical Deposition of Nano-Structured ZnO on the Nanocrystalline TiO2 Film and Its Characterization. Sci. China Chem. 2010, 53, 1732–1736. DOI: 10.1007/s11426-010-4016-x.
  • Pickett, A.; Mohapatra, A.; Laudari, A.; Khanra, S.; Ram, T.; Patil, S.; Guha, S. Hybrid ZnO-Organic Semiconductor Interfaces in Photodetectors: A Comparison of Two near-Infrared Donor-Acceptor Copolymers. Org. Electron. 2017, 45, 115–123. DOI: 10.1016/j.orgel.2017.03.001.
  • Hou, R. Z.; Fu, Y. Q.; Hutson, D.; Zhao, C.; Gimenez, E.; Kirk, K. J. Use of Sputtered Zinc Oxide Film on Aluminium Foil Substrate to Produce a Flexible and Low Profile Ultrasonic Transducer. Ultrasonics 2016, 68, 54–60. DOI: 10.1016/j.ultras.2016.02.008.
  • Uddin, A.; Yaqoob, U.; Phan, D. T.; Chung, G. S. A Novel Flexible Acetylene Gas Sensor Based on PI/PTFE-Supported Ag-Loaded Vertical ZnO Nanorods Array. Sens. Actuators B Chem. 2016, 222, 536–543. DOI: 10.1016/j.snb.2015.08.106.
  • Banerjee, A. N.; Joo, S. W.; Min, B. K. Nanocrystalline ZnO Thin Film Deposition on Flexible Substrate by Low-Temperature Sputtering Process for Plastic Displays. J. Nanosci. Nanotechnol. 2014, 14, 7970–7975. DOI: 10.1166/jnn.2014.9399.
  • Lin, C. C.; Tsai, S. K.; Chang, M. Y. Spontaneous Growth by Sol-Gel Process of Low Temperature ZnO as Cathode Buffer Layer in Flexible Inverted Organic Solar Cells. Org. Electron. 2017, 46, 218–225. DOI: 10.1016/j.orgel.2017.04.006.
  • Duan, L. B.; Zhao, X. R.; Zhang, Y. Y.; Shen, H.; Liu, R.-D. Fabrication of Flexible Al-Doped ZnO films via Sol-Gel Method. Mater. Lett. 2016, 162, 199–202. DOI: 10.1016/j.matlet.2015.10.023.
  • Kayaci, F.; Ozgit-Akgun, C.; Donmez, I.; Biyikli, N.; Uyar, T. Polymer-Inorganic Core-Shell Nanofibers by Electrospinning and Atomic Layer Deposition: flexible nylon-ZnO Core-Shell Nanofiber Mats and Their Photocatalytic Activity. ACS Appl. Mater. Interfaces 2012, 4, 6185–6194. DOI: 10.1021/am3017976 · Source: PubMed.
  • Park, J. Y.; Choi, S. W.; Kim, S. S. A Synthesis and Sensing Application of Hollow ZnO Nanofibers with Uniform Wall Thicknesses Grown Using Polymer Templates. Nanotechnology 2010, 21, 475601. DOI: 10.1088/0957-4484/21/47/475601.
  • Sharma, K.; Routkevitch, D.; Varaksa, N.; George, S. M. Spatial Atomic Layer Deposition on Flexible Porous Substrates: ZnO on Anodic Aluminum Oxide Films and Al2O3 on Li Ion Battery Electrodes. J. Vac. Sci. Technol. 2016, 34, 01A146. DOI: 10.1116/1.4937728.
  • Rajagopalan, P.; Singh, V.; Palani, I. A. Investigations on the Influence of Substrate Temperature in Developing Enhanced Response ZnO Nano Generators on Flexible Polyimide Using Spray Pyrolysis Technique. Mater. Res. Bull. 2016, 84, 340–345. DOI: 10.1016/j.materresbull.2016.08.025.
  • Salman, O. N.; Dawood, M. O.; Ali, A. K.; Ahmed, D. S.; Hassoon, K. I. Low Cost Synthesis of ZnO Nano Thin Films by Electrochemical Deposition. Dig. J. Nanamater. Bios 2017, 12, 719–726.
  • Tran, V. T.; Wei, Y.; Yang, H.; Zhan, Z.; Du, H. All-Inkjet-Printed Flexible ZnO Micro Photodetector for a Wearable UV Monitoring Device. Nanotechnology 2017, 28, 095204. DOI: 10.1088/1361-6528/aa57ae.
  • Sun, L.; Yang, K. Y.; Lin, Z. X.; Zhou, X. T.; Zhang, Y.; Guo, T. L. Effects of Coffee Ring via Inkjet Printing Seed Layers on Field Emission Properties of Patterned ZnO Nanorods. Ceram. Int. 2018, 44, 10735–10743. DOI: 10.1016/j.ceramint.2018.03.108.
  • Sánchez, J. G.; Balderrama, V. S.; Garduño, S. I.; Osorio, E.; Viterisi, A.; Estrada, M.; Ferré-Borrull, J.; Pallarès, J.; Marsal, L. F. Impact of Inkjet Printed ZnO Electron Transport Layer on the Characteristics of Polymer Solar Cells. RSC Adv. 2018, 8, 13094–13102. DOI: 10.1039/C8RA01481G.
  • Yu, Q.; Lin, R.; Jiang, L.; Wan, J.; Chen, C. Fabrication and Photocatalysis of ZnO Nanotubes on Transparent Conductive Graphene-Based Flexible Substrates. Sci. China Mater. 2018, 61, 1007–1011. DOI: 10.1007/s40843-017-9211-9.
  • Kaphle, A.; Borunda, M. F.; Hari, P. Influence of Cobalt Doping on Residual Stress in ZnO Nanorods. Mater. Sci. Semicond. Process. 2018, 84, 131–137. DOI: 10.1016/j.mssp.2018.05.019.
  • Kathalingam, A.; Vikraman, D.; Karuppasamy, K.; Kim, H. S.; Park, H. C.; Shanmugam, K. Maskless Patterned Growth of ZnO Nanorod Arrays Using Tip Based Electrolithography. Mater. Sci. Semicond. Process. 2018, 77, 24–30. DOI: 10.1016/j.mssp.2018.01.008.
  • Ding, Y.; Zheng, F.; Zhu, Z. Low-Temperature Seeding and Hydrothermal Growth of ZnO Nanorod on Poly (3, 4-Ethylene Dioxythiophene): Poly(styrene Sulfonic Acid). Mater. Lett. 2016, 183, 197–201. DOI: 10.1016/j.matlet.2016.07.093.
  • Park, N. G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards Stable and Commercially Available Perovskite Solar Cells. Nat. Energy 2016, 1, 16152. DOI: 10.1038/nenergy.2016.152
  • Elilarassi, R.; Chandrasekaran, G. Structural, Optical and Electron Paramagnetic Resonance Studies on Cu-Doped ZnO Nanoparticles Synthesized Using a Novel Auto-Combustion Method. Front. Mater. Sci. 2013, 7, 196–201. DOI: 10.1007/s11706-013-0198-4.
  • Yu, Q.; Jiang, L. Y.; Ai, T. T. Fabrication and Characterization of Au-Doped ZnO Nanocandles Synthesized on Diamond Film. Mater. Lett. 2015, 152, 142–144. DOI: 10.1016/j.matlet.2015.03.125.
  • Park, J. S.; Mahmud, I.; Shin, Y. C.; Choi, J. C.; Kim, B.; Han, J. S.; Yoonseuk, C.; Hak-Rin, K. Influence of Substrate Surface Energy and Surfactant on Crystalline Morphology and Surface Defect Density in Hydrothermally-Grown ZnO Nanowires. Mater. Sci. Semicond. Process. 2018, 77, 64–73. DOI: 10.1016/j.mssp.2018.01.014.
  • Du, Y. Z.; Fu, C. K.; Gao, Y. Z.; Liu, L.; Liu, Y. W.; Xing, L. X.; Zhao, F. Carbon Fibers/ZnO Nanowires Hybrid Nanogenerator Based on an Insulating Interface Barrier. RSC Adv. 2017, 7, 21452–21458. DOI: 10.1039/C7RA02491F.
  • Deng, W.; Jin, L.; Zhang, B.; Chen, Y.; Mao, L.; Zhang, H.; Yang, W.-A. Flexible Field-Limited Ordered ZnO Nanorod-Based Self-Powered Tactile Sensor Array for Electronic Skin. Nanoscale 2016, 8, 16302–16306. DOI: 10.1039/C6NR04057H.
  • Araneo, R.; Falconi, C. Lateral Binding of Tapered Piezo-Semiconductive Nanostructures for Ultra-Sensitive Mechanical Force to Voltage Conversion. Nanotechnology 2013, 24, 265707. DOI: 10.1088/0957-4484/24/26/265707.
  • Shin, S. H.; Kwon, Y. H.; Lee, M. H.; Jung, J.-Y.; Seol, J. H.; Nah, J. A Vanadium-Doped ZnO Nanosheets-Polymer Composite for Flexible Piezoelectric Nanogenerators. Nanoscale 2016, 8, 1314–1321. DOI: 10.1039/C5NR07185B.
  • Li, L.; Gu, L.; Zheng, L.; Fan, Z.; Shen, G. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors. ACS Nano 2017, 11, 4067–4076. DOI: 10.1021/acsnano.7b00749.
  • Yu, Q.; Jiang, L. Y.; Gao, S. Y.; Zhang, S. M.; Ai, T. T.; Feng, X. M.; Wang, W. The Highly Efficient Photocatalysts of B-Doped ZnO Microspheres Synthesized on PET-ITO Flexible Substrate. Ceram. Int. 2016, 43, 2864–2866. DOI: 10.1016/j.ceramint.2016.10.190.
  • Song, M.; Park, J. H.; Chang, S. K.; Kim, D. H.; Kang, Y. C.; Jin, S. H.; Jin, W. Y.; Kang, J. W. Highly Flexible and Transparent Conducting Silver Nanowire/ZnO Composite Film for Organic Solar Cells. Nano Res. 2014, 7, 1370–1379. DOI:10.1007/s12274-014-0502-3.
  • Jin, W. Y.; Ginting, R. T.; Jin, S. H.; Kang, J. W. Highly Stable and Efficient Inverted Organic Solar Cells Based on Low-Temperature Solution-Processed PEIE and ZnO Bilayers. J. Mater. Chem. A 2016, 4, 3784–3791. DOI: 10.1039/C6TA00957C.
  • Anta, J. A.; Guillén, E.; Tena-Zaera, R. ZnO-Based Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 11413–11425. DOI: 10.1021/jp3010025.
  • Sheng, C.; Li, D.; Chang, P. C.; Lu, J. G. Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays. Nanoscale. Res. Lett 2011, 6, 38. DOI: 10.1007/s11671-010-9804-x.
  • Dhamodharan, P.; Manoharan, C.; Bououdina, M.; Venkadachalapathy, R.; Ramalingam, S. Al-Doped ZnO Thin Films Grown onto ITO Substrates as Photoanode in Dye Sensitized Solar Cell. Sol. Energy 2017, 141, 127–144. DOI: 10.1016/j.solener.2016.11.029.
  • Wang, W.; Zhao, Q.; Li, H.; Wu, H.; Zou, D.; Yu, D. Transparent, Double-Sided, ITO-Free, Flexible Dye-Sensitized Solar Cells Based on Metal Wire/ZnO Nanowire Arrays. Adv. Funct. Mater. 2012, 22, 2775–2782. DOI: 10.1002/adfm.201200168.
  • Zhang, Q.; Dandeneau, C.; Zhou, X.; Cao, G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Adv. Mater. 2009, 21, 4087–4108. DOI: 10.1002/adma.200803827.
  • Al-Agel, F. A.; Akhtar, M. S.; Alshammari, H.; Alshammari, A.; Khan, S. A. Solution Processed ZnO Rectangular Prism as an Effective Photoanode Material for Dye Sensitized Solar Cells. Mater. Lett. 2015, 147, 119–122. DOI: 10.1016/j.matlet.2015.02.025.
  • Kilic, B.; Turkdogan, S. Fabrication of Dye-Sensitized Solar Cells Using Graphene Sandwiched 3D-ZnO Nanostructures Based Photoanode and Pt-Free Pyrite Counter Electrode. Mater. Lett. 2017, 193, 195–198. DOI: 10.1016/j.matlet.2017.01.128.
  • Sun, Q. Q.; Li, Y. F.; Dou, J.; Wei, M. D. Improving the Efficiency of Dye-Sensitized Solar Cells by Photoanode Surface Modifications. Sci. China. Mater. 2016, 59, 867–883. DOI: 10.1007/s40843-016-5100-2.
  • Abd-Ellah, M.; Moghimi, N.; Zhang, L.; Thomas, J. P.; Mcgillivray, D.; Srivastava, S.; Leung, K. T. Plasmonic Gold Nanoparticles for ZnO-Nanotube Photoanodes in Dye-Sensitized Solar Cell Application. Nanoscale 2016, 8, 1658–1664. DOI: 10.1039/C5NR08029K.
  • Lee, C.-P.; Chen, P.-W.; Li, C.-T.; Huang, Y.-J.; Li, S.-R.; Chang, L.-Y.; Chen, P.-Y.; Lin, L.-Y.; Vittal, R.; Sun, S.-S.; et al. ZnO Double Layer Film with a Novel Organic Sensitizer as an Efficient Photoelectrode for Dye–Sensitized Solar Cells. J. Power. Sources 2016, 325, 209–219. DOI: 10.1016/j.jpowsour.2016.06.032.
  • Ahmad, M. S.; Pandey, A. K.; Rahim, N. A. Towards the Plasmonic Effect of Zn Nanoparticles on TiO2, Monolayer Photoanode for Dye Sensitized Solar Cell Applications. Mater. Lett. 2017, 195, 62–65. DOI: 10.1016/j.matlet.2017.02.099.
  • Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y.; et al. Efficient and Stable Solution-Processed Planar Perovskite Solar Cells via Contact Passivation. Science 2017, 355, 722–726. DOI: 10.1126/science.aai9081.
  • Li, X.; Bi, D.; Yi, C.; Decoppet, J.-D.; Luo, J.; Zakeeruddin, S. M.; Hagfeldt, A.; Gratzel, M. A Vacuum Flash-Assisted Solution Process for High-Efficiency Large-Area Perovskite Solar Cells. Science 2016, 353, 58–62. DOI: 10.1126/science.aaf8060.
  • Wang, Q.; Dong, Q.; Li, T.; Gruverman, A.; Huang, J. Thin Insulating Tunneling Contacts for Efficient and Water-Resistant Perovskite Solar Cells. Adv. Mater. 2016, 28, 6734–6739. DOI: 10.1002/adma.201600969.
  • Si, H.; Liao, Q.; Zhang, Z.; Li, Y.; Yang, X.; Zhang, G.; Kang, Z.; Zhang, Y. An Innovative Design of Perovskite Solar Cells with Al2O3, Insterting at ZnO/Perovskite Interface for Improving the Performance and Stability. Nano Energy 2016, 22, 223–231. DOI: 10.1016/j.nanoen.2016.02.025.
  • Babayigit, A.; Ethirajan, A.; Muller, M.; Conings, B. Toxicity of Organometal Halide Perovskite Solar Cells. Nat. Mater. 2016, 15, 247–251. DOI: 10.1038/nmat4572.
  • Chen, H.; Yang, S. Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market. Adv. Mater. 2017, 29, 1603994–1604010. DOI: 10.1002/adma.201603994.
  • Mahmood, K.; Swain, B. S.; Amassian, A. Highly Efficient Hybrid Photovoltaics Based on Hyperbranched Three-Dimensional TiO2 Electron Transporting Materials. Adv. Mater. 2015, 27, 2859–2865. DOI: 10.1002/adma.201500336.
  • Zheng, X.; Wei, Z.; Chen, H.; Zhang, Q.; He, H.; Xiao, S.; Fan, Z.; Wong, K. S.; Yang, S. Designing Nanobowl Arrays of Mesoporous TiO2 as an Alternative Electron Transporting Layer for Carbon Cathode-Based Perovskite Solar Cells. Nanoscale 2016, 8, 6393–6402. DOI: 10.1039/C5NR06715D.
  • Tseng, Z. L.; Chiang, C. H.; Chang, S. H.; Wu, C. G. Surface Engineering of ZnO Electron Transporting Layer via, Al Doping for High Efficiency Planar Perovskite Solar Cells. Nano Energy 2016, 28, 311–318. DOI: 10.1016/j.nanoen.2016.08.035.
  • Tseng, Z. L.; Chiang, C. H.; Wu, C.-G. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Sci. Rep. 2015, 5, 13211. DOI: 10.1038/srep13211.
  • Dymshits, A.; Iagher, L.; Etgar, L. Parameters Influencing the Growth of ZnO Nanowires as Efficient Low Temperature Flexible Perovskite-Based Solar Cells. Materials 2016, 9, 60. DOI: 10.3390/ma9010060.
  • Zhu, L.; Wang, L.; Xue, F.; Chen, L.; Fu, J.; Feng, X.; Li, T.; Wang, Z. Piezo-Phototronic Effect Enhanced Flexible Solar Cells Based on n-ZnO/p-SnS Core-Shell Nanowire Array. Adv. Sci. 2017, 4, 1600185. DOI: 10.1002/advs.201600185.
  • Wang, Y. Y.; Xiao, X.; Xue, H. G.; Pang, H. Zinc Oxide Based Composite Materials for Advanced Supercapacitors. Chem. Select 2018, 3, 50–565. DOI: 10.1002/slct.201702780.
  • Ghorbani, M.; Golobostanfard, M.; Abdizadeh, H. Flexible Freestanding Sandwich Type ZnO/rGO/ZnO Electrode for Wearable Supercapacitor. Appl. Surf. Sci. 2017, 419, 277–285. DOI: 10.1016/j.apsusc.2017.05.060.
  • Yang, P.; Xiao, X.; Li, Y.; Ding, Y.; Qiang, P.; Tan, X.; Mai, W.; Lin, Z.; Wu, W.; Li, T.; et al. Hydrogenated ZnO Core-Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano. 2013, 7, 2617–2626. DOI: 10.1021/nn306044d.
  • Ren, Q. H.; Zhang, Y.; Lu, H. L.; Wang, Y. P.; Liu, W. J.; Ji, X. M.; Devi, A.; Jiang, A. Q.; Zhang, D. W. Atomic Layer Deposited of Nickel on ZnO Nanowire Arrays for High-Performance Supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 468–476. DOI: 10.1021/acsami.7b13392.
  • Hasan, M. R.; Baek, S. H.; Seong, K. S.; Kim, J. H.; Park, I. K. Hierarchical ZnO Nanorods on Si Micro-Pillar Arrays for Performance Enhancement of Piezoelectric Nanogenerators. ACS Appl. Mater. Interfaces 2015, 7, 5768–5774. DOI: 10.1021/am5085379.
  • Wang, L.; Liu, S.; Wang, Z.; Zhou, Y.; Qin, Y.; Wang, L.-Z. Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO2 Nanoplatelets via Thermal Stress. ACS Nano 2016, 10, 2636–2643. DOI: 10.1021/acsnano.5b07678.
  • Liao, Q.; Zhang, Z.; Zhang, X.; Mohr, M.; Zhang, Y.; Fecht, H. J. Flexible Piezoelectric Nanogenerators Based on a Fiber/ZnO Nanowires/Paper Hybrid Structure for Energy Harvesting. Nano Res. 2014, 7, 917–928. DOI: 10.1007/s12274-014-0453-8.
  • Shin, S. H.; Kim, Y. H.; Lee, M. H.; Jung, J. Y.; Seol, J. H.; Nah, J. Lithium-Doped Zinc Oxide Nanowires-Polymer Composite for High Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8, 10844–10850. DOI: 10.1021/nn5046568.
  • Zhang, Y.; Liu, C.; Liu, J.; Xiong, J.; Liu, J.; Zhang, K.; Liu, Y.; Peng, M.; Yu, A.; Zhang, A.; et al. Lattice Strain Induced Remarkable Enhancement in Piezoelectric Performance of ZnO-Based Flexible Nanogenerators. ACS Appl. Mater. Interfaces 2016, 8, 1381–1387. DOI: 10.1021/acsami.5b10345.
  • Zheng, Z.; Gan, L.; Li, H.; Ma, Y.; Bando, Y.; Golberg, D.; Zhai, T. Photodetectors: A Fully Transparent and Flexible Ultraviolet-Visible Photodetector Based on Controlled Electrospun ZnO-CdO Heterojunction Nanofiber Arrays. Adv. Funct. Mater. 2015, 25, 5877–5877. DOI: 10.1002/adfm.201502499.
  • Wang, P.; Wang, Y.; Ye, L.; Wu, M. Z.; Xie, R. Z.; Wang, X. D.; Chen, X. S.; Fan, Z. Y.; Wang, J. L.; Hu, W. D. Ferroelectric Localized Field-Enhanced ZnO Nanosheet Ultraviolet Photodetector with High Sensitivity and Low Dark Current. Small 2018, 14, 1800492. DOI: 10.1002/smll.201800492.
  • Li, X.; Liang, R.; Tao, J.; Xu, Q.; Peng, Z.; Han, X.; Wang, X.; Wang, C.; Zhu, J.; Pan, C.; Wang, Z. Flexible Light Emission Diode Arrays Made of Transferred Si Microwires-ZnO Nanofilm with Piezo-Phototronic Effect Enhanced Lighting. ACS Nano 2017, 11, 3883–3889. DOI: 10.1021/acsnano.7b00272.
  • Lim, S.; Um, D. S.; Ha, M.; Zhang, Q.; Lee, Y.; Lin, Y.; Fan, Z.; Ko, H. Broadband Omnidirectional Light Detection in Flexible and Hierarchical ZnO/Si Heterojunction Photodiodes. Nano Res. 2017, 10, 22–36. DOI: 10.1007/s12274-016-1263-y.
  • Davami, K.; Zhao, L.; Lu, E.; Cortes, J.; Lin, C.; Lilley, D. E.; Purohit, P. K.; Bargatin, I. Ultralight Shape-Recovering Plate Mechanical Metamaterials. Nat. Commun. 2015, 6, 10019–10026. DOI: 10.1038/ncomms10019.
  • Zhang, J.; Li, Y.; Zhang, B.; Wang, H.; Xin, Q.; Song, A. Flexible Indium-Gallium-Zinc-Oxide Schottky Diode Operating Beyond 2.45 GHz. Nat. Commun. 2015, 6, 7561–7568. DOI: 10.1038/ncomms8561.
  • Benlamri, M.; Farsinezhad, S.; Barlage, D. W.; Shankar, K. Communication-High Performance Schottky Diodes on Flexible Substrates Using ZnO Electrodeposited on Cu. ECS J. Solid State Sci. Technol. 2016, 5, P324–P326. DOI: 10.1149/2.0161606jss.
  • Gröttrup, J.; Paulowicz, I.; Schuchardt, A.; Kaidas, V.; Kaps, S.; Lupan, O.; Adelung, R.; Mishra, Y. K. Three-Dimensional Flexible Ceramics Based on Interconnected Network of Highly Porous Pure and Metal Alloyed ZnO Tetrapods. Ceram. Int. 2016, 42, 8664–8676. DOI: 10.1016/j.ceramint.2016.02.099.
  • Szczurek, A.; Barcikowski, M.; Leluk, K.; Babiarczuk, B.; Kaleta, J.; Krzak, J. Improvement of Interaction in a Composite Structure by Using a Sol-Gel Functional Coating on Carbon Fibers. Materials 2017, 10, 990. DOI: 10.3390/ma10090990.
  • Kachoei, M.; Nourian, A.; Divband, B.; Kachoei, Z.; Shirazi, S. Zinc-Oxide Nanocoating for Improvement of the Antibacterial and Frictional Behavior of Nickel-Titanium Alloy. Nanomedicine 2016, 11, 2511–2527. DOI: 10.2217/nnm-2016-0171.
  • Ding, X.; Fang, F.; Du, T.; Zheng, K.; Chen, L.; Tian, X.; Zhang, X. Carbon Nanotube-Filled Intumescent Multilayer Nanocoating on Cotton Fabric for Enhancing Flame Retardant Property. Surf. Coat. Technol. 2016, 305, 184–191. DOI: 10.1016/j.surfcoat.2016.08.035.
  • Tian, X.; Li, Y.; Wan, S.; Wu, Z.; Wang, Z. Functional Surface Coating on Cellulosic Flexible Substrates with Improved Water-Resistant and Antimicrobial Properties by Use of ZnO Nanoparticles. J. Nano. Mater. 2017, 2017, 1–9. DOI: 10.1155/2017/9689035.
  • Ponnamma, D.; Guo, Q.; Krupa, I.; Al-Maadeed, M. A. S. A.; Varughese, K. T.; Thomas, S.; Sadasivuni, K. K. Graphene and Graphitic Derivative Filled Polymer Composites as Potential Sensors. Phys. Chem. Chem. Phys. 2015, 17, 3954–3981. DOI: 10.1039/c4cp04418e.
  • Gurav, K. V.; Patil, U. M.; Shin, S. W.; Pawar, S. M.; Kim, J. H.; Lokhande, C. D. Morphology Evolution of ZnO Thin Films from Aqueous Solutions and Their Application to Liquefied Petroleum Gas (LPG) Sensor. J. Alloys Compd. 2012, 525, 1–7. DOI: 10.1016/j.jallcom.2012.01.082.
  • Ghosh, A.; Sharma, R.; Ghule, A.; Taur, V. S.; Joshi, R. A.; Desale, D. J.; Gudage, Y. G.; Jadhav, K. M.; Han, S.-H. Low Temperature LPG Sensing Properties of Wet Chemically Grown Zinc Oxide Nanoparticle Thin Film. Sens. Actuators B Chem. 2010, 146, 69–74. DOI: 10.1016/j.snb.2010.01.044.
  • Patil, L. A.; Bari, A. R.; Shinde, M. D.; Deo, V. Ultrasonically Prepared Nanocrystalline ZnO Thin Films for Highly Sensitive LPG Sensing. Sens. Actuators B Chem. 2010, 149, 79–86. DOI: 10.1016/j.snb.2010.06.027.
  • Kim, J. W.; Porte, Y.; Ko, K. Y.; Kim, H.; Myoung, J. M. Micro-Patternable Double-Faced ZnO Nanoflowers Flexible Gas Sensor. ACS Appl. Mater. Interfaces 2017, 9, 32876–32886. DOI: 10.1021/acsami.7b09251.
  • Fung, C. M.; Lloyd, J. S.; Samavat, S.; Deganello, D.; Teng, K. S. Facile Fabrication of Electrochemical ZnO Nanowire Glucose Biosensor Using Roll to Roll Printing Technique. Sens. Actuators B Chem. 2017, 247, 807–813. DOI: 10.1016/j.snb.2017.03.105.
  • Ahmad, R.; Tripathy, N.; Park, J. H.; Hahn, Y. B. A Comprehensive Biosensor Integrated with a ZnO Nanorod FET Array for Selective Detection of Glucose, Cholesterol and Urea. Chem. Commun. 2015, 51, 11968–11971. DOI:10.1039/C5CC03656A.
  • Tak, M.; Gupta, V.; Tomar, M. An Electrochemical DNA Biosensor Based on Ni Doped ZnO Thin Film for Meningitis Detection. J. Electroanal. Chem. 2017, 792, 8–14. DOI: 10.1016/j.jelechem.2017.03.032.
  • Arya, S. K.; Saha, S.; Ramirez-Vick, J. E.; Gupta, V.; Bhansali, S.; Singh, S. P. Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Anal. Chim. Acta 2012, 737, 1–21. DOI: 10.1016/j.aca.2012.05.048.
  • Assaifan, A. K.; Lloyd, J. S.; Samavat, S.; Deganello, D.; Stanton, R. J.; Teng, K. S. Nanotextured Surface on Flexographic Printed ZnO Thin Films for Low-Cost Non-Faradaic Biosensors. ACS Appl. Mater. Interfaces 2016, 8, 33802–33810. DOI: 10.1021/acsami.6b11640.
  • Cao, X. T.; Cao, X.; Guo, H. J.; Li, T.; Jie, Y.; Wang, N.; Wang, Z. L. Piezotronic Effect Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire Biosensor. ACS Nano 2016, 10, 8038–8044. DOI: 10.1021/acsnano.6b04121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.